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ABSTRACT Automating the production of 2D hand-drawn animations is a significant and interesting
component in computer graphics and vision. However, traditional methods in animation production pipeline
always use physically or geometrically based models which are consuming due to complicated and massive
computations, reducing their practicability. In this paper, we propose an efficient data-driven approach
to create hand-drawn animations in an automatic manner. The key idea is to employ a correspondence
match-based random search process to extract the geometry samples and the global motion pattern in an
input animation sequence and then to generate a new output sequence through a coarse-to-fine sample-based
synthesis algorithm. Our experiments demonstrate that our method achieves good results with high quality
and performance, producing a range of artistic effects that previously required disparate and professional
techniques.

INDEX TERMS Animation, data-driven approach, exemplar-based approach, motion tracking and synthesis,
PatchMatch, sample based synthesis.

I. INTRODUCTION
Synthesis of hand-drawn animation is an active research area
and has many applications in computer graphics, vision and
entertainment. Recent advances in motion capture techniques
and other motion editing approaches facilitate the generating
of animation with ease and realism. Motion capture and
retargeting is pioneered by [1] where a specific motion in
a sequence of images is tracked and then transferred to a
new animation having a different visual appearance. This
technique bridges the gap between traditional animation and
computer animation. Traditional animation with the merits
of being stylized and expressive is seen as time consuming
and labor-intensive while computer created animations can
be easily reused and transferred to different domains and
characters. Therefore, automation of this drawing process is
greatly in demand and many investigations have been con-
ducted recently on this topic, including image morphing and
deformation [2], image registration and retargeting [3], [4],
and recently exemplar-based synthesis techniques [5]–[8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Lei Wei.

In this paper, we are also interested in how to capture the
motion pattern in a given animation and produce a new one
which has the similar appearance and motion with the input
sequence. Shortly speaking, given a source cartoon animation
video, our goal is to automatically generate such repetitions
through a combination of random search process (seeking the
motion pattern) and data driven computation (synthesizing
details). Fig. 1 gives an example of our work, in which the left
column is the source animation video represented by picked
frames and the right one is the output animation sequence
after synthesizing.

Different from most previous approaches which always
capture motions by user inputs or data capture devices,
we focus on an automatic treatment to track the motion. Con-
sidering that the visual similarity between drawing images
or frames is an important cue to find the correspondences
between two image regions, our method attempts to track the
motion through an exemplar-based neighborhood search pro-
cedure in terms of visual diversity. Such an exemplar-based
framework has been applicable for many hot issues, including
texture synthesis, image inpainting and completion, image
registration, motion field simulation, dense correspondences
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FIGURE 1. An example of our work.

matching, optical flow calculation and lots of other appli-
cations in graphics, vision and image processing. In con-
trast, as a fundamental part in image editing and scene
correspondence matching, the nearest neighbor field (NNF)
is closely related to solve our motion estimation prob-
lem. The aim of NNF computation is to find one or more
nearest neighbors (visually similar) for each patch between
a pair of images. The main difficulty in this technique
is the computational complexity caused by the exhaus-
tive search. To improve the efficiency of computing NNF,
a seminal work called PatchMatch [9], [10] was proposed,
the core idea behind which is a random search procedure
and a coherence propagation methodology among neighbors.
Enlightened by this boost, we propose a grid based

PatchMatch method to efficiently and automatically obtain
spatial-temporal samples [6], [7] and the global motion pat-
tern for the next stage of synthesis task.

In the aspect of reusing a motion pattern, the mainstream
methods prefer physically or geometrically based computa-
tions to find the points movements on which the action can
be created through the inbetween or interpolation technique.
This type of approaches are often too complicated to solve
and limited to some kind of physical phenomena or geomet-
rical topology. On the other hand, motion sequences can be
regarded as stochastic processes in many cases, as well as
texture images are. Meanwhile, cartoon images are usually
composed of elements with nature of repetitions on both
geometry and dynamics. Based on such observation, we can
apply analogous methodology of texture synthesis to regen-
erate repetitive motion sequences. The difference lies on that
texture images assume a spatial distribution while motion
pattern in cartoon images display a temporal-spatial distri-
bution. In hence, through extending the outstanding work
in [6] and [7], we propose a coarse-to-fine sample-based local
neighborhood similaritymatching algorithm to synthesize the
motion sequence similar to the input.

