
SPECIAL SECTION ON ADVANCES IN PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT

Received February 20, 2019, accepted March 3, 2019, date of publication March 6, 2019, date of current version April 2, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2903355

A Wind Turbine Bearing Performance Evaluation
Method Based on Similarity Analysis of Fuzzy
k-Principal Curves in Manifold Space
HONGJI REN 1,2, AIJUN YIN1,2, (Member, IEEE), QUAN ZHOU3,
JIANG LI1,2, AND YIHUA HU 4, (Senior Member, IEEE)
1State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
2College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
3Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996 USA
4Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, U.K.

Corresponding author: Aijun Yin (aijun.yin@cqu.edu.cn)

This work was supported in part by the Key Projects of Chongqing’s major theme of artificial intelligence technology innovation under
Grant cstc2017rgzn-zdyfx007, and in part by the National Natural Science Foundation of China under Grant 51374264.

ABSTRACT Condition monitoring (CM) is widely used in wind turbines (WTs) to reduce operation and
maintenance (O&M) costs. Bearings are crucial components in WT and many bearing CM approaches have
focused on vibration analysis. Statistical theory and artificial intelligence-based WT bearings evaluation
methods require mass data for training, whichmakes the detection of incipient failures barely possible. In this
paper, a WT bearing performance evaluation method is proposed based on the similarity analysis of fuzzy
k-principal curves (FKPCs) in manifold space. For a start, 38 features are extracted from bearing vibration
signals to constitute high-dimensional feature matrices. The feature matrices for the healthy samples and
the samples to be evaluated are then transformed into 3-D space. Afterward, the FKPCs are extracted and
the similarities among the curves of samples are calculated based on the Hausdorff distance to evaluate the
performance of the bearing. Bearing degradation experiments are investigated to verify the efficiency of the
proposed method. The results indicate that the proposed FKPC method can portray the degradation trend of
bearings accurately with the capability of detecting incipient failures. The proposed method can be applied
in the case of small-size training samples with stable performance.

INDEX TERMS Wind farms, condition monitoring, fault diagnosis, prognostics and health management.

I. INTRODUCTION
With the exhaustion of traditional energy resources, more
people are turning their attention to wind energy since it
is clean and renewable [1]. Energy market is sensitive to
costs and wind energy is struggling to expand its share. Wind
turbines (WTs) convert the kinetic energy ofwind to electrical
power. The operation and maintenance (O&M) costs of WTs
take up a large proportion in the overall energy generation
cost [2]. It will make wind energy more competitive in the
energymarket if the O&Mcosts are reduced. A larger number
of efforts have been devoted to optimizing the mechanical
design of WTs for higher efficiency and durability [3]. It is
also important to evaluate the performance ofWTs accurately
so that the faulty parts can be repaired prior to the occur-
rence of more serious issues [4]. There are many approaches
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that aim at reducing WTs’ O&M costs such as condition
monitoring (CM), non-destructive testing (NDT) [5], fault
diagnosis (FD) [6], etc.

A typicalWTmainly consists of the blades, bearings, gear-
box, generator, shaft, yaw system and tower. Blades rotate
around the horizontal axis and the kinetic energy is trans-
ferred to the generator via the shaft, bearings and gearbox.
There are also bearings in the generator and gearbox. The
amount of electrical energy generated by a WT depends on
the size of the turbine and the wind speed. Larger blades and
stronger wind will lead to more power generation as well
as more abrasion and damage to the components. WTs are
inevitably subject to failure after long-time service [7]. WT is
a typical mechatronics system, in which functional compo-
nents are structurally and electrically connected. The vulner-
able components in WT are easy to break down under severe
operational environments, in which case the O&M costs are
increased. Failure causes and modes for components in a
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TABLE 1. Failure causes and modes for components in a WT system.

WT system are illustrated in Table 1 according to previous
survey [8].

