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ABSTRACT This paper studies the robustH∞ control problem of networked linear time-delay systems with
discrete distributed delays, involving random packet dropout and quantization. Assume that the measured
output of the networked time-delay system can be quantized by the logarithmic quantizer before being
transmitted through the communication network. In addition, an appropriate compensation strategy is
proposed to reduce the effect of the data packet dropout satisfying a Bernoulli distribution. To deal with
the quantization issue, the sector bound method can be used to convert the quantized control problem of
the networked system into the robust control problem with uncertainty. Then, a novel observer-based H∞
output feedback controller is designed to ensure that the networked system is exponentially mean-square
stable and an expected H∞ performance constraint is achieved. Finally, a simulation example is given to
prove the effectiveness of the proposed design method.

INDEX TERMS Networked control systems, discrete distributed delays, packet dropout, quantization.

I. INTRODUCTION
Network control systems (NCSs) have become a hot research
field in recent years [1]–[4], which have found fruitful appli-
cations in a series of important areas such as industrial
automation, mobile sensor networks, environmental moni-
toring, underwater robots and unmanned systems, because
of the merit of the remote and distributed control. These
applications have motivated many scholars to focus on the
control and estimation problem for NCSs.

Although NCSs have lots of appealing advantages such
as resource sharing, easy maintenance and flexible instal-
lation, NCSs have also introduced some challenges due to
the limited communication bandwidth [5]. Among all the
challenges, time delays, packet dropout and data quantization
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are always known as primary causes for performance deteri-
oration, which have become some highlight in the literature.
This paper will focus on the impact of the packet dropout
and data quantization for the controller design of NCSs with
distributed delays.

In the literature, packet dropout as one of the main commu-
nication constraints is always a hot topic [6]–[12]. Usually,
the phenomenon of the data packet dropout is considered as
a random process, so some stochastic methods can be used
to characterize this process. In these stochastic methods, data
packet dropout can be assumed to satisfy the Bernoulli distri-
bution [6]–[8] and Markov chain [9]–[11]. To deal with the
quantized control problem of non-linear NCSs with packet
dropout represented by T-S model, A fuzzy predictive con-
troller was proposed by [6]. The exponential synchronization
problem of complex dynamic networks with packet dropouts
and additive time-delay was discussed by [7]. Using the
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Markov chain method, Reference [9] analyzed the stochastic
stability of the networked linear system with time-delays
and packet-dropout modeled by two Markov chains, and
designed a output feedback controller based on Lyapunov
method. Furthermore, an optimal energy allocation and an
optimal controller were proposed by [10] for linear NCSs
with energy constraint and packet loss modeled by Markov
chain. However, different from the stochastic characterization
of packet dropout, [12] addressed the bounded packet loss
issue for robust predictive control.

On the other hand, an important issue taken into account
for NCSs is the data quantization in transmission, where
the quantization error has an undesirable effect on the per-
formance and stability of NCSs [13]–[18]. Hence, there are
lots of good results to eliminate or mitigate the effect. The
sector bound approach proposed by [13] played an impor-
tant role in the quantization issue, and then authors fur-
ther expand the above results to the robust stabilization for
uncertain systems [14]. A robust controller was designed
by [15] for singular systems with quantization, based on a
event-triggered mechanism. Different from the logarithmic
quantizer [16], [17], reference [18] analyzed the dynamic
quantization of uncertain systems with time-delays.

In addition, The phenomenon of data quantization and
packet dropout coexisting in communication networks is
more realistic and reasonable than only considering the
packet dropout or data quantization, which can both effect the
stability and performance of NCSs [19]–[23]. Reference [20]
discussed the trade-off between the coarsest quantization
density, packet dropout rate and the stability of the linear
plant. Based on the predictive control strategy, [21] proposed
a new predictive control algorithm for constrained networked
control systems with packet dropout and data quantization
which can be described in a unifying framework by using a
novel modeling method. Taking into account the limitations
on data rate, packet dropout rate and uncertainty, [22] gave
some conditions for uncertain systems to be mean-square sta-
ble. Reference [23] studied the quadratic stability of uncertain
systems under the coarsest logarithmic quantizer.

