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ABSTRACT Multiple object tracking has been a challenging field, mainly due to noisy detection sets
an identity switch caused by occlusion and similar appearance among nearby targets. Previous works rely
on appearance models that are built on an individual or several selected frames for the comparison of
features, but they cannot encode the long-term appearance changes caused by pose, viewing angle, and
lighting conditions. In this paper, we propose an adaptive model that learns online a relatively long-term
appearance change of each target. The proposed model is compatible with any feature of fixed dimension
or their combination, whose learning rates are dynamically controlled by the adaptive update and spatial
weighting schemes. To handle occlusion and nearby objects that are sharing a similar appearance, we also
design the cross-matching and re-identification schemes based on the application of the proposed adaptive
appearance models. In addition, the 3D geometry information is effectively incorporated in our formulation
for data association. The proposed method outperforms all the state of the art on the MOTChallenge 3D
benchmark and achieves real-time computation with only a standard desktop CPU. It has also shown superior
performance over the state of the art on the 2D benchmark ofMOTChallenge.

INDEX TERMS 3D tracking, appearance modeling, data analytics, multimedia signal processing, multiple
object tracking, multi-target tracking, video surveillance.

I. INTRODUCTION
In recent years, the unprecedented explosion in the avail-
ability of and access to image big data has contributed to
the rapid development of computer vision algorithms. Espe-
cially, the performance of object detectors has been improved
dramatically in the last two decades. As a result, more and
more attention has been drawn to the study of tracking by
detection, i.e., the observations of objects are generated by
object detection that may contain some errors. With the
detected observations in each video frame as input, the goal of
multiple object tracking (MOT) is to recover the trajectories
of all targets in a video sequence. MOT is of high signif-
icance to many useful applications in computer vision and
robotics, e.g., security surveillance, autonomous driving, etc.
Though MOT has seen considerable progress in recent years
because of improved appearance models and optimization
schemes, the status quo is still far from matching human
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performance. The major challenges include noise in object
detection, appearance change, and identity switch caused by
object occlusion and similar appearance between objects in
pair/group. The problems can be mitigated when the camera
projection matrix is available, which can convert the tracking
space into 3D. Thus, the depth information can be effectively
utilized, whereas the prediction of object movement and scale
can be more reliable.

Most of the state-of-the-art methods focus on data asso-
ciation techniques. The majority of them are offline algo-
rithms, e.g., [1], [2], [3], in which observations of objects are
grouped into tracklets based on spatio-temporal continuity.
In data association, besides motion patterns and social force
models, appearance models have also been widely used as
an important cue to keep the identities of targets. Tradition-
ally, appearance models based on raw pixel template repre-
sentation [4], [5], fusion of color/texture/edge features [6],
or color/texture/edge histograms [3], [7]–[10] are adopted for
their simplicity. Nevertheless, these models are only built on
individual or several selected frames, which could not encode
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long-term appearance change along each trajectory. Thus,
they may fail when there is change of lighting condition,
viewing angle or object pose. Other researchers also intro-
duce methods based on random forest algorithms [11], [12]
or take advantage of deep learning features [13] to improve
the robustness of appearance modeling, but the computation
complexity significantly increases and massive training sam-
ples are required.

Inspired by adaptive background modeling in change
detection [14]–[17], we propose an adaptive appearance
model that can learn the long-term change of object appear-
ance online. As partially described in [18] and [19], the pro-
posed framework, termed MOANA which is short for
‘‘Modeling of Object Appearance by Normalized Adapta-
tion,’’ models the appearance of each target as a normalized
matrix with an array of observed feature vectors at each cell.
MOANA is compatible with any feature of fixed dimension or
their combination. To update the model, the learning rates are
controlled by the similarity with previous features and spatial
weighting. When an object is partially occluded by or spa-
tially close to others, a cross-matching module is employed
to avoid identity switch based on the proposed appearance
model. For objects that are seriously occluded or failed to
be detected (false negatives) for a few frames, we design
a re-identification scheme to recover their trajectories. 3D
geometry information is also leveraged in our formulation
of data association. Experiments are conducted on the test
and training sets of the MOTChallenge 3D benchmark [20].
We are ranked on top of the benchmark in terms of the mul-
tiple object tracking accuracy (MOTA) [21].1 Our proposed
method has also shown superior performance over the state-
of-the-art in theMOTChallenge 2D benchmark [20].

The major contribution of this work is three-fold. (1) We
propose an adaptive model that can encode long-term appear-
ance change for robust object tracking, which is inspired
from adaptive background modeling in change detection. (2)
Cross-matching and re-identification schemes are designed
to overcome occlusion and ambiguity among neighboring
objects, which incorporate both the adaptive appearance
model and 3D geometry information. (3) The proposed
framework achieves superior performance over the state-of-
the-art on theMOTChallenge benchmark collection.