From Table 1 we can see that the problems of WTs are
mainly caused by failures of the blades, generator, bearings
and gearbox. Extensive efforts have been devoted to evaluat-
ing the performance of WT components [9]–[12]. Bearings
are important parts in WTs. According to [13], the majority
of wind turbine gearbox failures (about 70%) are caused
by faults in the bearings. Besides, the performance of the
generator is also related to the bearings. Vibration analysis is
an efficient method in the performance evaluation of rolling
components and has been widely applied in WT bearings
monitoring [14]. Generally, there are two popular branches
for WT bearings vibration signal analysis: the conventional
time and frequency analysis methods and the novel data
mining approaches [15]. A number of time-frequency based
bearing evaluation methods such as sparse decomposition,
Hilbert-Huang Transform (HHT), empirical mode decompo-
sition (EMD), local mean decomposition (LMD) and (VMD)
have been proposed. However, the above methods have their
respective limitations, and the estimation accuracy generally
depends on the parameters settings [16], [17]. Therefore,
novel data mining approaches based on statistical theory
and artificial intelligence have been brought forward, such
as hidden Markov models (HMM) [18], deep belief net-
works (DBN) [19], artificial neural network (ANN) [20], and
fuzzy formalisms [21]. Although great developments have
beenmade in both the theoretical research and practical appli-
cations, statistical and artificial intelligence based methods
require masses of data for model training. Moreover, since
the evaluation results are very sensitive to the parameters of
the models while the optimal parameter sets are not always
available, the above mentioned methods are generally not
capable of detecting incipient failures, especially when the
data is limited.

The motivation of this study is to present a WT bearings
performance evaluation method with the capability of detect-
ing incipient failures. The feature vectors extracted from
WT bearings vibration signals are usually high-dimensional,
nonlinear, information-redundant and mutually coupled [22].
Manifold learning is a dimension reduction method that can
extract the low-dimensional manifold structure of target data
in the original observation space [23]. As one of the classi-
cal manifold learning algorithms, Laplacian eigenmaps has
been successfully applied on dimension reduction and data
representation [24]. After dimension reduction, an imaginary
manifold curve can be extracted to reflect the condition of
the bearings by applying geometric interpolation [25]. The
Hausdorff distance, which is generally used to evaluate the
similarity among curves [26], can be used to calculate the dis-
tances amongmanifold curves under different conditions thus
to reflect the degradation process. To sum up, the detection
of bearing incipient failures can be realized through an opti-
mized combination of dimension reduction method, manifold
curve method and similarity comparison algorithm, which
has not been accomplished yet.

In this study, a WT bearing performance evaluation
method based on the similarity analysis of fuzzy K-principal
curves (FKPC) in manifold space is presented. The proposed
method is sensitive to incipient failures, and in the mean-
while large volumes of data is not necessary in the training
process. The rest of this paper is organized as follows: Fea-
ture extraction and Laplacian eigenmaps are introduced in
Section II. In Section III, a novel FKPC method is proposed
and the Hausdorff distance is utilized to assess the similari-
ties of curves. Experiments and results are demonstrated in
Section IV. Finally, the conclusion is presented in Section V.

II. FEATURE EXTRACTION AND LAPLACIAN EIGENMAPS
A. FEATURE EXTRACTION
Vibration signals are widely used in the evaluation of bear-
ings. In this paper, features extracted from multiple domains
are employed to create high dimensional feature matrices
for dimension reduction. Time-domain features, which are
intuitive and intelligible, constitute the raw data of the bearing
running state. Frequency domain features are used to describe
the variations in the frequency band from the view of signal
spectrum and spectrum energy distribution. 24 time and fre-
quency features are utilized in this paper according to [27],
shown in Table 2 and Table 3.

A wavelet packet transformation is deduced based on
decomposition of the low frequency portion by a discrete
wavelet transformation. Then a more thorough decompo-
sition of the high-frequency portion of the signal without
redundancy or oversight can be completed, which provides
better local time-frequency analytic ability. Wavelet packet
node energy is one of the most widely used features in
mechanical fault analysis. The energy value at each node can
be derived by:

Ejk =
∑N

m=1
xjm (1)
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TABLE 2. Features in the time-domain.

TABLE 3. Features in the frequency-domain.

where Ejk , m and xjm are the corresponding signal energy for
the reconstructed signal of j-th band in k-th layer, the discrete
node and the amplitude of the discrete node, respectively.

The wavelet packet node energy eigenvector is defined as:

e =
{
Ej0,Ej1, . . . ,Ejl

}
/E (2)

where l = 2j − 1,E =
∑l

k=1 Ejk

B. LAPLACIAN EIGENMAPS FOR MANIFOLD
SPACE PROJECTION
The original high dimensional feature matrices are usually
nonlinear, information-redundant and mutually coupled. It is
necessary to generate an essential representation of the orig-
inal feature matrices by applying space conversion. The high
dimensional feature matrices (the D dimension) are actu-
ally in a low dimensional manifold (the L dimension) and
the manifold structure retains the geometrical characteristics
of the feature matrices. Laplacian eigenmaps is a classical
manifold learning method that can obtain a low dimensional
representation of the datasets andmaintain local features with
robust performance when the samples have outliers [28].

