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ABSTRACT This paper presents a geometric formation control strategy of multiple sensing agents for
maneuvering target tracking, which ensures agents to track the target with optimal target state estimation.
Three sub-problems are solved for achieving the target tracking. First, an IMMCEKF algorithm is proposed
to estimate the maneuvering target state by fusing multiple bearings-only measurements. This algorithm
combines the interacting multiple-model estimator and the extended Kalman filter-based augmented mea-
surement fusion algorithm, which is a centralized filter. Second, the algorithm of constructing optimal
configuration for target tracking is proved and verified by maximizing the determinant of the Fisher
information matrix. Third, we transform the problem of target tracking with optimal configuration into the
problem of formation control. A geometric formation control approach based on Jacobi vectors is proposed.
The formation shape controller and the formation tracking controller are decoupled because we use the
formation center to describe the formation motion which is not relative to the formation shape described by
the Jacobi vectors. The simulation results show that multiple sensing agents can track the moving target with
optimal configuration such that the estimation error is obviously reduced.

INDEX TERMS Target tracking, fisher information matrix, formation control, EKF-based augmented
measurement fusion algorithm, Jacobi vectors.

I. INTRODUCTION
Target tracking by multiple mobile agents are desirable
for much more applications in the real world, including
unmanned pursue systems, warning systems and autonomous
cruise systems. Here, a mobile agent can be unmanned
ground vehicle (UGV), unmanned aerial vehicle (UAV) and
unmanned underwater vehicle (UUV), which is equipped
with sensing, computing and communication capabili-
ties [1]–[3]. The sensor here is mostly passive sensor, like
passive sonar for UUV. The passive sensor does not emit
electromagnetic waves when it works, and has the advantages
of long distance of action and high concealment. The bearing
of the target is almost the only reliable measure that a passive
sensor can get. In the case of bearings-only measurement,
a single agent has a strong nonlinearity to the target tracking,
and the tracking process is a weak observable process [4].
In order to achieve better tracking effect, the agent needs
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to move according to a certain trajectory. This puts high
demands on the movement of the agent, especially when
the target is maneuvered, the trajectory optimization of the
agent is basically difficult to achieve. Therefore, it is often
necessary to use multiple agents to fuse multiple sensors for
target tracking. Recently, researchers have developed algo-
rithms using multiple sensing agents for target localization
and tracking [5]–[7].

In this paper, we study the problem of multiple mobile
sensing agents tracking a moving target cooperatively. The
objective is to control agents to move along with the target
in order to ensure the continuous detectability of the target.
For implementing cooperative target tracking, there are two
key problems: one is estimating the target state by fusing
measurements, the other is designing the tracking controller
for each agent based on the estimation of the target. However,
the agents mounted with sensors and the target are dynami-
cally moving. Then the processes of estimating and tracking
are coupled. How to ensure the agents can track the target
precisely and continuously is an important research problem.
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Since the dynamical motion of maneuvering target is dif-
ficult to be described, the state of maneuvering target is so
hard to be estimated accurately. Different approaches have
been investigated and evaluated in many literatures [8]–[11].
One common approach is the interacting multiple-model
(IMM)-based estimator in which the models are suggested
to switch from one to another in a Markov transition prob-
ability [12]–[14]. During the last decade, many versions
of IMM-based estimator schemes, like IMMKF, IMMEKF,
IMMUKF,etc., which useKF (Kalman filter), EKF (Extended
Kalman filter), UKF (Unscented Kalman filter) to com-
pute the model-conditioned state estimation, are derived and
developed. EKF is widely used as nonlinear filtering algo-
rithms to deal with nonlinear models of state estimation.
Therefore, we combined a extended dimensional centralized
EKF algorithm [15] and IMM to estimate the maneuvering
target with multiple bearings-only measurements.