The rest of this paper is organized as follows. In Section II,
related works of our approach are reviewed in detail. The sys-
tem overview and description of each algorithmic component
are covered in Section III. The implementation details and
evaluation of our method on theMOTChallenge benchmarks
are presented in Section IV. Finally, we draw the conclusion
in Section V.

II. RELATED WORK
A. MULTIPLE OBJECT TRACKING BY DETECTION
One of the traditional approaches to MOT is to predict the
states, i.e., location and size, of tracked targets based on

1Available at https://motchallenge.net/results/3D_MOT_2015/

Bayesian inference methods, e.g., Kalman filter or parti-
cle filter [4], [8], [10]. These methods usually can achieve
acceptable performance in short term, however, they tend to
fail when objects are interacting with each other, i.e., under
occlusion and/or movement in groups.

Many recent works formulate MOT as a data association
problem. Leal-Taixé et al. [1] propose to formulate data asso-
ciation by social force and grouping behavior. The probability
hypothesis density (PHD) filter [2] is introduced in the for-
mulation of multi-target state estimation for offline decision
on data association. Wen et al. [3] uses a space-time-view
hyper-graph to encode higher-order constraints in 3D. More
recently, some researchers apply deep learning architectures
like recurrent neural networks (RNNs) to the modeling of
nonlinear behaviors in data association [13], [22].

Relatively little attention has been given to the develop-
ment of discriminative appearance models forMOT.Methods
like [3]–[10] employ raw pixel template representation or
fusion of traditional image features from a single frame to
model the object appearance. The histogram representation
is improved by Chu et al. [7], who build multiple spatially
weighted kernel histograms with binding constraints for each
target to overcome partial occlusion. Similarly, Yang and
Nevatia [23] introduce discriminative part-based appear-
ance models (DPAMs), which uses a human part model to
extract the discriminative features from unoccluded object
area. However, all the mentioned appearance models are
highly sensitive to the quality of the selected frame(s), which
may fail occasionally due to illumination or other condi-
tions. Besides, their similarity measurements either not or
only implicitly encode the spatial distribution of appearance
features. On the other hand, Kuo et al. [24] present online
learned discriminative appearance models (OLDAMs) to
learn the discriminative features from training samples col-
lected online with some spatio-temporal constraints. In [25],
the conditional random field (CRF) model is exploited to
combine OLDAMs with non-linear motion patterns. Though
the affinity measurement can be learned online for [24]
and [25], they still only consider features extracted from
single frame such as RGB color histogram and histogram
of oriented gradients(HOG). These features can lead to
tracking errors after objects being occluded for long time.
There are other attempts to adapt the classifier to the chang-
ing appearance of each target by using variants of random
forests [11], [12] and boosting [26]. Some also propose to
apply deep learning features generated from the convolu-
tional neural networks (CNNs) [13] to improve tracking per-
formance. However, because of the increased complexity of
these methods and the potentially large number of targets,
the computation requirement becomes a major challenge.
Moreover, these methods require massive training samples
to achieve robust performance. Recently, Ma et al. [27]
introduce a novel Dirichlet-process-based statistical model to
describe the underlying distribution of non-Gaussian image
features. Based on their feature modeling, the performance
on various tasks is significantly improved compared to the
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FIGURE 1. Multiple object tracking in 2D (top-left), the back projection to
3D in top view (bottom-left) and the visualization of the averaged
adaptive appearance models learned online in RGB space, LBP space, and
gradient space (right).

state-of-the-art, which also verifies the benefit of appearance
modeling for pattern recognition problems.

B. BACKGROUND MODELING IN CHANGE DETECTION
Background modeling is a key element of modern change
detection algorithms. Barnich and Van Droogenbroeck [14]
introduce the visual background extractor (ViBe) that builds
the backgroundmodel with a set of observed values in the past
at each pixel location. The pixel-based adaptive segmenter
(PBAS) [15] improves the pixel-based background modeling
scheme by applying a random observation replacement pol-
icy. The self-balanced sensitivity segmenter (SuBSENSE),
proposed by St-Charles et al. [16], [17], further improves the
update scheme using pixel-level feedback loops that dynami-
cally adjust the internal configuration parameters. To the best
of our knowledge, our work is the first to extend adaptive

modeling and random update scheme in change detection
to support robust object tracking. We also design cross-
matching and re-identification schemes to resolve ambiguity
among objects using the adaptive appearance models.