Given a dataset X = [x1 . . . , xM] of M points in RD,
the purpose of Laplacian eigenmaps is to find an opti-
mal embedding � for the manifold. Suppose that Y =

[y1 . . . , yM]εRL is the low-dimensional representation of X .
Y = F(X), where F is the embedding map.
F is used to ensure that the distance relations among

data points are maintained during dimension reduction. F
can be obtained through minimizing the following objective
function: {

argmin
∫ ∥∥∇F (X)2∥∥

‖F‖52(M) = 1
(3)

The minimization of (3) can be transformed to a general-
ized eigenvalue problem:

0F = −div∇ (F) (4)

where 0 is the Laplace Beltrami operator. Let f0, f1, . . . , fM
be the solutions of equation (4) ordered according to their
eigenvalues 0 = λ0 ≤ λ1 . . . ≤ λM, and the optimal embed-
ding map can be described as F = [f1, f2, . . . , fM]T. Then a
high dimensional space can be projected into low dimensional
manifold space by Y = F(X) = [f1(X), f2(X), . . . , fM(X)].

FIGURE 1. Flow chart of space conversion of rolling bearing vibration
signals.

The flow chart of space conversion of bearing vibration
signals is illustrated in Fig.1. Time domain features, fre-
quency domain features and wavelet packet node energy
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features constitute the high-dimensional feature matrices.
D1 and D2(t) denote the high-dimensional feature matrices
for the healthy samples and the samples to be evaluated,
respectively. Firstly, Laplacian eigenmaps is employed to
transform D1 to the low dimensional manifold space matrix
of the healthy samples L1, and in the meanwhile the project
map F is derived. F is then utilized to transform D2(t) to the
low dimensional manifold space matrix of the samples to be
evaluated L2(t). Further comparison between L1 and L2(t) will
be conducted for the bearing performance evaluation.

III. SIMILARITY ASSESSMENT OF FUZZY
k-PRINCIPAL CURVES
A. EXTRACTION OF FUZZY k-PRINCIPAL CURVES
The feature matrix after Laplacian eigenmaps is the low-
dimensional expression of the original high-dimensional tar-
get data. The principal curve aims to represent exactly the
distribution of target data in low-dimensional space and it
can be regarded as a nonlinear generalization of PCA [29].
To calculate themaster curve from the dataset, a curve satisfy-
ing certain optimization objectives and constraints is selected
from a set of curves. The principal curve is essentially a one
dimensional manifold embedded in Euclidean space [30].

Given the probability density of a random variable B =
(B1,B2, . . . ,Bn), if a curve c (s) passing through B satisfies
the following expression:

c (s) = E (B |sb (b) = s ) (5)

where c(s) is one of the principal curves of B, sb(b) =
sup{s||b− c(s)|| = inf ||bc(τ )||} is the projection value from
data points B to the points in curve c(s) and E is the mean

The k-principal curve, which is also known as the principal
curve with length constraint, is the only existing principal
curve. Based on [31], a new method of extracting the prin-
cipal curve by using fuzzy k-means clustering is proposed in
this paper. Fuzzy k-means is a classical dynamic clustering
algorithm that constantly minimizes the square error and
updates the membership degree of each data sample point
to the cluster center. Therefore, the cluster with the highest
membership degree indicates the classification of the data
samples.

For n samples with q variables, after normal transformation
and standardization, a fuzzy matrix of the initial m groups of
each sample is given as:

U =

u11 · · · u1m
...

. . .
...

un1 · · · unm

 i = 1, 2 · · · n; j = 1, 2 · · ·m (6)

where uij is the membership degree of sample i for class j,
uijε[0, 1],

∑
uij = 1. Let vj be the initial cluster center of

class j

V = [v1, v2 · · · vm] (7)

where vj = [vj1, vj2 . . . , vjq]. Define an objective
function Jz(UV):

Jz (U ,V ) =
n∑
i=1

m∑
j=1

(
uij
)z ∥∥xi − vj∥∥2 (8)

where x denotes a point with q variables, z is the smoothing
parameter, 1≤ z ≤5 and z is usually set to 1 This problem can
be attributed to the extreme value of the objective function on
the condition of

∑
uij = 1. When m > 1, xi 6= vj, which can

be proved as follows by using Lagrange multiplication:

uij = 1/
m∑
j=1

(∥∥xi − vj∥∥ / ‖xi − v1‖)2/(z−1)
vj =

n∑
i=1

uzijxi/
n∑
i=1

uzij i = 1, 2, . . . , n; j = 1, 2, . . . ,m

(9)

The function of k-principal curve is minimizing (10)
continuously. Then, a 2-opt algorithm is used to optimize
the Hamilton path formed by line segments until they are
connected to a smooth curve [26].

min
k∑
i=1

∑
x∈Vi

d (x, si)2 (10)

where si denotes the i-th line segment, d(x, si) is the distance
from x to si, and k is the total number of line segments.