Motivated by the above works about these issue such
as packet dropout and data quantization, the robust H∞
output feedback control problem for NCSs with discrete
distributed delays involving data quantization and packet
dropout is investigated in this paper, where discrete dis-
tributed delays [24]–[27] as another important type of
time delays [28], [29] also attracts many scholars. Sim-
ilar to [7]–[9], the packet dropout is characterized as a
Bernoulli distribution taking as the values of 1 or 0, and
the logarithmic quantization of the measured system output
is described as an uncertainty by using the sector bound
method. We aim at designing an observer-based H∞ out-
put feedback controller such that the closed-loop networked
system is exponentially mean-square stable and satisfies the
H∞ performance constraint. By using the cone complement
linearization approach, a subsequent optimization problem
can be solved to derive a suboptimal system performance.

The main advantages of the paper lie in the following aspects:
(1) The system state with the discrete distributed delays
can be used for the controller design of the networked sys-
tem. (2) A novel model of the networked system with dis-
crete distributed delays involving quantization and dropout
is proposed, by using the dropout compensation and sector
bound method. (3) An observer-based H∞ output feedback
controller is designed to robustly exponentially stabilize the
NCSs and satisfy the H∞ performance constraint.
This paper is organized as follows. Section II formulates

the problem for networked systems with distributed delays
involving quantization and dropout. Section III designs a
observer-based H∞ output feedback controller. Section IV
provides an illustrative example. Finally, Section V gives
concluding remarks.

II. PROBLEM FORMULATION
The structure of the networked control system in this paper is
discussed in Fig. 1.

FIGURE 1. The structure of networked control system.

The plant described by a linear discrete-time system with
mixed delays is given as follows:

x(k + 1) = Ax(k)+ Bx(k − d(k))

+C
+∞∑
i=1

µix(k−i)+Du(k)+Ew(k), (1)

z(k) = H1x(k)+ E1w(k),

y(k) = H2x(k),

x(j) = x0(j), j < 0,

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the
control input, w(k) ∈ Rq is disturbance input, z(k) ∈ Rp

is the controlled output, y(k) ∈ Rl is the measured system
output and A,B,C,D,E,H1,H2 are known real matrices
with appropriate dimensions. d(k) denotes the time-varying
delay with d1 ≤ d(k) ≤ d2, where d1, d2 are known positive
integers. Furthermore, the constants µi > 0 (i = 1, 2, . . .)
satisfy

+∞∑
i=1

iui < +∞ and µ =
+∞∑
i=1

µi < +∞. (2)

In the Fig. 1, communication in sensor-controller link occurs
through unreliable network, which introduces the issues of
the quantization and the random packet dropout considered in
this paper. For the sake of analysis, assume that the measured
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output of the system has been quantized by the logarithmic
quantizer [13] before the packet dropout caused by lossy
network occurs. Furthermore, the Logarithmic quantizer can
be defined as follows:
Definition 1: A quantizer is called a logarithmic quantizer

if its quantitative set can be described as:

h = {±hi, hi = ρih0, i = 0,±1, . . .} ∪ {±h0} ∪ {0}

where 0 < ρ < 1 is called the quantization density of the
logarithmic quantizer, and h0 > 0 is the default output value.
Then the associated quantized function s(·) can be defined by

s(y(k)) =


hi, if

1
1+ δ

hi < y(k) <
1

1− δ
hi

0, if y(k) = 0
−s(−y(k)), if y(k) < 0

(3)

where δ = 1−ρ
1+ρ .