II. RELATED WORK
This section simply reviews several closely related methods
to our work, including exemplar-based image and cartoon
matching and data-driven animation synthesis.

A. EXEMPLAR-BASED IMAGE AND CARTOON MATCHING
Matching correspondences between images, such as photo-
graph images, hand-drawn images, frame images, heteroge-
neous images [11] and so on, is always a challenging task
attacking the attentions of many researchers within the last
two decades. Related methods to matching or registering
objects can be learned in surveys [12] and [13]. Recently,
the high coherence [14] and rich color information [15]
are employed to match the correspondence between frame
images, however a hand-drawn cartoon animation always
lacks this kind of information. Qiu et al. [16] proposed an
algorithm to segment cartoon images into different parts, like
head region or arm region, and match these closed regions,
but it cannot work well on dense correspondences because
fails to generate correspondence on pixel level. Although de
Juan and Bodenheimer [17] employ dense correspondences
in their work, its initialization is fully by hand. A fully auto-
matic method is demonstrated in [4] which uses region dense
correspondence matching based on the algorithm in [18]. Yet
it is very slow due to exhaustive searches to find the matches
of the patches in the source image between regions. By con-
trast, Barnes et al. [9], [10] demonstrated an example-based
matching algorithm, called PatchMatch, to obtain dense cor-
respondences between images and have been successfully
applied to a broad range of vision problems [19], [20]. The
key idea contains two steps, coherence propagation and pick-
ing up patches randomly, which are then optimized and con-
verge in iterations. This algorithm dramatically reduces the
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number of patch comparisons and achieves greater speed.
In this paper, we also focus on fully automatic and efficient
method to match cartoon frames, therefore, we propose a
grid-based PatchMatch technique to accelerate the matching
process while also obtaining the geometry description and
the global motion pattern, which are difficulty to be extracted
automatically and sufficiently with [6].

B. DATA-DRIVEN ANIMATION SYNTHESIS
Creating artistic effects of cartoon animations has attracted
growing attentions in computer graphics and computer
vision. There are lots of related topics included, such
as deformation or warping techniques to generate anima-
tion sequences through radial basis functions, thin plate
splines, energy minimization, multilevel free-form deforma-
tions (FFD) and so on [2], the use of as-rigid-as-possible
interpolation for cartoon-like images by sampling the space
of possible deformations [3], [21], and an improved deforma-
tion algorithm based on Moving Least Squares (MLS) [18]
which solves a smaller linear system and achieves better
quality and performance. Since there are so many techniques
presented, this section only focuses on synthesizing cartoon
animation using data-driven approaches. Early representa-
tives are texture synthesis algorithms through non-parametric
sampling procedures, as surveyed by [8]. This kind of
approaches reproduce the output texture visually similar to
the input exemplar by color based spatial neighborhood sim-
ilarity matching. Then several approaches extend the spatial
neighborhood searches to the temporal domain to synthesize
animated sequences, like the works in [5], [22], and [23].
Another set of methods define the stochastic and repetitive
behaviors in video sequences as textural motions [24], [25]
and propose to synthesize the infinitely looping sequences
by modeling the low cost transitions between frames. All
the above schemes assume continuous distribution in texture
regions while Ma et al. [7] note that many natural appear-
ances are composed of similar discrete elements and hence
use the irregular neighborhoodsmatching algorithm [7], [26].
After applying the irregular neighborhoods in temporal
domain, work in [6] enables a more general framework for
dynamic element textures, from which we draw inspira-
tion to pursue benefits of data-driven approaches for syn-
thesizing dynamic contents in 2D animation. Besides, there
are other interesting data driven synthesis methods offering
the state-of-the-art results, but most of them aim at spe-
cific applications, such as cloth wrinkles [27], crowds [28],
faces cartooning [29], [30] and learning basketball dribbling
skills [31]. Therefore, we draw our inspiration from all the
above investigations to pursue similar benefits of data-driven
approaches for synthesizing dynamic contents in 2D anima-
tion, which tends to be more general and user friendly.