Vi =
{
x ∈ Xn|i =

argmin d (x, si)
j

}
. Xn is a set of n samples

from R. Vi is the Voronoi Region.
Therefore, the method of extracting the principal curve

by using fuzzy k-means clustering can be summarized as
follows:
Step1: Use Fuzzy k-means clustering algorithm to divide

the original data points into m classes;
Step2: Iterate continuously to minimize (10) and obtain k

line segments;
Step3: Optimize the Hamilton path to connect k line

segments to a smooth curve.

B. CURVE SIMILARITY
Judging curve similarity is one of the foremost problems
of computer graphics and pattern recognition. Currently,
the main judgment methods are the eigenvalue method and
the similarity functions definition-based method. The simi-
larity functions definition-based methods are superior to the
eigenvalue method to a certain extent. The Hausdorff distance
is widely used in similarity measurement between two-point
sets [32].

The Hausdorff distance is a nonlinear distance, which
only calculates the degree of similarity (maximum distance)
between two points sets without establishing the correspond-
ing relationship between the points.

For points sets A = {a1, a2, . . . , ap} and B =

{b1, b2, . . . , bq}, the Hausdorff distance between A and B is:

HMHD (A,B) = max {hMHD (A,B) , hMHD (B,A)} (11)
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where

hMHD (A,B) = max
ai∈A

min
bj∈B

∥∥ai − bj∥∥ (12)

hMHD (B,A) = max
bj∈B

min
ai∈A

∥∥bj − ai∥∥ (13)

Note that ||ai − bj|| is the Euclidean distance between the
points ai and bj

C. THE ASSESSMENT OF BEARING PERFORMANCE
BY USING THE FKPC
In this paper, firstly, the original high dimensional fea-
ture matrices are transformed to those in three dimensional
space by using Laplacian eigenmaps. Secondly, the fuzzy
k-principal curves for the healthy samples and the samples to
be evaluated are extracted, respectively. Finally, the similar-
ities are calculated by applying the Hausdorff distance. The
algorithm process is illustrated in Table 4.

TABLE 4. The algorithm process of the FKPC.

FIGURE 2. The experiment setup for the accelerated degradation of the
rolling bearing.

IV. EXPERIMENTS AND RESULTS
A. LABORATORIAL BEARING DEGRADATION
EXPERIMENT SETUP
The experiment setup for the accelerated degradation of the
rolling bearing is shown in Fig.2. Four ZA-2115 double row
roller bearings installed on the test bench are driven by the
AC motor through a friction pulley with a rotation speed
of 2000RPM. A 26700N radial load is applied in the test
bench beam to accelerate the degradation, and the vibration
data is collected by an NI DAQ Card 6062E with a sampling

frequency of 20kHz [34]. The experiment is stopped when
the amount of accumulated debris exceeds a certain threshold.
There are four channels, with channels 1 to 4 corresponding
to bearings 1 to 4, respectively. The dataset of bearing 1 is
selected for further analysis.

B. LABORATORIAL BEARING DEGRADATION
EXPERIMENT RESULTS
24 time and frequency features are extracted from the raw
vibration signal. We then obtain 14 sub-band node energy
values through 3-layer decomposition by using a db3 wavelet
function of the wavelet packet transform. Thus, 38 features
constitute the original feature sets. Fig.3 shows the variation
trends of 4 different sensitive features. We can see from
Fig.3 that the performance varies from feature to feature.
Therefore, the feature extraction process can be arduous and
frustrating if the process is performed manually. Fig.3 also
shows that the bearing is in healthy state before 4000min.
In this paper, healthy samples are selected from data in
0-1000min and the entire data sets are the samples to be
evaluated.

FIGURE 3. Variation trend of 4 features: (a) waveform index of time
domain; (b) first order gravity center of frequency domain; (c) second
order gravity center of frequency domain; (d) energy of node (3,7) in
wavelet packet domain.