III. METHODOLOGY
The overview flow diagram of our proposed framework is
shown in Fig. 2. We first exploit the output of preliminary 2D
human tracking and foreground segmentation [10] for camera
self-calibration [28], [29]. The observations of objects can
be located by object detection or with the assistance of seg-
mentation. When a target is not occluded by or grouped with
other object(s), it is associated with available observation(s)
based on an efficient 3D Kalman-filter-based strategy. The
proposed appearance models and a probabilistic model of 3D
object properties are learned online. When an observation is
grouped with others, the cross-matching module is enabled
to associate nearby targets based on the unoccluded area of
appearance models. On the other hand, when an object is
seriously occluded or missing, his/her appearance model is
temporarily stored and used for re-identification. The detailed
formulation and the role of each component are illustrated as
follows.

A. FORMULATION OF DATA ASSOCIATION
Before introducing the proposed adaptive appearance model
for object tracking, we first define the formulation of MOT
as a data association problem in time and space. We aim to
recover the trajectories T of all targets within the 3D scene,
which are defined as

T = {Ti : i = 1, 2, . . . , |T |} , (1)

where each Ti is equivalent to an object identity.
The basic units of MOT are the candidate observations of

objects, noted O, derived from object detection or with the
assistance of foreground segmentation, defined as

O =
{
Oj ∼

(
gj, fj, qj, tj

)
: j = 1, 2, . . . , |O|

}
, (2)

FIGURE 2. Flow diagram of the proposed MOT framework based on adaptive modeling of object appearance.
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in which gj is the 3D geometry information, fj is the extracted
appearance feature, qj is the foreground mask within the
object region, and tj is the time stamp. They will be illustrated
in detail in the following subsections.

The goal of MOT is to solve the following objective from
an input video sequence

Ti← Oj, ∀i,∀j, (3)

which represents the assignment of every observation to a cor-
responding object identity. The false positives are all assigned
to T∞.

When the camera parameters are unavailable, we first
process a short period of the video sequence by preliminary
2D tracking and foreground segmentation [10]. Each human
object is modeled as a pole perpendicular to the ground
plane, whose endpoints are located based on the orientation
of the foreground blob, from which we can compute the
horizon line and vanishing points in the scene for camera
self-calibration [28], [29]. An example of the estimated 3D
ground plane from camera self-calibration is shown in Fig. 3.
Then, we process the sequence from the beginning with each
object observation back projected to 3D space. The geometry
information of eachOj, noted gj, is represented by six aspects.

gj ∼
(
bj,Pj,Dj,Vj,Wj,Hj

)
, (4)

where bj ∈ R4 denotes the 2D bounding box represented in
terms of centroid coordinates and size, Pj ∈ R2 denotes the
back projected foot point coordinates on the 3D ground plane,
i.e., the X-Y plane, Dj denotes the 3D depth of Pj, Vj ∈ R2

denotes the 3D velocity of Pj on the X-Y plane, andWj andHj
are the width and height of the 3D bounding box, respectively.

FIGURE 3. Projected 3D grid on the ground plane generated by camera
self-calibration with the extracted head and foot points highlighted.

An observation Oj is deemed to be under occlusion or
grouped with other object(s) if bj overlaps with other(s) or the
3D distance of their foot points is smaller than a threshold τP.
Otherwise, Oj is associated with a Ti based on an efficient
3D Kalman-filter-based approach. The state vector of the
Kalman filter has six dimensions, corresponding to Pj, Vj,Wj
and Hj, whose prediction and update are similar to the 2D
scenario [8].

The Kalman prediction of a target Ti is regarded as a pre-
dicted observation, noted Ôi. An observation Oj is associated
with Ti based on the following rule

Ti← Oj, if

∥∥∥P̂i − Pj∥∥∥
2

wDj
< τP, (5)

whichmeans that the predicted 3D foot point P̂i of Ti is within
a short Euclidean distance ofOj. The term wDj is proportional
to the depth of Oj, defined by

wDj = Dj · ηD + cD, (6)

where ηD is a constant step size and the addition of a constant
cD is to avoid division-by-zero error. The intention of the
division by wDj in Equ. (5) is to compensate for the ambiguity
in 3D measurement of distant objects, whose estimated 3D
foot points are highly sensitive to small errors in object
detection and/or foreground segmentation.

When tracking under themode of Kalman filtering, we also
build a probabilistic model of 3D object properties online.
The probabilistic model has four dimensions, corresponding
toVj,Wj andHj. A four-dimension probabilisticmodel is used
to actively learn the normal distribution of each 3D property.
False positives of object observations are removed from the
list of candidates for association based on the three-sigma rule
of thumb in normal distribution.