Meanwhile, the randomly packet dropout satisfying the
Bernoulli distribution [8] is considered in this paper, and the
following compensation strategy is proposed for reducing the
effect of the data packet dropout. Then, the effective informa-
tion from the quantized system output can be described as:

yc(k) = (1− θk )s(y(k))+ θkyc(k − 1), (4)

where θk taking the values of 0 and 1 is an i.i.d. random
variable with probability distribution:

Prob{θk = 1} = E{θk = 1} = θ,

Prob{θk = 0} = 1− E{θk = 1} = 1− θ,

Var{θk} = E{(θk − θ )2} = (1− θ )θ. (5)

Here, θ denote the data packet arrival probability at any
sampling time, and then the data packet dropout probability
is 1− θ . In this paper, assume that the state of the system (1)
can be unmeasured, and then the output feedback controller
based on the full-dimensional state observer is proposed as
follows:

x̂(k + 1) = Ax̂(k)+ Du(k)+ L(yc(k)− H2x̂(k)),

u(k) = Kx̂(k), (6)

where the matrices L and K are the observer and controller
gain, respectively.

To solve the quantization problem of the networked
time-delay systems, the measured output of the system after
the logarithmic quantization can be expressed by using the
sector bound approach [13]:

s(y(k)) = (I +1(k))y(k). (7)

Then, the state estimate error is defined by

e(k) = x(k)− x̂(k). (8)

Taking (4) and (6)-(7) into (1) and (8), the following dynamics
of the error system can be obtained:

x(k + 1) = [A+ DK ]x(k)− DKe(k)+ Bx(k − d(k))

+C
+∞∑
i=1

µix(k − i)+ Ew(k),

e(k + 1) = [θkL − L(1− θk )1(k)]H2x(k)

+ (A− LH2)e(k)− Lθkyc(k − 1)

+Bx(k − d(k))+ C
+∞∑
i=1

µix(k − i)+ Ew(k),

yc(k) = (1− θk )(I +1(k))H2x(k)+ θkyc(k − 1). (9)

By denoting ζ T (k) = [ xT (k) eT (k) yTc (k − 1) ]T , the above
augmented closed-loop system can be expressed as follows:

ζ (k + 1) = Aζ (k)+ Bx(k − d(k))

+C
+∞∑
i=1

µix(k − i)+ Ew(k) (10)

where

A =

A+ DK −DK 0
A1 A− LH2 −θkL
A2 0 θk I

,
B =

BB
0

, C =

CC
0

, E =
EE
0

,
A1 = [θkL − L(1− θk )1(k)]H2,

A2 = (1− θk )(I +1(k))H2.

It is noted that the augmented networked system (10) con-
tains the random parameter θk caused by packet loss and the
uncertainty1(k) caused by the quantizer. These are different
from the traditional deterministic system, so the networked
system (10) has greater uncertainty and more complexity.

To deal with the robust control problem of the closed-loop
system with stochastic parameter and uncertainty, in the
paper we aim to design the robust controller such that
the closed-loop system is exponentially mean-square stable
and the H∞ performance constraint is satisfied. That is,
the designed robust controller for the closed-loop systems
(10) should satisfy the following two conditions:
(a1) The networked closed-loop system (10) with w(k) = 0
is exponentially mean-square stable.
(a2) For all non-zero w(k), the controlled output satisfies

+∞∑
k=0

E{‖z(k)‖2} < γ 2
+∞∑
k=0

E{‖w(k)‖2} (11)

under zero initial condition, where γ > 0 is a given scalar.
To give themain results about the robust control problem of

the closed-loop systems (10), the following lemmas [9], [25]
are introduced as follows:
Lemma 1: Let M ∈ Rn×n be a positive definite matrix,

If xi ∈ Rn and ai ≥ 0 (i = 1, 2, . . .) are convergent,
the following inequality holds:

(
+∞∑
i=1

aixi)TM (
+∞∑
i=1

aixi) ≤ (
+∞∑
i=1

ai)(
+∞∑
i=1

aixTi Mxi). (12)

Lemma 2: Assume that matrices D, E, F are the real
matrices with suitable dimensions, and the matrix F satisfies
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FTF ≤ I , then there exists a scalar ε such that the following
inequation holds:

DFE + ETFTDT ≤ εDDT + ε−1ETE . (13)