We combine the time domain features, frequency domain
features and wavelet packet energy features to constitute the
high dimensional feature matrices to comprehensively reflect
the running state of the bearing. The feature matrix for the
healthy bearing state is transformed to three-dimensional
space with preserved projection map information by using
Laplacian eigenmaps. The feature matrices of the samples to
be evaluated are then transformed to three-dimensional space
according to the projection map.

The fuzzy k-principal curves are extracted from the fea-
ture sets after space conversion The similarities among the
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FIGURE 4. The bearing degradation curve by using the FKPC ‘‘NT’’ denotes
the size of training samples.

principal curves are calculated by using the Hausdorff dis-
tance based method. Fig.4 illustrates the bearing degradation
curve by using the FKPC. ‘‘NT’’ denotes the size of training
samples. The minimum sample size is set to 30 to take
into consideration the poor performance of the HMM under
small sample sizes. In Fig.4, the degradation curve is stable
before 5000min, indicating that the bearing is running under
a normal condition. The incipient failure starts at 5320min,
which means that the deviation from the normal operating
condition is gradually increasing. The fluctuation at 7010min
shows that the performance of the bearing is worsen. And
the total failure comes at about 9670min. The FKPC gen-
erally reproduces the degradation trend of the bearing and
the performance of the FKPC is stable despite the variation
of training sample numbers. The bearing degradation curve
by directly calculating the Hausdorff distance after Laplacian
eigenmaps is illustrated in Fig.5. We can see that Fig.5 can
also portray the degradation process of the bearing. However,
further comparison between Fig.5 and the proposed method
in Fig.4 shows that the curve in Fig.5 has obvious fluctuation.
The degradation curve by applying FKPC is stable before
5000min and the incipient failure starts at 5320min. While
in Fig.5 the incipient failure starts at 1830min, which is
inaccurate according to the dataset itself. Therefore, directly
analyzing the Hausdorff distance on the feature matrix after
Laplacian eigenmaps is vulnerable to noise or abnormal data.
The FKPC, on the other hand, can reduce above influence and
thus to more accurately represent the degradation process of
the bearing.

C. COMPARISON WITH OTHER DIMENSION
REDUCTION METHODS
In this paper, high dimensional feature matrices are expressed
in three-dimensional space to reflect the running state

FIGURE 5. The bearing degradation curve by directly calculating the
Hausdorff distance after Laplacian eigenmaps. Since the influence of NT
is much smaller than it in Fig.4, here we focus on the result under
1000 training samples.

of bearings. The efficacy of the three-dimensional space
is therefore affected by the dimension reduction methods.
In this section, the performance of PCA and Isomap based
dimension reduction methods are also investigated.

The k-principal curves are extracted from the feature sets
after dimension reduction, and the similarities among the
principal curves of the healthy samples and the samples to be
evaluated are then calculated by using the Hausdorff distance
based method. We use the 3σ threshold to detect incipient
failure according to [33]. The bearing begins to fail if the
degeneration curve starts exceeding the threshold evidently.
Fig.6 illustrates the bearing degradation curves by using the
Laplacian eigenmaps, PCA and Isomap. Both the Laplacian
eigenmaps and PCA can portray the degradation trend of the
bearing while the Isomap results in distance fluctuations with
unobvious tendencies. This can be explained by the fact that
the Isomap method is not capable of dealing with manifolds
with larger internal curvatures. Further comparison shows
that the incipient failure detection results of the Laplacian
eigenmaps and PCA are 5320min and 5490min, respectively.
Therefore, the performance of the Laplacian eigenmaps is the
best among the three methods.

D. COMPARISON WITH OTHER DISTANCE SIMILARITY
ASSESSMENT APPROACHES
The Hausdorff distance is widely used in the evalua-
tion of curve similarity. The approaches by applying the
Euclidean distance and Mahalanobis distance are also pop-
ular. Fig.7 illustrates the bearing degradation curves by using
the Hausdorff distance, Euclidean distance and Mahalanobis
distance. We can see that the performance of Euclidean
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FIGURE 6. The bearing degradation curves by using Laplacian eigenmaps,
PCA and Isomap.

FIGURE 7. The bearing degradation curves by using the Hausdorff
distance, Euclidean distance and Mahalanobis distance.

distance and Mahalanobis distance are similar, and all of the
three methods are able to reproduce the degradation process
of the bearing. As for the ability to detect incipient failure,
the Hausdorff distance exceeds the others since the failure
symptom at 5320min as well as other time points is more
significant.