Accurate state estimation of target is so significant for
tracking controller design. In fact, we know that the relative
sensor-target geometry can significantly affect the estima-
tion accuracy [16]–[18]. A number of authors have proposed
theoretical contributions for the optimal sensor placement
problem in which the sensors are supposed to be static. The
general idea of optimizing the placement is minimizing the
target estimation uncertainty which is usually characterized
by the Fisher information matrix (FIM). The FIM is the
inverse of the Cramer-Rao lower bound (CRLB), which is
the minimum achievable estimation variance [19]. In [16],
the optimal sensor-target geometries for bearings-only, range-
only and time-of-arrival measurements are analyzed in depth.
Themain conclusions are: (1) the optimal sensor placement is
not unique; (2) for passive sensors when the target and sensors
are static and the sensor-target range are equal, the optimal
configuration is that sensors are placed around the target.
Reference [18] proves necessary and sufficient conditions of
optimal placement by using the frame theory.

Once we get the optimal sensor placement, the next prob-
lem is how to achieve the optimal configuration. One sim-
ple way is allocating each optimal position to each agent,
then design a controller to guarantee that the agent goes
to the desired position [20]. Reference [21] minimizes the
determination of FIM to find optimal orientation angles
for UAVs such that multiple UAVs can cooperatively track
a moving radio frequency transmitter. Machine learning is
used to predict the future position of a moving urban target
in [22] and [23], such that the tracking performance of UAVs
can be improved according to the simulation results. Refer-
ence [24] uses the optimal placement deduced by [16] with
the hypothesis that ranges between each agent and the target
are the same. In fact, this tracking problem could be trans-
ferred into the formation control problem. However, the opti-
mal formation is time-varying due to the maneuverability
of the mobile agents and target. In this paper, we propose
a geometry formation control strategy to make the agents
track the target for the optimal target state estimation. This
geometry formation control method is successfully used for

formation control of multiple AUVs (Autonomous Underwa-
ter Vehicle) in [25] and [26]. We use the Jacobi vectors to
describe the formation shape and the position of the entire
formation to be the formation center which does not affect
the formation shape or orientation. Then the formation shape
dynamics and translational dynamics are decoupled which is
more helpful for simplifying controller design.

The main contributions are summarized as follows:
1) We proposed a novel framework for maneuvering target
tracking by multiple agents which is based on optimal tar-
get estimation. 2) We first combined IMM and an extended
dimensional centralized EKF algorithm to estimate the state
of a maneuvering target. 3) We use a geometric formation
control approach based on Jacobi vectors to achieve cooper-
ative target tracking for optimal target estimation in which
the formation shape controller and formation tracking con-
troller are decoupled, then the PD control approach is used to
achieve the tracking control and formation control, which is
easier to be implemented in practice.

The organization of this paper is as follows. Problem for-
mulation is given in section II. The proposed IMMCEKF
algorithm is described in section III. Then in section IV, opti-
mal formation for target tracking is proved and constructing
algorithm is proposed. Geometry formation controllers are
designed for agents to achieving target tracking with optimal
target estimation in section V. Section VI presents the frame-
work of target tracking by mobile agents with optimal target
estimation. Simulation results are presented in section VII
and the last section is conclusion.

FIGURE 1. Cooperative maneuvering target tracking by multiple mobile
agents.

II. PROBLEM FORMULATION
The functionality of cooperative target tracking by mobile
agents depends on the following factors: the environment,
the target, the agent itself, the sensor onboard the agent, and
the agent coordinationmethod. In this paper, we suppose that:
1) The environment is ideal such that the horizontal plane
under consideration is infinite, not rasterized, and obstacle-
free. 2) The target is maneuvering without prior information.
3) All the agents communicate with each other without time
delay. 4) The passive sensor is equipped on the agent such that
the bearing-only measurements can be obtained. Fig. 1 shows
that a group of agents equipped passive sensors which can
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measure the bearings-only information are tracking a moving
target.

Define PT = [xT yT ]T as the Cartesian coordinates of the
target and denote the position of the ith agent as Pi = [xi yi]T ,
i = 1, 2, · · · ,N . Where, xT , yT , xi and yi are in m i.e. metre.
θi is the corresponding bearing measurement of the ith agent
which is in rad i.e. radian. We use P̈ = U to describe
the dynamical property of each agent. U is the acceleration
control input vector.

To implement cooperative target tracking, we should solve
two key problems: target state estimation and tracking con-
troller design. In fact, we know that the sensor placement can
significantly affect the estimation accuracy. Here the sensor
placement means the relative sensor-target geometry. Since
the agents mounted with the sensor and the target are dynam-
icallymoving, the estimating process and tracking process are
coupled. To ensure the agents can track the target precisely
and continuously, we propose a geometry formation control
strategy to make the agents track the target for the optimal
target state estimation.