Lemma 3: Let V (η(k)) be a Lyapunov functional. If there
exist real scalars λ ≥ 0, χ > 0, ν > 0 and 0 < ψ < 1, such
that

χ‖η(k)‖2 ≤ V (η(k)) ≤ ν‖η(k)‖2 (14)

and

E{V (η(k + 1)|η(k))} − V (η(k)) ≤ λ− ψV (η(k)). (15)

Then the sequence satisfies

E{‖η(k)‖2} ≤
ν

χ
‖η(0)‖2(1− ψ)k +

λ

χψ
. (16)

III. OBSERVER-BASED H∞ OUTPUT FEEDBACK CONTROL
Theorem 1: Consider the above closed-loop system (10)

with a quantized density ρ > 0 and packet-loss rate θ . If there
exist positive definite matrices P > 0,Q > 0,Z > 0,R >
0, S > 0,M > 0,N > 0, J > 0, the control gain K ,
the observation gain L and a scalar ε > 0 satisfying:φ1 + δ2εφT4 φ4 φT3 0

∗ φ2 φ6
∗ ∗ −εI

 < 0, (17)

PM = I , QN = I , JZ = I , (18)

where

φ1 = diag{−P+(d2−d1+1)R+µS,−Q,−Z ,−R,−
S
µ
},

φ2 = diag{−M ,−N ,−J ,−
M

θ (1− θ )
,−

J

θ (1− θ )
},

φ4 =
[
H2 0 0 0 0

]
,

φ3 =


A+ DK −DK 0 B C
θLH2 A− LH2 −θL B C

(1− θ )H2 0 θ I 0 0
LH2 0 −L 0 0
H2 0 −I 0 0

,
φT6 =

[
0 −(1− θ )LT (1− θ )I LT I

]
.

Then, the closed-loop system (10) is exponentially
mean-square stable.

Proof: Firstly define the Lyapunov-Krasovskii function
as follows:

V (k) = V1(k)+ V2(k)+ V3(k)+ V4(k),

V1(k) = xT (k)Px(k)+eT (k)Qe(k)+ yTc (k − 1)Zyc(k − 1),

V2(k) =
k−1∑

i=k−d(k)

xT (i)Rx(i),

V3(k) =
k−d1∑

j=k−d2+1

k−1∑
i=j

xT (i)Rx(i),

V4(k) =
+∞∑
i=1

µi

k−1∑
j=k−i

xT (j)Sx(j).

Thus it has

E{1V1(k)} =E{V1(k + 1)|k} − V1(k)

=W T
P1PWP1 − x

T (k)Px(k)+W T
Q1
QWQ1

+ θ̄ (1−θ̄ )W T
Q2
QWQ2−e

T (k)Qe(k)+W T
Z1ZWZ1

+ θ̄ (1− θ̄ )W T
Z2ZWZ2 − y

T
c (k)Zyc(k),

E{1V2(k)} ≤ xT (k)Rx(k)

− xT (k − d(k))Rx(k − d(k))

+

k−d1∑
j=k−d2+1

xT (j)Rx(j),

E{1V3(k)} = (d2 − d1)xT (k)Rx(k)

−

k−d1∑
j=k−d2+1

xT (j)Rx(j),

E{1V4(k)} ≤ µxT (k)Sx(k)

−
1
µ
(
+∞∑
i=1

µix(k − i))T S(
+∞∑
i=1

µix(k − i)),

E{1V (k)} = E{1V1(k)} + E{1V2(k)}

+E{1V3(k)} + E{1V4(k)}

WP1 = (A+ DK )x(k)− DKe(k)+ Bx(k − d(k))

+C
+∞∑
i=1

µix(k − i),

WQ1 = [θ̄L−L(1− θ̄ )1(k)]H2x(k)+ (A− LH2)e(k)

−Lθ̄yc(k − 1)+ Bx(k − d(k))