III. OUR APPROACH
The core idea of our method is to obtain samples automat-
ically by an efficient grid-based random search procedure.

Then these samples can be used to synthesize the 2D dynamic
details in a hierarchical architecture which conducts in a
coarse-to-fine (top-to-down) scheme. Our matching and syn-
thesis framework works in a fully automatic manner, and
achieves good visual effects and performances in the output
animated sequences. We discuss these two parts separately in
the rest of this section.

A. GRID-BASED PATCHMATCH FOR AUTOMATIC
MOTION SAMPLING
The aim of our motion sampling is to collect the samples
which can describe the cartoon elements in an hand-drawn
animation. Most traditional methods use physical or geomet-
rical based models which are complicated and expensive to
solve or require carefully parameter tuning. Comparatively,
exemplar-based approaches offer better alternatives through
dense correspondence matching techniques. A potential lim-
itation of them is the huge amount of patch comparisons in
the exhaustive search process, making them slow and even
nonapplicable for high resolution images such as [4], but the
randomized search strategy in PatchMatch [9] brings signif-
icant benefits to the solution of this problem, catering for
automating the capture of motion information in an anima-
tion. On the other hand, considering that cartoon scenes are
often drawn with clearly defined lines and a finite number of
colorful regions which are easy to recognize compared with
the NNF problem in [9], our matching approach is defined as
to find the best correspondence on grid vertices rather than
each pixel of the image.

FIGURE 2. Our grid-based randomized search.

Firstly, we embed the source frames in a uniform parti-
tioned grid with a span of d pixels to obtain these points,
as shown in Fig. 2 where the dashed green lines, one the
left image, are used to indicate the original pixels, the blue
lattice is for the uniform grid and the yellow points rep-
resent the vertices on the crosses of the grid in the frame
of Fi, while on the right, the magenta blocks are the matched
patches corresponding to the blue grids in the neighbor frame
of Fi+1, also starting at the left corner of a block as the
same yellow points shown. Formally, given a pair of neighbor
frames Fi,Fi+1 ⊂ R2 and a collection of vertices V = {vj} on
their meshes with the location of P = {p(vj)}, our goal is to
determine the motion of each vertex. Let p(vij) be the original
position of the current vertex vj in frame Fi and p(v

i+1
j ) be

its corresponding location in frame Fi+1 after the animation
playing from frame Fi to Fi+1, the motion could be derived as
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M = p(vi+1j )−p(vij). In order to find the new location pi+1(vj)
for the vertex vj in its neighbor frame Fi+1, our approach
carries out the neighborhood propagation and random search
steps iteratively in scanline order on odd iterations and reverse
scanline order on even iterations alternatively, similarly to the
PatchMatch algorithm [9] dose.

FIGURE 3. The candidate set in propagation step.

After the initialization on the vertices of the grid, each
point is examined in the loop by neighborhood matching.
Concretely speaking, for the current vertex vj, we denote
that its neighborhood range yields to its spatially adjacency
according to the uniform grid. That is, as the propagation
step, for the current block Bij starting at the left corner of
the grid point vij(x, y) in Fi, our method sets up a candidate
set S(vij) in Fi+1 for Bij with a shift of d pixels or one grid
as its initial neighbors. For the sake of coherence, we also
add its relative neighbors to the candidate set in terms of
the k-coherence algorithm [32]. So here, the candidate set is
defined as S(vij) = {(B

i+1
j + 4) ∪ (Bi+1j+4 + 4)} where 4

takes the values of (0, 0), (d, 0), (0, d), (−d, 0), (0,−d) as the
displacements. As shown in Fig. 3, the current block Bij (red)
and its neighbors B1,2,3,4 (cyan) with one grid width in frame
Fi are on the left image, and respectively, the magenta and
blue blocks on the right image are for their best matches
examined during the previous iteration, then the green blocks
around the magenta one and those one grid cell shifting to the
left, or right, or up, or down of the blues are all sent to the
candidate set. Now the new location p(vi+1j ) in the propaga-
tion step can be determined by the following minimization,