B. ADAPTIVE MODELING OF OBJECT APPEARANCE
Even though 3D Kalman-filter-based tracking can generate
more reliable tracklets compared to 2D tracking, it still cannot
overcome the problem of identity switch during interaction
between objects. To resolve the ambiguity between objects
that are spatially close to each other, we propose an adaptive
model to learn the change of object appearance online. The
appearance model of a target Ti, noted mi, is a combination
of d sub-models, where d is the feature dimension. Each sub-
model contains a set of n observed feature values.

mi =

{
m1
i (u) ,m

2
i (u) , . . . ,m

n
i (u) |∀u ∈ [1, d]

}
. (7)

The procedure of model construction and update is demon-
strated in Fig. 4. In this example, the features are extracted
from normalized pixel templates of size d = w × h. The
dimension of each feature vector is given bymki (u) ∈ R6, as it
encodes RGB values in 3 channels, LBP values in 1 channel,
as well as gradient magnitudes and angles. To initialize or
update this appearance model, each pixel template within the
object region is normalized to the size of w × h (see Fig. 4
(b)). As shown in Fig. 4(c), the foreground mask qj is used
to determine the visible object region. When the observation
is occluded, the occluded area is eliminated from qj. The
update rate of each sub-model, noted αi (u), is dynamically
controlled by a softmax function, which depends on the dis-
tance between newly observed features and values in the past.
We define αi (u) as follows

αi (u)=
(
1+exp

[
min
k

∥∥∥fj (u)−mki (u)∥∥∥−τf ])−1, (8)
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FIGURE 4. An example of the construction and update of MOANA. (a) The
RGB image for color representation, the LBP image for texture
representation and the gradient image for edge representation.
(b) Feature maps normalized to w × h. (c) The foreground masks used to
indicate visible object area to be updated. When the segmentation results
are not available, a maximum-ellipse mask is used. (d) The visualization
of the averaged feature components in the adaptive appearance model.

where fj (u) is the newly observed feature vector of the same
dimension as mki (u). The term τf is the maximum distance
threshold in the feature space. New features that vary from the
past are more likely to be updated, as they reflect the change
of appearance that should be learned.

For pixel-based features like the example in Fig. 4, a Gaus-
sian spatial weighting scheme is also employed to adjust the
learning rate as

αi (u) =
exp

[
−
‖u−uc‖2

2(w2+h2)

]
1+ exp

[
min
k

∥∥fj (u)− mki (u)∥∥− τf ] , (9)

where uc denotes the center of mass of the visible area within
the object region. The spatially weighted learning rates αi (u)
are maximum around the central region, which the body of
the object usually occupies, so the sub-models there should
be updated more frequently. The learning rate drops as u gets
further away from uc. Thus, we can suppress the influence of
background area.

The procedure of model update is described as follows.
When a candidate observation Oj is associated with Ti in
Kalman filtering, the extracted features fj are used to update
the appearance model of Ti, i.e., mi. For each sub-model in
mi, if there are less than n feature vectors stored, the observed
feature vector fj (u) is added into the sub-model by a probabil-
ity of αi (u). Otherwise, a random feature vectormki (u) in the
sub-model is swapped by fj (u) with a probability of αi (u).
In Fig. 4(d), each feature component of MOANA is plotted,
in which averaged values are displayed.

To measure the appearance affinity using the proposed
model, the similarity score between the prediction of Ti, noted
Ôi, and an observation Oj is given as

s
(
Ôi,Oj

)
=

∑
k
[
#
(∥∥fj (u)−mki (u)∥∥<τf ,∀k≤n)]

dn
, (10)

where # (·) returns the number of samples satisfying the given
condition. The value of s

(
Ôi,Oj

)
is between 0 and 1, where

higher value indicates higher similarity, because more fea-
tures are matched between the prediction and the observation.

Note that the proposed appearance model is universal, i.e.,
compatible with all kinds of feature combinations, as long
as the feature dimension is fixed. Thus, in the example of
Fig. 4, all the pixel templates need to be normalized to w×h.
MOANA is also compatible with different measurements of
distance in the feature space. Besides, the computation of
model update and comparison is always constant, i.e., O (dn).
With reasonable setting of algorithmic parameters, the pro-
cessing speed can be sufficiently fast to support real-time
application. Moreover, different from previous approaches,
since a set of previously observed feature values is stored and
updated in random, MOANA is capable of ‘‘memorizing’’ a
relatively long-term history of appearance change, whichmay
cover different viewing angles, object poses and illumina-
tion. The proposed method also benefits from the normalized
similarity score between 0 and 1, which makes it convenient
to set thresholds and compare with each other. On the other
hand, common affinity measurements, such as Bhattacharya
distance and KL divergence, do not share such property.

C. CROSS-MATCHING WITH APPEARANCE MODEL
The cross-matching module is enabled when a candidate
observation is spatially close to other object(s) but has more
than 50% of the object region visible, i.e., in the grouping
state. In this case, a predicted target location by Kalman
filter may be associated with a wrong observation easily,
which leads to identity switch. The problem can be miti-
gated by comparing the appearance features across grouped
objects, i.e., cross-matching, but the effect is limited when
the nearby targets share high appearance similarity. Since
long-term appearance change is effectively encoded in our
proposed appearance model, we can maximally distinguish
highly similar objects through cross-matching.