+C
+∞∑
i=1

µix(k − i),

WQ2 = [L + L1(k)]H2x(k)− Lyc(k − 1),

WZ1 = (1− θ̄ )[I +1(k)]H2x(k)+ θ̄yc(k − 1),

WZ2 = [I +1(k)]H2x(k)− yc(k − 1). (19)

By adding up the above (19) together, it gives

E{1V (k)}=E{V (k+1)|k}−V (k)=ηT (k)ϕ1η(k), (20)

where

η(k) =

[
ζ T (k) xT (k − d(k))

+∞∑
i=1

µixT (k − i)

]T
,

ϕ1 = φ1 − (φ3 + φ5)Tφ
−1
2 (φ3 + φ5),

φ5 =


0 0 0 0 0

−(1− θ )L1(k)H2 0 0 0 0
(1− θ )1(k)H2 0 0 0 0
L1(k)H2 0 0 0 0
1(k)H2 0 0 0 0

.
If E{1V (k)} < 0 is satisfied, it means ϕ1 < 0, which is
equivalent to the following one[

φ1 (φ3 + φ5)T

∗ φ2

]
< 0. (21)
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Moreover, (21) can be decomposed into:[
φ1 φT3
∗ φ2

]
+

[
φT4
0

]
1(k)

[
0 φT6

]
+

[
0
φ6

]
1(k)

[
φ4 0

]
< 0. (22)

Then, according to lemma 2, if inequality (22) holds, the fol-
lowing inequality is satisfied:[
φ1 φT3
∗ φ2

]
+ δ2ε

[
φT4
0

] [
φ4 0

]
+ ε−1

[
0
φ6

] [
0 φT6

]
< 0, (23)

which can be equivalent to (17). It can be seen from (17) that
ϕ1 < 0 and hence

E{1V (k)} =E{V (k + 1)|k} − V (k) = ηT (k)ϕ1η(k)

≤ −λmin(−ϕ1)η(k)T η(k) < −αη(k)T η(k), (24)

where

0 < α < min{λmin(−ϕ1), σ },

σ = max{λmax(P), λmax(Q), λmax(Z ), λmax(R), λmax(S)}.

(25)

On the basis of (24), it gives

E{1V (k)} = E{V (k + 1)|k} − V (k)

< −αη(k)T η(k) < −
α

σ
V (k) = −ψV (k). (26)

Therefore, it is very evident from lemma 3 that the above
system (10) is exponentially mean-square stable, and then the
proof is completed.
Remark 1: From the inequality (17), it can see that θ (1−θ )

cannot be equal to zero. That is, if θ (1 − θ ) = 0 is satisfied,
then the inequality (17) is not any meaning at all. However,
in this paper the issues of the data packet dropout and the data
quantization is all considered, so θ can be not taken as the
values of 0 or 1. θ = 0 showing that the data packet dropout
never happens and θ = 1 from (9) showing that the data
quantization never happens, indicates that the issues of the
data packet dropout and the data quantization never happens
at the same time, which violates the research meaning of this
paper. Therefore, θ (1− θ ) 6= 0 is considered in this paper.
Remark 2: Due to the equality (18) in theorem 1, the con-

straint conditions of the theorem 1 are not strict LMI forms.
Then, the cone complement linearization approach can trans-
form the above of the non-convex optimization (17) and (18)
for the control deign problem of the systems (10) into a non-
linear minimization problem based on the strict LMI forms.

After the cone complement linearization, the optimization
problem of theorem 1 becomes the following one:

min tr(PM + QN + JZ ) (27)

satisfying the inequality (17) and the following constraints:[
P I
I M

]
≥ 0,

[
Q I
I N

]
≥ 0,

[
J I
I Z

]
≥ 0. (28)

The above optimization problem (30) and (31) can be solved
by the iterative approach.