argmin
∑
Bk∈S ij

|B(p(vij))− Bk (p(v
i+1
j ))|2 (1)

where k takes values from 1 to s, given s is the number of the
candidates in S ij , i from 1 to f , the number of the frames and
j from 1 to n, the number of the vertices in the grid, and | · |2

is the visual measurement to compare the blocks.
Next, p(vi+1j ) is going on to be updated in the randomized

search step. Also like PatchMatch [9], a sequence of random
sampled blocks around their vertices are evaluated in a set
of exponentially decreasing windows centering at the current
best p(vi+1j ) and starting from a maximum search radius such
as the boundary of the frame. The decrement ratio among
these windows is generally set to 0.5 × n, the number of
vertices. The visual criteria follows (1) as well only with
the Bk being picked up from search windows rather than the
candidate set. Thanks to the good identifiability of cartoon

images, we also limit the maximum search radius to cover
the most relative neighborhoods so to avoid some ambiguous
choices and to reach higher efficiency. At last, this algorithm
converges within a fixed number of iterations although con-
vergence criteria changes depending on different drawings
and themotion data of the rest pixels is filled by using bilinear
interpolation. Algorithm 2 gives an illustration.

FIGURE 4. Our automatic motion capture.

It is worth to notice that our framework directly works
on vertices not pixels, which may break the continuity in
the propagation step and encourage the discontinuity in the
randomized search step, causing that some visually simi-
lar but spatially distant blocks will be selected as the best
matches. However, in practice we have found that such an
expectation is an unusual case probably because a cartoon
image has relatively simple lines and colors, iterations raise
the odd of finding a good match and the restriction on search
radius is helpful for maintaining the coherence. As in Fig. 4,
the motion of the red fish in Fig. 1 is obtained through our
grid-based randomized search algorithm listed on the left
column. We also compared our method to the PatchMatch
algorithm whose results are listed on the right column. It is
easy to say that the results from PatchMatch are denser
(the body) and more continuous (the whisker) than ours,
however, our approach reaches eight times acceleration and
more significantly, they have been able to provide sufficient
samples for geometry details and the global motion pattern,
as elaborated in Section III-B1.

B. COARSE-TO-FINE SAMPLE-BASED SYNTHESIS
WITH GLOBAL MOTION CONSTRAINT
In this section, we present our synthesis framework and
discuss its main features. This novel framework improves
the sample based synthesis methods [7], [26] upon a hier-
archical architecture and works in a coarse-to-fine manner.
We first detail how to collect the geometry samples and
extract the global motion pattern automatically based on
our matching system as described in Section III-A, then
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elaborate the synthesis procedure on one level of the pyra-
mid in Section III-B2, and finally describe the hierarchical
structures of our approach as well as the search step among
the levels in Section III-B3.

1) AUTOMATIC SAMPLING OF GEOMETRY DETAILS
AND GLOBAL MOTION PATTERN
At present, many animation synthesis approaches require the
motion pattern of the input sequence containing only details
without global structures, such as [6], [24], and [25] where
these repetitive details can be regarded as textural motions
and be modeled as the stochastic distribution similar to the
image textures. However, such feature also limits the use of
this kind of methods to just handle textural repetition patterns
and geometric topologies with sufficiently small and local
scales. In hence,Ma et al. [6] propose an analysis tool in order
to decompose the general input into local and global motions
and geometries. But their analysis merely provides a coarse
geometry samples through a low pass filtering of the original
sample positions which are picked up by users, and a coarse
global motion description.

FIGURE 5. Sampling the geometry topology through the bounding
rectangle on the control map.