The procedure of cross-matching is demonstrated in Fig. 5.
More specifically, for each observation Oj a list of nearby
target predictions, noted lj, is kept. If there are more than

FIGURE 5. Demonstration of cross-matching for observations grouped
with each other, based on 3D geometry information and the proposed
adaptive appearance model.
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one prediction in lj, Oj is in the grouping state. In cross-
matching, the observation Oj is compared with each element
in lj. The computation of similarity score incorporates both
3D geometry information and appearance affinity, defined as

sc
(
Ôi,Oj

)
= s

(
Ôi,Oj

)
·

wDj∥∥∥P̂i − Pj∥∥∥
2

, Ôi ∈ lj, (11)

where the subscript c refers to cross-matching. The similarity
score in Equ. (10) is divided by the Euclidean distance of 3D
foot points, because spatially close objects are more likely
to be associated. Similar to Equ. (5), the term wDj is added to
compensate for the confusion of foot point estimation for dis-
tant objects. With the set of computed scores

{
sc
(
Ôi,Oj

)}
between each pair of observation and prediction, we formu-
late a bipartite matching problem, which can be effectively
solved using the Hungarian algorithm. The detailed pseu-
docode of the above procedure is provided in Algorithm 1.

Algorithm 1 Cross-Matching Based on MOANA
input: current video frame, candidate observations in
the input frame

{
Oj
}
, prediction of each target from

the Kalman filter
{
Ôi
}

output: matched pairs of observations and predictions
1: for each Oj in

{
Oj
}

2: clear the list of nearby candidate predictions lj;

3: for each Ôi in
{
Ôi
}

4: if

∥∥∥P̂i−Pj∥∥∥
2

wDj
< τP or b̂i overlaps with bj and

visibleareaofbj
totalareaofbj

> 50% do

5: push Ôi into lj;
6: end if
7: end for
8: if #

(
lj
)
> 1 do

9: for each Ôi in lj
10: compute sc

(
Ôi,Oj

)
using Equ. (11);

11: push sc
(
Ôi,Oj

)
into

{
sc
(
Ôi,Oj

)}
;

12: end for
13: end if
14: end for
15: solve the association based on

{
sc
(
Ôi,Oj

)}
using

the Hungarian algorithm;
16: output all matched pairs of Ti and Oj.

D. RE-IDENTIFICATION WITH APPEARANCE MODEL
When an object observation is under serious occlusion, i.e.,
the visible area is smaller than 50% or there is no nearby
target prediction (false negative), his/her leaving time stamp,
location, and appearance model are temporarily stored for re-
identification. Since the viewpoint of a target usually changes
significantly after serious occlusion, and targets frequently

enter and exit the region of interest (ROI) in real world, a reli-
able appearance descriptor that learns long-term appearance
variation is key to the success of re-identification.

The procedure of re-identification is demonstrated
in Fig. 6. For each entering observation Oj that is not asso-
ciated with any existing target, it is compared with a list of
disappeared targets, noted T ′. If a missing target is success-
fully associated with an entering observation, its identity and
appearance model is recovered. The similarity score for re-
identification is computed as

sr
(
Ô′i,Oj

)

=


s
(
Ô′i,Oj

)
·

(
tj − t ′i

)
· wDj∥∥∥P̂′i − Pj∥∥∥2 , if

∥∥∥P̂′i − Pj∥∥∥(
tj − t ′i

)
· wDj

< τP

0, otherwise,
(12)

in which the subscript r stands for re-identification. Ô′i is the
Kalman prediction of a missing target at tj. P̂′i and t

′
i are the

predicted 3D location at the current frame and the time stamp
that the target disappears respectively. Different from Equ.
(11), we have a new term,

(
tj − t ′i

)
, which calculates the time

span in seconds that the target has beenmissing. The intention
is that a target missing for a long time usually leads to higher
uncertainty in the prediction of location. Moreover, only
the prediction(s) in the neighborhood of the observation are
considered as candidate(s) for re-identification. Finally, if the
observation is not associated with any missing target or the
maximum similarity score is considered too low, i.e., smaller
than a threshold noted τs, it is identified as a new target. The
pseudocode of re-identification is detailed in Algorithm 2.

FIGURE 6. Demonstration of re-identification for missing observations,
based on 3D geometry information and the proposed adaptive
appearance model. A disappeared object, T ′i , is shifted to a predicted

location, i.e., Ô′i , and compared with an entering observation Oj .