The dynamic properties of maneuvering targets cannot be
modeled exactly. To simplify this problem, we suppose that
the movement of maneuvering target is always described
by combination of several typical models such as constant
velocity (CV) model, constant acceleration (CA) model, and
constant turn (CT) model. The dynamics model commonly
assumed for a target in tracking is given by

X (k + 1) = 8X (k)+ γ (k), (1)

where X =
[
xT yT ẋT ẏT

]T is the state vector of the target,
Where, xT and yT are inm and ẋT and ẏT are inm/s.8 defines
the linear dynamics according to CV, CA, or CT model.
γ (k) ∼ N (0,Q) is uncorrelated, zero-mean Gaussian noise
processes with covariance matrices Q = σ 2

γ I .
At each time instant k , the bearing measurement of the

target by the ith agent is

θki = arctan
ykT − y

k
i

xkT − x
k
i

+ ωki , i = 1, · · ·N , (2)

where ωki ∼ N (0, σ 2
ω) is the measurement noise.

Suppose that each agent can obtain the bearing measure-
ments from the other agents without considering the com-
munication time delay. Let Y (k) =

[
θk1 θ

k
2 · · · θ

k
N

]
be

the measurement vector consisting of all the measurements
collected from the N agents at time k . Then we have the
following measurement equation:

Y (k) = h(Xk )+ ε(k), (3)

where h(Xk ) =
[
arctan

ykT−y
k
1

xkT−x
k
1
· · · arctan

ykT−y
k
n

xkT−x
k
n

]
. ε(k) is the

noise vector with the covariance R = σ 2
ωI .

The noise terms γ (k) and ε(k) satisfy:

E
[(
γ k

εk

) (
γ k εk

)]
=

[
Q 0
0 R

]
. (4)

FIGURE 2. Structure of the IMM algorithm.

III. MANEUVERING TARGET STATE ESTIMATION
The IMM algorithm has been shown to be one of the most
cost-effective schemes for maneuvering target state estima-
tion. The main idea of IMM is to use dynamic multiple
models system with the Markovian switching coefficients to
match different motion states of the target. Suppose that the
maneuvering target can be described by r models, such as
CV model, CA model, and CT model etc., which can be
expressed by model M1,M2, · · · ,Mr . The IMM algorithm
consists of the following four steps: interacting (mixing),
filtering, mode probability calculation, and combination as
illustrated in Fig.2, where X̂i means the state estimation of
model i.

Equation (2) shows that the measurement equation is
nonlinear for passive sensors. Since the extended Kalman
filter (EKF) requires less computational load a produces
more efficient estimates for nonlinear system estima-
tion. We apply the EKF-based augmented measurement
fusion algorithm (which is a centralized filter) to esti-
mate the state of the target for each mode based on the
Equation (1) and (3). The steps of the fusion algorithm CEKF
are listed below [15]:

• Predict the state at time k:

X̂−(k) = 8X̂ (k − 1). (5)

• Calculate the covariance matrix of the predication:

P−(k) = 8P(k − 1)8T
+ Q(k − 1). (6)

• Calculate the Kalman gain matrix:

K (k) = P−(k)HT (k)[H (k)P−(k)HT (k)+ R(k)]−1,

(7)

where H (k) is the Jacobian of the measurement vec-
tor with respect to the state of the target, which is
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also the observability matrix of the system and gives
as follows:

H (k) = ∇sh(X (k))

=

[
∂θk1

∂X
|X=X̂ (k−1) · · ·

∂θkn

∂X
|X=X̂ (k−1)

]T
.

(8)

• Update the covariance matrix:

P(k) = P−(k)− k(k)H (k)P−(k). (9)

• Update the state estimate:

X̂ (k) = X̂−(k)+ K (k)(Y (k)− h(X̂−(k))). (10)

The IMMCEKF algorithm combines the CEKF algorithm
shown above and IMM algorithm to solve the cooperative
maneuvering target tracking problem of multiple mobile
sensors.