Since we have already obtained the motion flow that
is dense enough in Section III-A, our approach caters for
automating the acquisition of the geometry samples C(q)
and gives a fine-scale global motion tracking scheme. First,
we compute the geometry center on the mask of each corre-
sponding frame by solving its bounding rectangle as shown
in Fig.5 and samples its boundary pixels at the interval of
45 degree, which represent the shortest distances, longest
distances and the middle ones to the geometry center. Then,
we can define the motion pattern of the animation character
as the difference computation of the shifts of these samples
between adjacent time frames. As illustrated in (2), v(q, t) is
the velocity of the sample q at frame F(t) and it describes the
global advection from frame to frame following the sample
velocities. Later, this motion item will be added to the subse-
quent synthesis stage as a constraint term.

v(q, t) = (F(q, t)− F(q, t − 1)) · 1/1t (2)

2) BASIC SYNTHESIS WITH MOTION CONSTRAINT
In this section we detail the synthesis procedure on one level
of the pyramid. Our basic methodology is enlightened by the
work of [6] which is inspired by texture optimization [33].
In hence, given I be the input exemplar, then the corre-
sponding synthesis output, denoted as O, can be achieved by
minimizing the general energy function as in (3). The goal of
it is to find the best matched input sample qi ∈ I for each

output sample qo ∈ O with the most similar neighborhood.

E(Ot |I ) =
∑
qo∈Ot

min
(qi,ti)∈I

|D(W (qo, t))− D(W (qi, ti))|2

+ λe(Ot |I ) (3)

Specifically, the first term in (3) measures the difference
between the spatial-temporal local neighborhoods of the
input sample qi and output one qo via the sum of squared
distances, in which W (·) indicates the neighborhoods and
D(·) for the measurement criteria. The second term retains
the potential of our method to deal with application specific
problems. In our work, e(Ot |I ) is used to introduce the global
motion pattern to the energy function, that is, the initialization
of qo in the current frame t can be computed through an Euler
integration based on the velocity of qi and time interval 1t ,
as seen in (4), where v(·) is determined from (2).

e(O|I ) : F(qo, t) = F(qo, t − 1)+ v(qi, t − 1) ·1t (4)

Since cartoon images are generally composed of discrete
elements, the local neighborhood W (·) and its metric D(·)
are different from those defined in texture images. In order
to keep the geometric details and the dynamic features, W ·)
considers the adjacent relationship between samples across
both spatial and temporal regions. Concretely speaking, let
� be the size of the spatial neighborhood and 1t be that
of the temporal stride, then at time t , the spatial-temporal
neighborhood of sample q can be defined as the collection of
samples which have the relative spatial distance to q within
� and temporal distance within 1t , formulated as in (5).
In our approach, � is particularly set in terms of animated
elements, like the fish in Fig. 1. Such convention can obtain
element based samples easily from our automatic sampling
algorithm and also offers benefits for boundary handling and
appearance reconstruction.

W (q, t) = {(q′, t ′)}, |q− q′| < �, |t − t ′| < 1t (5)

Then we can express the distance metric D(·) based
on the relative differences of each q′ with respect to the
center sample q, allowing for neighborhoods in different
spaces and times to match, as shown in (6). Here, f (q, t)
means the features to describe the sample q, including
{position, color, texture, etc.} and so the first term of (3) can
be rewritten as in (7).

D(W (q, t))(q′,t ′)∈w(q,t) = {f (q, t)− f (q
′, t ′)} (6)

In summary, we can schematically demonstrate the above
synthesis method as in Fig. 6, where the energy of neigh-
borhood W (qo, t) centered around sample qo is given by its
distance to the closest input neighborhood W (qi, t) and this
distance enables the energy E(Ot |I ) to be minimum. The
red and magenta circles represent the samples with green
and blue diamonds around, being their element based spatial
neighborhood, and when going cross the time segment 1t ,
the spatial-temporal local neighborhood is constructed. Sim-
ilar to exemplar-based texture synthesis, the nearest input
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FIGURE 6. Schematic demonstrating our synthesis procedure.

sample is found by exhaustively searching every input sample
and at last, the best matching one with the most similar
neighborhood is assigned to the being synthesized output
sample.

min(q′o,t ′o)∈W (qo,t),(q′i,t
′
i )∈W (qi,t) | · |

2

= |{f (qo, t)− f (q′o, t
′
o)} − {f (qi, t)− f (q

′
i, t
′
i )}|

2 (7)

3) COARSE-TO-FINE STRATEGY
Our basic synthesis is similar to the work of [6] which
achieves the-state-of-art results but needs complex compu-
tation with some application specific adjustments. Alike,
our basic synthesis contains the time-consuming exhaustive
search steps. A commonway to handle it, as mentioned in [6],
is to carry out the exhaustive search for small input exemplars
and k-coherence acceleration for big ones, which may lead
to less accurate matches. Thus, we introduce a simple but
powerful hierarchical architecture with propagation from top
to bottom to handle this problem.