IV. EXPERIMENTAL RESULTS
Extensive experiments are conducted on the publicly avail-
able MOTChallenge benchmark [20], which is a collection
of existing and new data for MOT evaluation. It is devel-
oped to bring forward the strengths and weaknesses of the
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Algorithm 2 Re-Identification Based on MOANA
input: current video frame, entering observations in
the input frame

{
Oj
}
, prediction of each disappeared

target at the current frame
{
Ô′i
}

output: object identities of
{
Oj
}

1: for each Oj in
{
Oj
}

2: for each Ô′i in
{
Ô′i
}

3: if

∥∥∥P̂′i−Pj∥∥∥
(tj−t ′i)·w

D
j
< τP do

4: compute sr
(
Ô′i,Oj

)
using Equ. (12);

5: push sr
(
Ôi,Oj

)
into

{
sr
(
Ôi,Oj

)}
;

6: end if
7: end for
8: Ô′i

∗

← arg
{
sr
(
Ôi,Oj

)}
;

9: if sr
(
Ô′i
∗

,Oj
)
> τs do

10: assign the identity of T ′i
∗ to Oj;

11: else
12: assign a new identity to Oj
13: end if
14: end for
15: output all identities of

{
Oj
}
.

state-of-the-art MOT methods. Among all the subsets of this
benchmark [20], [30], MOTChallenge 2015 3D is the only
one dedicated for the evaluation of 3D tracking performance,
in which all the videos are taken by static cameras, so that
our camera self-calibration scheme can be applied. There are
two training sequences, PETS09-S2L1 and TUD-Stadtmitte,
with 974 frames and 5,632 ground-truth bounding boxes for
29 targets in total. AVG-TownCentre and PETS09-S2L2 are
the two test sequences, which are significantly more complex
than the training set, including 886 frames and 16,789 ground
truths for 268 targets. The benchmark presents all kinds of
evaluation metrics for the performance of MOT [21], [31],
such as MOTA, multiple object tracking precision (MOTP),
false positives (FP), false negatives (FN), identity switches
(ID Sw.), mostly tracked targets (MT), mostly lost targets
(ML), fragments (Frag.), etc. The two test sequences in the
MOTChallenge 3D benchmark are included in theMOTChal-
lenge 2D benchmark [20] as well, which also allows us to
compare with the state-of-art in 2D MOT [13], [32]–[39].

The proposed framework has been implemented in C++
with the support of the OpenCV 3 library. It is run on an
Intel Core i7-7700K PC with 4 cores, 4.20 GHz processor
and 24GBRAM in the Ubuntu 14.04 environment. After test-
ing different features including pixel templates, histograms,
deep learning features and their combinations on the train-
ing sequences (to be presented in Section IV-D), we choose
to incorporate both RGB and LBP pixel templates in our
appearance model for the evaluation on the test sequences.
The distance measurement in feature space is given by the
Euclidean distance. Theminimal color distance threshold and
minimal LBP distance threshold, i.e., τf , are both empirically

set to 30. In all the experimental sequences, the normalized
size for feature extraction is empirically set as w × h =
64 × 64, which is an ideal balance between HD resolution
and real-time computation. Due to the relatively short-term
appearance of most objects in these sequences, n is set to
3 seconds. In addition, the values of τP, τs, ηD and cD are
empirically chosen to be 2 meters, 0.30, 1/30 and 1 respec-
tively. Moreover, the gaps between re-identified tracklets are
linearly interpolated. To conform with the provided ground
truth of camera parameters, we compute the transformation
from the estimated projection matrix to the actual homogra-
phy, so that our 3D tracking results can be converted properly
for evaluation. The unit used for all 3D measurements is
meter.

A. COMPARISON WITH THE 3D STATE-OF-THE-ART
Currently, there have been 11 submissions on theMOTChal-
lenge 2015 3D benchmark, including two anonymous meth-
ods. All the experimental results are summarized in Table 1.
The corresponding qualitative visualization is available
in Fig 7. The demo videos can be viewed on the MOTChal-
lenge website.2 Note that the noisy detection sets provided
by the benchmark are used as input to our algorithm. To be
fair with other methods in comparison, we do not apply fore-
ground segmentation in our appearance model. Thus, each
object mask in the proposed appearance model is defined by
a maximum ellipse, as shown in Fig. 4(c).

MOANA is currently ranked on top in terms of the two
most significant metrics, MOTA and ID Sw. As shown
in Fig. 7 and the online demo videos, our predicted tra-
jectories and localization of targets are all relatively more
accurate, whereas other methods missed a few more targets
and introduced more false positives. The promising perfor-
mance mainly benefits from the proposed appearance adapta-
tion scheme that maintains robustness against occlusion and
appearance similarity among nearby targets. This is proven
by the fact that our ID Sw. on this challenging benchmark is
reduced by over 46% compared with the former leader [12].
This also explains why MOANA enjoys a relatively high MT
score. However, a drawback of the interpolation scheme is
that the number of fragments will increase caused by growing
FP, as some objects may not walk linearly under serious
occlusion. Nonetheless, the negative influence on our overall
performance can be neglected.