E. COMPARISON WITH THE HMM AND THE DBN
Based on the high-dimensional feature matrices, the bearing
degradation curves by using the Gaussian mixture HMM
and DBN are illustrated in Fig.8 and Fig.9, respectively.

FIGURE 8. The bearing degradation curve by using the HMM.

FIGURE 9. The bearing degradation curve by using the DBN.

Fig.8 indicates that the performance of the HMM becomes
better as the number of samples increases. The key param-
eters of a HMM include initial probability distribution,
transition probability distribution and observation probability
distribution. For a WT bearing monitoring case where the
observations are continuous, the parameters of the HMM is
more complicated due to the Gaussian distribution. The same
pattern can also be found in the performance of the DBN,
shown in Fig.9. The detailed comparison among the 3 meth-
ods is summarized in Table 5. It is clear that for statis-
tics based bearing performance evaluation methods such
as the HMM and DBN, the optimized parameters are not
always available and the methods may fail to reflect the
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TABLE 5. The comparison among the FKPC, the HMM, and the DBN.

FIGURE 10. The experiment setup for the actual WT bearing experiment.
(a) The acceleration sensors settings for main shaft bearings, (b) The
acquisition system set-up.

real conditions. The proposed method is sensitive to incipient
failures. Moreover, the proposedmethod can be applied in the
case of small-size training samples and the performance of
the proposed method is stable despite the variation of training
sample numbers.

F. ACTUAL WT BEARING EXPERIMENT AND DISCUSSION
The purpose of the laboratorial bearing degradation exper-
iment is to rapidly perform the degradation process of the
bearing and the operating condition is different with actual
situation. Therefore, an actual WT bearing experiment has
also been conducted on a wind farm located at Inner Mon-
golia, China. The actual WT bearing experiment aims to
assess the natural degradation trend of the bearing. A 2MW
WT manufactured by Baoding Tianwei is employed in the
experiment. The vibration signals of the main shaft bear-
ings are collected using acceleration sensors LC0166T. The
sensors are connected to a computer through NI 9234 and
cDAQ-9188. The wind turbine bearing experimental set-up
is illustrated in Fig.10. The wind turbine runs under normal
condition and a total of 4 datasets are collected at October of
2011 (T1), May of 2012 (T2), October of 2012 (T3) and
April of 2013 (T4). During each acquisition, the main shaft
of the WT rotates with a speed of 15.2RPM and the vibration
data is collected with a sample frequency of 2.56kHz. The
datasets are collected manually on the wind farm with an
interval of months, so that the condition variation of bearings
can be traced. The occasion of collection also depends on
the arrangement of the production schedule. The 4 datasets
reflect 4 different conditions of the WT bearing.

Since the number of datasets of the actual WT bearing
experiments is much smaller than that in the laboratorial

FIGURE 11. The equivalent condition variations of bearings by using
the FKPC, the HMM and the DBN.

bearing degradation experiments, we focus on the equivalent
condition variation of the bearings instead. The data collected
at October of 2011 is selected as the training sample and
the condition reference. The 4 datasets are the test samples.
The equivalent condition variations of bearings by using the
FKPC, HMM and DBN are illustrated in Fig.11. In this case,
the condition of the bearings worsens over time. Therefore,
the trend by applying the FKPC is generally accurate. The
trend by applying HMM shows better condition in T2 and T3,
and the trend by applying DBN shows better condition in T2.
Both HMM and DBN fail to portray the condition variation
of bearings. In conclusion, despite limited data, the FKPC is
still able to represent the real condition.

V. CONCLUSION
This paper presents a manifold learning based WT bear-
ing performance evaluation method. The similarity analysis
of fuzzy k-principal curves for different bearing conditions
is demonstrated by applying the Hausdorff distance. The
implementation of the proposed method includes four stages:
feature extraction, Laplacian eigenmaps based dimension
reduction, k-principal curve estimation, and Hausdorff dis-
tance calculation. Experiment analyses have also been con-
ducted and the respective impacts of dimension reduction and
distance calculation approaches are discussed. The results
indicate that: 1) The proposed FKPCmethod is able to reflect
the overall degradation trend of bearing as well as identify
incipient failures; 2) The proposed method can deal with the
case of small-size training samples; 3) The performance of
the proposed method is stable despite the variation of training
sample numbers. Further studies will focus on optimizing
the process of fuzzy k-principal curve extraction. The initial
number of iterations during the extraction is manually set
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in current approaches, which makes the extraction process a
little complicated. Therefore, adaptive extraction will be an
interesting direction of research to simplify the process.
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