First, a pyramid is set up with k levels for both input I
and output O with a down-sampling factor α = 0.5. Let
the lth level of pyramid of frames in I and O as F li and F

l
o,

l ∈ {0, 1, . . . , k − 1}, the bottom level of the pyramids F0
i

and F0
o are the raw images. Now our goal is to find the

matches of every samples in F0
o against F0

i . Then we can
construct samples on each level. Given {C(qlo,i)} the positions
of samples on the lth level, the downscaled version from
the raw samples in F0

o,i can be defined as in (8). Note that,
the samples on each level preserve the same neighboring
relation as the finest level.

{C(qlo,i)} = α · {C(q
l−1
o,i )}, l > 1 (8)

After the construction of the pyramid and the generation
of the samples in each level, we perform the basic synthesis
algorithm in Section III-B2 on each level and propagate
matched samples also from top to bottom on the pyra-
mid. Fig. 7 gives an illustration. As seen, it works on the
pyramid in coarse-to-fine shceme. The sampling domain is
spatial-temporal neighborhood with red points representing

FIGURE 7. Overview of our synthesis procedure.

spatial samples and 4t for temporal stride (details referred
to Section III-B2). We firstly initialize the first frame on the
top level according to the input exemplars via the patch-based
approach only in the spatial domain, like in [7]. Our method
then optimizes the output through iterative search and match
steps as inspired by Kwatra et al. [33]. After the transfer of
the motion constraint based on (4), this optimization becomes
the initialization of subsequent frames. So far the search and
match steps happen between levels in the pyramid and among
input frames. The whole process loops until convergence as
summarized in Algorithm 1.

IV. RESULTS AND DISCUSSIONS
This section demonstrates our experiments, makes some
discussions on the performances and compares with other
methods on the matching scheme [4] and synthesis step [6]
separately. We have tested our approach on several cartoon
animations. All the synthesis results presented in this section
are generated on the laptop of Intel Core i5 CUP double
@2.30GHz with 8GB memory. Fig. 8 and Fig. 9 show some
results of our synthesis framework. As seen in Fig. 8, our
synthesis approach achieves good results both for textural car-
toon elements with small and local motions and geometries,
the top groups, and for characters with large displacements,
the rest groups where the first row is a sequence of frames
of the source animation, the second row is the correspond-
ing motion pattern automatically captured by our grid-based
match method, and the last rows are sequences of frames
after synthesis. We also apply our approach to transfer the
motion pattern extracted from the input animation to different
targets, as shown in Fig. 9, in which the first row includes
the input frames followed by their corresponding motion
courses in the second row and the synthesized output frames
are in the third row. More details about the experiments can
refer to Table 1 in which the time unit is second (s) and the
neighbor size is measured relative to the bounding rectangle
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Algorithm 1 Coarse-to-Fine Synthesis With Motion Constraint
Input: {Fit } frames of an animated sequence, a sample set {qit } ∈ Fit ← GRIDPM (Fit ,Fot )
Output: {Fot } frames of the synthesized animation sequence, t ∈ {0, 1, . . . ,N − 1}

Construct the input frame pyramid of {F lit } and samples {qiit }
for each Fit ,Fot , t ∈ {0, 1, . . . ,N − 1} do

if t = 0 then
Fot is initialized by random noise
Construct the initial output pyramid {F lot } as in (8)

else
Fot is initialized by motion propagation as in (4)
Construct the initial output pyramid {F lot } and samples {qlot } as in (8)

end if
for each qlot from {q

l−1
ot } to {q

0
ot } in F

l−1
ot to F0

ot , l ∈ {0, 1, . . . , k − 1} do
if l = k − 1 andt = 0 then

F lot , q
l
ot is initialized by spatial patch-based synthesis algorithm [7]

else
repeat Optimizing (3)

search→ {W (qi, t)} //(5)
match→ D(W (qi, t))− D(W (qo, t)) //(6)
assign→ {W (qo, t)} //(7)

until Convergence or enough iterations reached
end if

end for
end for

Algorithm 2 Grid-Based PatchMatch
Input: pairs of frame images Fit ,Fit+1 , t ∈ {0, 1, . . . ,N − 1}
Output: sample sets {qit }
function GRIDPM(Fit ,Fot )