Among other state-of-the-art in comparison, DBN [11] and
GPDBN [12] gain the second and third places in the rank-
ing, which both apply a Bayesian filtering approach, named
dynamic bayes network (DBN), for state prediction. The
changing appearance of each target is learned online based
on a random forest formulation. Because of similar improve-
ment in appearance modeling, their MOTA score is only
inferior to ours by margin, but they have better performance
on MOTP, MT and ML. MCFPHD [2] utilizes PHD filter

2Available at https://motchallenge.net/vis/PETS09-S2L2/MOANA and
https://motchallenge.net/vis/AVG-TownCentre/MOANA
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TABLE 1. Comparison of the proposed method with the State-of-the-art on the MOTChallenge 3D benchmark (test sequences).

FIGURE 7. Qualitative comparison on the test sequences of the MOTChallenge 3D benchmark, which can be better visualized through
demo videos on the MOTChallenge website. First row: Frame #91 of PETS09-S2L2. Second row: Frame #222 of PETS09 -S2L2. Third row:
Frame #409 of PETS09-S2L2. Fourth row: Frame #128 of AVG-TownCentre. Fifth row: Frame #189 of AVG-TownCentre. Sixth row: Frame
#441 of AVG-TownCentre. First column: MOANA. Second column: DBN [11]. Third column: MCFPHD [2]. Fourth column: LPSFM [1]. Fifth
column: LP3D [1]. Sixth column: KalmanSFM [4].

for instantaneous multi-target state estimation. The decisions
on target trajectories are made offline. Likewise, LPSFM
and LP3D [1], the baselines on this benchmark, make use

of linear programming and social force model for data
association in 3D, which are also offline methods. The
works [1], [2] focus on modeling the motion patterns but
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TABLE 2. Comparison of the proposed method with the state-of-the-art on the MOTChallenge 2D benchmark (AVG-TownCentre).

TABLE 3. Comparison of the proposed method with the state-of-the-art on the MOTChallenge 2D benchmark (PETS09-S2L2).

do not incorporate any appearance model in their formu-
lation, which explains why their performance is inferior to
MOANA and DBN-based methods. SVT [3] explores the use
of spatio-temporal hyper-graph to encode 3D constraints and
appearance information, however, their appearance model
is based on color histogram from single image, which can
be easily affected by appearance change. AMIR3D [13] is
another newmethod that exploits RNNs to jointly reasonmul-
tiple cues for tracking, including appearance similarity. The
recently observed deep learning features are kept in a feature
vector, but the history beyond a temporal window is discarded
absolutely, which is less reliable than our strategy based on
random update. Furthermore, the deep learning features are
similar among objects within the same class, which may
not perform well for discriminative appearance modeling.
Finally, the unsatisfactory performance of KalmanSFM [4]
is also caused by the relatively simple appearance descrip-
tor, which is a raw pixel template that is sensitive to noise.
As shown in Fig. 7, several false positives are introduced by
their approach.

It is also interesting to study the performance of the state-
of-the-art in computation efficiency. With CPU power only,

MOANA is able to achieve real-time performance with an
average processing speed of 19.4 frames per second on all
the test sequences. Even though there are many cases of
occlusion and grouping of targets in these sequences that
requiremassive comparison based on the adaptive appearance
models, our runtime is not seriously degraded, because our
strategy of similarity measurement based on feature distance
and spatial weighting is relatively efficient. On the contrary,
the computation speed of DBN-based methods using random
forest is much slower and far from real time. The offline
methods [1], [2], [4] are all relatively much faster, because
they either do not use appearance model or only use simple
representation for their purpose. It is impressive thatMOANA
can gain a comparable processing speed with them while
capable of running online.

B. COMPARISON WITH THE 2D STATE-OF-THE-ART
Because of the application of camera self-calibration [28],
[29], the provided camera matrices in theMOTChallenge 3D
benchmark are not adopted in our 3D MOT computation, but
are only considered for evaluation. Therefore, our algorithm
actually only leverages 2D information for 3D MOT. Our
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superior performance over the state-of-the-art in 3D MOT
verifies the effectiveness of our self-calibration scheme.

The two test sequences in the MOTChallenge 3D bench-
mark, AVG-TownCentre and PETS09-S2L2, are also included
in the 2D benchmark. The proposed method is also com-
pared with some of the state-of-the-art 2D MOT methods
on these sequences. The experimental results are respectively
presented in Table 2 and Table 3. Note that because a dif-
ferent evaluation scheme for object localization is adopted in
the 2D MOT dataset, the MOTP scores of all the methods
are generally higher than those in the 3D MOT benchmark.
Nonetheless, our proposed algorithm still demonstrates sig-
nificant advantage in MOTA and ID Sw. against them.