Next, some sufficient conditions for the H∞ performance
constraint of the closed-loop system will be analyzed:
Theorem 2: Consider the above closed-loop system (10)

with a quantized density ρ > 0 and packet-loss rate θ . If there
exists positive definite matrices P > 0,Q > 0,Z > 0,R >
0, S > 0,M > 0,N > 0, J > 0, the control gain K ,
the observation gain L and scalars ε > 0, γ > 0 satisfying: λ3 + δ2ελT7 λ7 λT4 0

∗ λ6 λ8
∗ ∗ −εI

 < 0, (29)

PM = I , QN = I , JZ = I , (30)

where

λ1 =
[
ET1 H1 0 0 0 0

]
,

λ2 =
[
H1 0 0 0 0

]
,

λ3 =

[
φ1 λT1
∗ −γ 2I

]
, λT4 =

[
φT3 0 λT2 0
0 0 0 ET1

]
,

λT5 =

[
φT5 0 0 0
0 0 0 0

]
, λ6 = diag{φ2,−I ,−I ,−I },

λ7 =
[
H2 0 0 0 0 0 0 0

]
,

λT8 =
[
0 − (1− θ )LT (1− θ )I LT I 0 0 0

]
.

Then the above system (10) is exponentially mean-square
stable, and the H∞ performance constraint can be achieved
for all nonzero w(k).

Proof: By theorem 1, inequality (29) contains inequal-
ity (17). That is, the closed-loop system (10) is gradually
stable in the mean square if the inequality (28) holds.

When w(k) 6= 0, let’s take the following Lyapunov-
Krasovskii function as V (k) = V1(k)+V2(k)+V3(k)+V4(k),
we have

E{1V (k)} = E{V (k + 1)|k} − E{V (k)} + E{zT z(k)}

−γ 2E{wT (k)w(k)} = πT (k)ϕ2π (k), (31)

where

π (k) =
[
ζ T (k) wT (k) xT (k − d(k))

+∞∑
i=1

µixTk−i

]T
,

ϕ2 = λ3 − (λ4 + λ5)Tλ
−1
6 (λ4 + λ5).

By Schur complement, ϕ2 < 0 is equivalent to[
λ3 (λ4 + λ5)T

∗ λ6

]
< 0, (32)

which can be decomposed into:[
λ3 λT4
∗ λ6

]
+

[
λT7
0

]
1(k)

[
0 λT8

]
+

[
0
λ8

]
1(k)

[
λ7 0

]
< 0. (33)
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On the basis of lemma 2, inequality (33) can be satisfied, if the
following inequality holds:[
λ3 λT4
∗ λ6

]
+ δ2ε

[
λT7
0

] [
λ7 0

]
+ε−1

[
0
λ8

] [
0 λT8

]
< 0, (34)

which is equivalent to the inequality (29). Therefore, we have
from (31) that

E{V (k + 1)|k} − E{V (k)} + E{z(k)T z(k)}

−γ 2E{wT (k)w(k)} < 0. (35)

Summing up (35) from 0 to∞ leads to
+∞∑
k=0

E{zT (k)z(k)} < γ 2
+∞∑
k=0

E{wT (k)w(k)}

+E{V (0)} − E{V (∞)}. (36)

Because the closed-loop system (10) is exponentially
mean-square stable, it can be easily seen from (36) that

+∞∑
k=0

E{zT (k)z(k)} ≤ γ 2
+∞∑
k=0

E{wT (k)w(k)}, (37)

which implies the specified H∞ performance constraint can
be achieved, and the proof is then completed.
Remark 3: The stability of the networked time-delay sys-

tem (10) with distributed delays is analyzed in the theorem 2
based on the Lyapunov theory and the Schur complements.
Furthermore, the design method of robust H∞ controller (6)
for networked time-delay system (10) with random packet
loss and quantization is presented. In a word, the virtue of the
presented results depends on the discrete distributed delays,
and much work involving the construction of new Lyapunov
functions has been used to handle the discrete distributed
delays, which is very meaningful for practical NCSs.