Construct grid vertices V = {vj} according to the spacing of d pixels
Random initialization for correspondence mapM
for each vj, j ∈ {0, 1, . . . , n− 1} do

if j = 0 then
picking the initial patch randomly

else
repeatMinimizing (1)

propagation based on k-coherence strategy as in Fig. 3
for r = maxserachradius, r ≥ 1, r = r × 0.5 do

random search
end for

until Convergence or enough iterations reached
end if

end for
for all j between pairs of Fit ,Fit+1 do

M = bilinearinterpolation(p(vt+1j )− p(vtj ))
end forreturn {qit } = boundingbox(M ) //Fig. 5

end function

as shown in Fig. 5 of the input exemplar with normalized
size of 1.

Then we show a simple analysis of the performance of our
algorithm.We optimize the parameters of our method on a set
of different input animations using the qualitative criterion:
root-mean-square-error (RMSE) between the corresponding

frames. It turns out that a set of constant parameters works
well for most input exemplars: d, r, n,w = 3, 8, 70, 16, here
d is the grid spacing, r is the search radius, n is the iterations
(Depending on the input animations, slight differences avail-
able for iterations, average 70 for convergence.) and w is the
patch size. Fig. 10 demonstrates the robustness of ourmethod.
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FIGURE 8. Synthesis results by our method. From left to right and top to down, test exemplars are named as green fish, bird, red fish and leaf respectively.

TABLE 1. Parameters and performance for our experiments.

We also make a comparison between our implementation
and the work in [4] for the matching procedure to find the
correspondence among frames as shown in Fig. 11, the left

one, where it seems our approach many demand more itera-
tions, but since each iteration is much faster in the random
search model, our algorithm is still faster. Compared with
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FIGURE 9. Transfer results by our method. From top to down, test exemplars are named as pencil, butterfly and smile face respectively.

the work of [6], our hierarchical structure works more eas-
ily and efficiently for textural geometries and motions with
small and local scales, and meanwhile it can generate smooth

outputs without obvious temporal jitters for elements with
large relative motions between each other, which is difficulty
to solve in [6]. The right figure in Fig. 11 presents that
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FIGURE 10. Parameter analysis for efficiency. RMSE is for
root-mean-square-error and time is rewritten by log(2).

FIGURE 11. Comparison with other methods.

our hierarchical framework obtains better convergence when
gradually decreasing the energy of (3).

V. CONCLUSION AND FUTURE WORK
In this paper, we demonstrates a simple and effective
data-driven synthesis approach to create hand-drawn anima-
tions in an automatic manner. This task is achieved by two
stages, a grid-based PatchMatch random search algorithm to
automatically extract the global motion pattern in the input
animated sequences and the coarse-to-fine sample-based syn-
thesis architecture to generate new output animations which
have similar geometries and motions to the input exemplars.
The experiments show that our method can work success-
fully with plausible results and good performance. However,
there are still limitations in our system. First, our current
matching algorithm uses simple input animations with static
backgrounds. As demonstrated in other methods such as [20]
and [34], a potential direction is to incorporate more general
query and match computations into our synthesis framework
to produce outputs that more faithfully handle complex input
behaviors in backgrounds. In addition, our method now just
investigates on relatively elementary characters which do not
have shape changes of themselves since a complex cartoon
includes too much challenging problems, such as how to
make sure each part of it, like body, head, leg even toes,
and how to capture the complicated actions of the each part.
Therefore, some ideas deserve the future studies on this topic,
including the parallelization of our matching algorithm in
the GPU for real-time processing, deep investigations on
synthesis of complex cartoon motions, extending to other
domains such as flows motions, facial changes, synthesis on
captured input videos and so on.
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