C. ABLATION STUDY
We conduct more experiments with variants of our proposed
method on the training sequences of the MOTChallenge 3D
benchmark, as the test sequences are not allowed for self-
comparison. The results are summarized in Table 4.

TABLE 4. Comparison of variants of the MOANA algorithm on the
MOTChallenge 3D benchmark (training sequences).

The proposed adaptive appearance models are applied
to two data association schemes, namely cross-matching
and re-identification, respectively. As we have expected,
when both schemes are taken into account, we achieve the
best performance in the majority of measurements. When
cross-matching is not considered, a large number of iden-
tity switches occur, because of spatial ambiguity among
adjacent targets. On the other hand, when re-identification
is not adopted, the identities of temporarily occluded targets
cannot be recovered, which also leads to inferior perfor-
mance. We also compare with the appearance model from the
raw pixel template (RPT), i.e., the latest available instance
from a single frame (see Fig. 4(b)). The main difference
is that a long-term history of appearance change is learned
by our proposed appearance model. As can be seen from
the comparison, RPT with the proposed cross-matching and
re-identification schemes fail to recover most of the identity
switches. Furthermore, we evaluate the proposed adaptive
update of learning rates, i.e., Equ. (8). The experimental

TABLE 5. Comparison of feature combinations for the MOANA algorithm
on the MOTChallenge 3D benchmark (training sequences).

results prove the effectiveness of adaptive learning in our
formulation, as more diverse feature values are kept in our
appearance model. Then, to validate the proposed Gaussian
spatial weighting scheme for pixel-based appearance model-
ing, i.e., Equ. (9), we also compare to model update without
spatial weighting. As shown in Table 4, our proposed scheme
boosts the performance, as the background area is suppressed
in feature extraction. Finally, MOANA also demonstrates
major improvement over the baseline, especially in the reduc-
tion of identity switches.

D. COMPARISON OF FEATURE COMBINATION
In this subsection, we explore the effectiveness and compu-
tation efficiency of different features and their combinations
for the proposed appearance modeling scheme. Experiments
are conducted on the training set of the MOTChallenge
3D benchmark. The experimental results are presented in
Table 5. Note that the CNN features are extracted from a
GoogLeNet [40] pre-trained on the COCO benchmark [41],
with a feature dimension of 1,024. For the histogram-based
features, all the feature channels have 8 bins each. The Gaus-
sian spatial weighting scheme is not applied to the extraction
of CNN features, but it is employed for the pixel-based
description and histogram construction. For all the feature
comparison, we adopt the Euclidean distance.

The CNN features and the combination of all pixel-based
features, i.e., RGB, LBP and gradient, achieve the best overall
performance on the major evaluation metrics. The deep learn-
ing features are trained to classify objects with millions of
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samples, so they lead to higher accuracy in data association,
but the feature extraction without GPU is time-consuming.
The pixel-based methods demonstrate higher accuracy com-
pared to histogram-based ones, because the spatial feature
distribution is explicitly encoded in the pixel templates.
We can also learn that the RGB color component contains
the richest information in appearance description, as all com-
binations with the RGB feature generally perform better than
others. Finally, the combination of RGB and LBP in pixel
templates is chosen for the experiments on the test sequences,
because of its robust performance and relatively lower com-
putation requirement. Note that because the crowd of human
targets is denser in the test sequences, which requires more
computation in cross-matching and re-identification, so the
general runtime is slower than the training sequences.

As mentioned in Section III-B, MOANA can be eas-
ily receptive to incorporating other useful features or their
combination with fixed dimension. Thus, the robustness of
the proposed model can be further improved through the
combination with more discriminant image features, such
as [42]–[47].

V. CONCLUSIONS
Multi-target tracking has been a challenging task, especially
because of identity switches caused by occlusion, spatial
ambiguity and similar appearance among nearby targets.
In this paper, we propose an adaptive appearance model-
ing scheme to support robust MOT. Different from previous
works in the development of discriminative appearance fea-
tures, our extracted feature vectors are saved in an explicit
form and adaptively updated online. The proposed method
is robust against appearance change due to different illu-
mination, poses and viewing perspectives. Based on the
adaptive appearance model, we design cross-matching and
re-identification schemes to mitigate identity switch when
objects interact with others. Besides, 3D geometry infor-
mation is effectively incorporated into our formulation of
data association. Experimental results on theMOTChallenge
benchmark datasets show our superior performance in robust-
ness and efficiency compared with the state-of-the-art. In the
future, we plan to extend our work to moving cameras
with the assistance of visual odometry or visual SLAM.
Wewill also leverage saliency detection techniques [48]–[51]
to improve edge-based appearance modeling. Last but not
least, MOT can be largely benefited from improved object
detectors such as [52] and [53].
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