Assuming that the transition between the models describ-
ing the motion of the system obeys Markov chain: P{Mk+1 =

j|Mk = i} = πij, i = 1, · · · r, j = 1, · · · r . πij is the Markov
transition probability from model i to model j. Let µi(k − 1)
be the probability of model i at time k − 1. The IMMCEKF
algorithm updates the state X̂i(k), covariance Pi(k) and mode
probability µi(k) for each CEKF of model i. The detailed
steps are shown as follows.
• Interaction:

Predicted model probability:

C−j =
r∑
i=1

πijµi(k − 1). (11)

Mixing probability:

µij = πijµi(k − 1)/C−j . (12)

Mixed initial condition for filter j:

X̂0j(k − 1) =
r∑
i=1

X̂i(k − 1)µij(k − 1)

P0j(k − 1) =
r∑
i=1

µij(k − 1){Pi(k − 1)

+ [X̂i(k − 1)− X̂0j(k − 1)]

× [X̂i(k − 1)− X̂0j(k − 1)]T } (13)

• Filtering: Each model-matched filter is the CEKF fusion
algorithm.

State estimate and covariance of model j:

[X̂−j (k),P−j (k)]

= CEKF(X̂0j(k − 1),P0j(k − 1),8j,Qj),

[X̂j(k),Pj(k)]

= CEKF(X̂−j (k),P−j (k),H
j,Y (k),Rj). (14)

Residual:

rj(k) = Y (k)− h(X̂−j (k)) (15)

Residual covariance:

Sj(k) = Hj(k)P
−

j (k)H
T
j (k)+ Rj (16)

Filter gain:

Kj(k) = P−j (k)H
T
j (k)S

−1
j (k)+ Qj (17)

• Mode probability update:
Likelihood function:
3j(k) , N (rj(k); 0, Sj(k))

=
1

2π |Sj(k)|
exp{−

1
2
rj(k)T S

−1
j (k)rj(k)}

(18)

which is Gaussian probability density function.
Model probability:

µj(k) =
C−j∑r

j=13j(k)C
−

j

(19)

• Combination:

X̂ (k) =
r∑
j=1

X̂j(k)µj(k),

P(k) =
r∑
j=1

µj(k){Pj(k)

+ [X̂j(k)− X̂ (k)][X̂j(k)− X̂ (k)]T } (20)

IV. OPTIMAL FORMATION FOR TARGET TRACKING
Dynamical target tracking by mobile sensing agents is more
difficult due to the maneuverability of target and agents.
A suitable controller should be designed for agents, as the
agents may lose the target when they are moving. Because
the relative sensor-target geometry affects the estimation
accuracy specially, there exist many contributions about
optimal sensor placement of a static localization problem
which involves a single static target and multiple static sen-
sors [16]–[18]. For mobile agents, the aim of target tracking
is to estimate the target state on one hand and control the
agents tracking the target on the other hand. Considering the
estimation and tracking are coupled, we propose to control
the agents moving with an optimal formation such that the
estimation uncertainty is minimized.

The target estimation uncertainty is usually characterized
by the Fisher information matrix (FIM), which is the inverse
of the Cramer-Rao lower bound (CRLB). The CRLB is the
minimum achievable estimation variance: P = E[(X̂ −
X )(X̂ − X )T ] ≥ C = F−1. Where F is the Fisher infor-
mation matrix. In [16]–[18], maximizing the determinant of
the FIM is used as the criterion for optimal placement in 2D.
Frame theory is introduced and applied to optimal placement
problem of bearing-only sensors in both 2D and 3D in [18].

We rewrite the measurement Equation (2) is a general form
as follows.

M̂i(Pi,PT ) = Mi(Pi,PT )+ ωi, i = 1, · · · n, (21)

where Mi =
Pi−PT
‖Pi−PT ‖

. Then the FIM can be computed by the
following equation:

F =
N∑
i=1

(∇PTMi)TR−1∇PTMi (22)
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where ∇PTMi is the Jacobian of Mi(Pi,PT ) with respect
to PT :

∇PTMi = −
1
‖ri‖

(I −MiMT
i ) (23)

with ri = Pi − PT . Then the FIM can be described by the
following equation:

F =
N∑
i=1

c2i (I −MiMT
i ) (24)

with ci = 1
σω‖ri‖

> 0 which are scale factors of F .
There are two important properties of the FIM as

follows [18].
Proposition 1: F is singular if and only if {Mi}

N
i=1 are

collinear.
Proposition 2: F is invariant to the sign change of Mi for

all i ∈ {1, · · ·N }. The eigenvalues of F are invariant to any
orthogonal transformations over {Mi}

N
i=1.