Although the above method gives the sufficient conditions
for robust H∞ controller design, the designed parameters
such as the observer gain L, the controller gainK and themin-
imumH∞ performance bound γ > 0 are also not be obtained
by the LMIs tool, which should be solved by using a cone
complementary linearization approach. By the above trans-
formation approach, the minimization optimization problem
based on LMI conditions is given:

min tr(PM + QN + JZ ) (38)

satisfying the inequality (32) and the following constraints:[
P I
I M

]
≥ 0,

[
Q I
I N

]
≥ 0,

[
J I
I Z

]
≥ 0. (39)

IV. NUMERICAL EXAMPLE
The networked system proposed by (1) is as follows, in which
the relevant parameters are given as:

A =

 0.6 − 0.1 0
0 − 0.8 0.5
0.2 0 − 0.7

, B =

 0.2 − 0.1 0
0.1 − 0.1 0
0 − 0.2 0.1

,

C =

−0.2 0 0.1
−0.2 −0.1 0.1
0 0.2 −0.1

,
DT =

[
1.9 0.2 −3.5

]
,

ET =
[
−0.0034 −0.000756 0.05

]
, E1 = 1,

H1 =
[
−2.23 5.6 −0.3

]
, d(k) = 2+

1+ (−1)k

2
,

H2 =
[
−0.23 −2.7 3.9

]
, µi = 2−(i+1).

Obviously, it obtains d1 = 2, d2 = 3, µ = 0.5. In this
paper, the quantization density is given as ρ = 0.6 and the
initial state is x(0) = [0.22 0.1 −0.25]T , x̂(0) = [0 0 0]T

and the disturbance input is expressed by w(k) = 1
k .

TABLE 1. Different values of designed parameters.

Based on the theorem 2, three observer-based H∞ out-
put feedback controllers (6) for networked system can be
designed with the same quantization density ρ = 0.6 and
three different data packet arrival probabilities θ̄ respectively
taken as 0.9, 0.8 and 0.6. For the above given parame-
ters, by solving the optimization problem in the theorem 2,
the optimization results for robust H∞ controllers are shown
in Table 1 and the corresponding controller gains are derived
as follows

K1 =
[
−0.0138 0.0093 −0.1112

]
,

K2 =
[
−0.0206 −0.0158 −0.0816

]
,

K3 =
[
−0.0210 −0.0251 −0.0566

]
.

FIGURE 2. States of graph γmin = 0.8572.

From the above, three sets of different values of the con-
troller gain K , the observer gain L and the minimumH∞ per-
formance index γmin are obtained respectively. It can be easily
seen that the minimumH∞ performance index γmin increases
when data packet arrival probability θ decreases, because
of the serious data packet dropout. Figures 1–3 respectively
show the dynamical behaviors of the system state for three
cases under the same quantization density ρ = 0.6. From the
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FIGURE 3. State trajectories with γmin = 3.4670.

FIGURE 4. State trajectories with γmin = 11.2762.

Figures 1–3, it can be seen that the state trajectories asymp-
totically tend to zero, which implies that the networked sys-
tem can be exponentially mean-square stable by using the
proposed robust controller (6). However, when the packet
dropout becomes more serious, the state trajectories of the
closed-loop networked system can also be close to zero,
while it will take a longer time for the system state to tend
to zero and the jitters of state variables become more and
more serious in Figures 1–3. It indicates that the data packet
dropout has a great influence on the robustness of networked
system when the system performance inevitably deteriorates,
although the proposed controller ensures that the networked
system can be exponentially mean-square stable and the pre-
scribed H∞ performance constraint is achieved.

V. CONCLUSION
This paper has dealt with the robust H∞ control problem of
the networked time-delay systems with quantization and ran-
dom packet dropout. Relying on the sector bound method to
represent the quantization effect and a Bernoulli distribution
to characterize the packet dropout phenomenon, the quanti-
zation control problem of the networked system with random
packet dropout has been transformed into the robust control
problem of the networked uncertain time-delay system with
a random parameter. To deal with this feedback control prob-
lem for the networked system, an observer-based H∞ output
feedback controller has been designed to ensure the expo-
nential stability of the closed-loop system in mean-square
sense and achieve the expected H∞ performance index.

Finally, a numerical simulation has verified the effectiveness
of the proposed method.
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