The two properties tell us:
(1) When all sensors and the target are located on the same

line, F is singular, which means the estimation uncertainty
is infinite. Therefore, this kind of singular placement is the
worst and should be avoided.

(2) There exist some equivalent placement because when
rotating all sensors the same angle around the target, reflect-
ing all sensors about a line/plane passing through the tar-
get, or both combined does not change the eigenvalues
of F .

FIGURE 3. Examples of 2D optimal placements: regular polygons.
(a) Triangle. (b) Square. (c) Pentagon. (d) Hexagon.

References [16]–[18] deduced the same conclusion: in R2,
an equality weighted placement is optimal in N (N ≥ 3) sen-
sors are located at the vertices of an N−side regular polygon
with the assumption that the sensor ranges are identical as
shown in Fig.3. However, this conclusion cannot be applied
in the target tracking problem directly, because the agents
can’t be controlled to move backwards. An algorithm of
constructing 2D regular optimal placements is proposed by
introducing the frame theory into the problem of that the
ranges ri are arbitrary but {ci}Ni=1 is a regular sequence in [18].
Geometrical meaning of a regular sequence is that the dis-
tance from each sensor to the target is similar. However, this
algorithm can only give a triangle according to the following
theorem.
Theorem 1: In R2, suppose there are N passive sensors

which satisfy the measurement equation (21) and {ci}Ni=1
is a regular sequence. Let Mi = [sin θi cos θi]T be the

measurement vector where θi is the azimuth angle. Then
following statements hold:

(1) A placement {Mi}
N
i=1 is optimal if and only if

N∑
i=1

c2iMiMT
i =

1
2

N∑
i=1

c2i I (25)

which is also equivalent to
N∑
i=1

c2i M̄i = 0 (26)

where M̄i = [sin 2θi cos 2θi]T .
(2) There exists the optimal placement {M̄i}

N
i=1 with

‖M̄i‖ = 1 solving (26) if and only if

c2j ≤
1
2

N∑
i=1

c2i (27)

for all j ∈ {1, · · · ,N }.
Proof 1: (1) Calculate the Fisher information matrix F .

We have

F =
N∑
i=1

c2i

[
1− sin2 θi − sin θi cos θi
− sin θi cos θi 1− cos2 θi

]
(28)

Let λ1, λ2 be the eigenvalues of F . Then detF = λ1λ2 ≤
(λ1+λ22 )2. Let λ̄ = λ1+λ2

2 . The detF achieves the maximum
value when λ1 = λ2 = λ̄ which means F − λ̄I = 0.
Base on equation (28),we have λ̄ = λ1+λ2

2 =
1
2 trF =

1
2

∑N
i=1 c

2
i . The optimal placement {Mi}

N
i=1 should satisfy

F = λ̄I which deduces the following equation based on
equation (24):

F =
N∑
i=1

c2i I −
N∑
i=1

c2iMiMT
i = λ̄I

⇒

N∑
i=1

c2iMiMT
i =

N∑
i=1

c2i I − λ̄I =
1
2

N∑
i=1

c2i I (29)

The above equation can be simplified as follows:
N∑
i=1

c2iMiMT
i =

N∑
i=1

c2i

[
1− sin2 θi − sin θi cos θi
− sin θi cos θi 1− cos2 θi

]

=
1
2

N∑
i=1

c2i I

⇒


∑N

i=1
2c2i cos

2 θi =
∑N

i=1
c2i∑N

i=1
2c2i sin θi cos θi = 0.

⇒


∑N

i=1
c2i (cos

2 θi − sin2 θi) = 0,∑N

i=1
2c2i sin θi cos θi = 0.

⇒


∑N

i=1
c2i cos 2θi = 0,∑N

i=1
2c2i sin 2θi = 0.

(30)

Then Equation (26) is obtained.
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FIGURE 4. Geometric meaning of the optimal triangle placement.

(2) First prove the necessity. If
∑N

i=1 c
2
i M̄i = 0, then

c2j M̄j =
∑N

i=1,i6=j c
2
i M̄i for all j ∈ {1, · · · ,N }. Such that the

following inequality exists.

c2j = ‖c
2
j M̄j‖ = ‖

N∑
i=1,i6=j

c2i M̄i‖

≤

N∑
i=1,i6=j

‖c2i M̄i‖ =

N∑
i=1,i6=j

c2i (31)

The sufficiency is more difficult to be proved. How-
ever, [18] proved the sufficiency by dividing the N sensors
into three groups.

Since c2j +
∑N

i=1,i6=j c
2
i =

∑N
i=1 c

2
i , we have c2j ≤

1
2

∑N
i=1 c

2
i by considering equation (31). Then there always

exits an index N0, 2 ≤ N0 ≤ N such that

c21 + · · · + c
2
N0−1 ≤

1
2

N∑
i=1

c2i (32)

c21 + · · · + c
2
N0
≥

1
2

N∑
i=1

c2i (33)

The N sensors separated into three groups: 1, · · · ,N0, N0,
and N0 + 1, · · · ,N . Let

l1 = c21 + · · · + c
2
N0−1

l2 = c2N0

l3 = c2N0+1 + · · · + c
2
N (34)

The three line segments with lengths respectively as l1, l2, l3
can form a triangle.

Let M̄i = M̄1 for i = 1, · · · ,N0 − 1 (the first group) and
M̄i = M̄N for i = N0 + 1, · · · ,N (the third group). Thus
equation (26) becomes

l1M̄1 + l2M̄N0 + l3M̄N = 0 (35)

If we choose M̄1, M̄N0 , M̄N that align with the three sides
of the triangle with side length as l1, l2, l3 (see Fig.4),
l1M̄1, l2M̄N0 , l3M̄N form a triangle such that the above equa-
tion (35) is solved. �

Based on the theorem 1, an optimal placement can be
constructed by the following algorithm. However, the optimal
formation is always a triangle.
Algorithm 1:
Step 1: Choose N0 satisfying (32) and (33);
Step 2: Compute l1, l2, l3 according to equation (34).
Step 3: Compute the internal angles φ12 and φ13 of the

triangle with side lengths as l1, l2, l3 as shown in Fig.
φ12 = arccos(

l21 + l
2
2 − l

2
3

2l1l2
),

φ13 = arccos(
l21 + l

2
3 − l

2
2

2l1l3
),

(36)

Step 4: Choose and compute

Mi =



[1, 0]T , i = 1, · · · ,N0 − 1[
cos

π + φ12

2
sin

π + φ12

2

]T
, i = N0[

cos
π − φ13

2
sin

π − φ13

2

]T
,

i = N0 + 1, · · · ,N
(37)

We verify the algorithm by the following example.
Example 1: Suppose there are three sensors which are

located at p1 = (−10, 0), p2 = (0, 0), p3 = (0, 10). A target
is at pT = (5, 5).The measurement noise variance of each
sensor is σi = 0.1. Then c21 = 0.4, c22 = 2, c23 = 2.
It’s easy to check that c2j ≤

1
2

∑N
i=1 c

2
i = 0.22. Choose

N0 = 2, we get l1 = 0.04, l2 = 0.2, l3 = 0.2. Then calculate
φ12 = φ13 = 1.5708rad by using the cosine theorem. Next
calculate the optimal azimuth angle M1 = (1, 0)T , M2 =

(−0.7071, 0.7071)T , M3 = (0.7071, 0.7071)T . Finally, get
the optimal position of sensors poptimal1 = (−10.8114, 5)T ,
poptimal2 = (10, 0)T , poptimal3 = (0, 0)T .

FIGURE 5. The value of the FIM with different θ1 and θ3.

We enumerate azimuthal angles θ1, θ3 with fixed r1 and
r3 and calculate detF to find the maximum of detF . Let
p2 = (0, 0) and pT = (5, 5). The results is shown by
Fig.5. When θ1 = 273◦, θ3 = 321◦, the value of detF
is maximum. Such that the position of the two sensors are
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FIGURE 6. The formation described by the Jacobi vectors.

(−10.7898, 5.8256)T and (9.5474,−0.4149)T . The results
obtained by enumeration method is close to the constructing
algorithm. The validity of the algorithm is verified.

This algorithm constructs the optimal placement by divid-
ing sensors into three groups. The sensors in the same group
will be distributed on the same line. Investigate Fig.3 and
consider the Proposition 2. When N = 3, 4, 6, we can reflect
some sensors about the target such that a triangle formation
becomes. This triangle form is useful for the target tracking.

V. COOPERATIVE TARGET TRACKING OF MULTIPLE
AGENTS FOR OPTIMAL TARGET ESTIMATION
In the previous section, the optimal formation algorithm for
multi-agents collaborative target observation is given. Based
on this, we design a controller to make the agents track the
target with optimal placement formation.

A geometric formation control which is based on the Jacobi
vectors has been applied in multi-AUVs formation control
in our previous works [25], [26]. The formation shape is
described by Jacobi vectors that satisfy[
ρ1 · · · ρN−1 qc

]T
= 8

[
p1 · · · pN−1 pN

]T
,

(38)

where qc = 1
N

∑N
1 pi is the formation center, 8 is the Jacobi

transformmatrix. ρi are the Jacobi vectors which describe the
formation geometry. For example, if we deploy three agents,
the Jacobi vectors can be defined as follows and the formation
is shown in Fig6.:

ρ1 =
1
√
2
(p2 − p3)

ρ2 =
1
√
6
(2p1 − p2 − p3) (39)

The formation state equation can be deduced by (38) as
follows:[
ρ̈1 · · · ρ̈N−1 q̈c

]T
=
[
ū1 · · · ūN−1 ūc

]T
(40)

Then the PD controller can achieve the goal ρi → ρid and
qc → qcd where ρid and qcd are the desired Jacobi vectors

and formation center position respectively.

ūi = −k
ρ
1 (ρi − ρid )− k

ρ
2 ρ̇

ūc = −k
qc
1 (qc − qcd )− k

qc
2 q̇cd (41)

The acceleration inputs of the agents are obtained by

[u1, · · · , uN ]T = 8[ū1, · · · , ūc]. (42)

FIGURE 7. The whole process of target tracking by optimal formation.

VI. FRAMEWORK OF TARGET TRACKING BY MOBILE
AGENTS WITH OPTIMAL TARGET ESTIMATION
Suppose the agent is mounted with a passive sensor and it also
has the localization sensor. The whole process is explained by
the following Fig.7. First, measurement vector Y combines
the measurement of its passive sensor and other measure-
ments communicated from other agents. Then the estimated
target state X̂ is obtained by IMMCEKF. The positions of
optimal configuration Poptimal is calculated by algorithm 1.
Finally, the control of each agent ui is calculated by the
formation controller with positions and velocities of itself
and other agents. The IMMCEKF filter, algorithm 1 and
formation controller can be implemented in each agent, then
the proposed framework is decentralized without considering
communication delay among agents.

VII. SIMULATIONS
We present simulation results to verify the proposed tracking
control strategy. We consider that there are three mobile sens-
ing agents tracking a moving target which has the following
four cases: (1) the target moves with constant velocity; (2) the
target moves with constant acceleration; (3) the target moves
with constant angular velocity; (4) the target moves with
several maneuver modes.

Suppose the initial position of the agents and the target are
at p1 = [0, 5]T , p2 = [5,−2]T , p3 = [0, 0]T , pT = [5, 5]T

respectively, which are in m. The initial velocity of agents
equals to the target, which is set to be 100m/s. The initial
orientation angle of the target is π

4 rad , so the target’s speed
is [100 cos(π4 ), 100 sin(

π
4 )]

T which is in m/s. The Gaussian
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FIGURE 8. The trajectories of agents and target with CV motion.

FIGURE 9. The state estimation error of the target with CV motion.

white noise of the state and measurement equations satisfies

E =
[
10I 0
0
√
200I

]
.

In case 1, the constant speed of target is given as
[100 cos(π4 ), 100 sin(

π
4 )]

T , which are in m/s. Fig.8 shows
the trajectories of the target and agents, and Fig.9 shows
the position error of estimation by IMMCEKF. The position
error is calculated by e =

√
(xT − x̂T )2 + (yT − ŷT )2 which

represents the distance between the real position of target and
the estimated position by IMMCEKF filter.

In case 2, the orientation angle of the target is also set to be
π
4 rad , the constant acceleration is [5, 4]T which is in m/s2.
Fig.10 and 11 show the results.

In case 3, the angular velocity of the target is set to be ω =
0.25rad/s. Fig.12 and 13 show the results.

In Fig.8, 10 and 12, the enlarged view shows the final
positions of the agents and the target, in which the trian-
gle represents the agent and the circle represents the target.
According to the Fig.9,11,13, we can see that multi-agent
have been adjusting the formation at the beginning. When the
agents form the optimal formation, the target state estimation
error reduces significantly and the cooperative target tracking
for optimal target estimation by multiple agents is achieved.
However, we also can find that the estimation error became

FIGURE 10. The trajectories of agents and target with CA motion.

FIGURE 11. The state estimation error of the target with CA motion.

FIGURE 12. The trajectories of agents and target with constant angular
velocity motion.

more smaller in case 1 than case 2 and 3, because the final
error is maintained at around 5m in the case 1 while the
error in Case 2 and Case 3 are around 10m. In fact, the tar-
get is moving without maneuvers in case 1, but in case 2,
the target’s velocity is changing and in case 3, the target’s
orientation is changing. Comparing these results, we say that
estimation error of a maneuvering target is larger than a
non-maneuvering target.
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FIGURE 13. The state estimation error of the target with constant angular
velocity motion.

FIGURE 14. The trajectories of agents and target with multiple motions.

FIGURE 15. The state estimation error of the target with multiple motions.

In case 4, the trajectory of target includes five seg-
ments: (1) CV model with the given initial velocity
[100 cos(π4 )m/s, 100 sin(

π
4 )m/s]

T for 1s; (2) CT model with
the angular velocity ω = 0.35rad/s for 3.5s; (3) CV
model for 1s; (4) CT model with the angular velocity ω =
−0.35rad/s for 3.5s; (5) CV model for 1s. Fig.14 shows the
trajectories of the agents and the target. Fig.15 shows the posi-
tion error of estimation, which doesn’t reduce obviously like
the previous three cases. However, investigating the position

error carefully, we find that the magnitude of the error is
related to whether the target motion model is switched. For
example, when the target motion model is switched at 1s,
the IMM algorithm cannot match the correct motion model
immediately, which leads to the increase of estimation error.
After a period of time, when the correct model is matched,
the estimation error will gradually decrease. This is the char-
acteristic of the IMM algorithm. Another reason is that the
speed of convergence of the optimal formation does not keep
up with the speed of the target turning.

VIII. CONCLUSION
Using multiple mobile sensing agents to track a maneuvering
target is a challenge task in many practical applications.
The sensing and tracking processes are coupled due to the
mobility of the agents and the target. The optimal placement
of static sensing agents for target tracking is investigated in
many literatures. The optimal placement means those rela-
tive sensor-target geometries which result in a measure of
the uncertainty ellipse being minimized. To the dynamical
agents, we proposed a geometry formation control strategy
for maneuvering target tracking, which ensures agents to
track the target with optimal target state estimation. The main
contribution is that we transfer the problem into a geometry
formation control problem. By using the Jacobi vectors to
describe the formation shape of the agents and the formation
center to describe the formation motion which isn’t rela-
tive to the formation shape described by the Jacobi vectors,
we decouple the formation shape controller and the formation
tracking controller designing. We combine the IMM estima-
tor and the centralized EKF-based fusion algorithm to esti-
mate the maneuvering target state. Based on the target state
estimation, an optimal formation is deduced by maximizing
the determinant of FIM and the constructing algorithm is
verified by using the frame theory.

Simulation results show that the classical IMM filtering
method cannot be matched to the correct model immediately
when the target model is switched. This is not only related
to the accuracy of the model, but also directly related to the
estimation of the input interaction, and the Markov transition
probability has a great impact on the input interaction. The
Markov probability matrix in this paper is known a priori, and
the filtering parameters determined by the priori information
are a tradeoff between the targetmodel switching and the non-
switching. Because the current measurement information of
the system contains the current mode information, in order to
obtain more accurate conversion between models, the current
measurement information of the system can be used to esti-
mate the Markov transition probability matrix in real time.
Therefore, IMM algorithm can be improved according to the
above analysis in the future work.
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