
Received February 9, 2019, accepted February 24, 2019, date of publication March 5, 2019, date of current version March 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2903126

Towards Designing Asynchronous
Microprocessors: From Specification
to Tape-Out
ZAHEER TABASSAM1, SYED RAMEEZ NAQVI 1, TALLHA AKRAM1, MUSAED ALHUSSEIN2,
KHURSHEED AURANGZEB 2, AND SAJJAD ALI HAIDER1
1Department of Electrical and Computer Engineering, COMSATS University Islamabad at Wah, Wah Cantonment 47040, Pakistan
2Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Syed Rameez Naqvi (rameeznaqvi@ciitwah.edu.pk)

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through
research group NO (RG-1438-034). This work is also supported in part by the Pakistan Science Foundation under Grant
PSF/Res/P-CIIT/Engg (159).

ABSTRACT Proceeding miniaturization in the VLSI circuits continues to pose challenges to the convention-
ally used synchronous design style in microprocessors. These include the distribution of clock in the GHz
range, robustness to delay variations, reduction in electromagnetic interference, and energy conservation,
to name a few. The asynchronous logic has been known for its ability to address the aforementioned chal-
lenges by means of the closed-loop handshake protocols, instead of notorious clock signals. Because of these
advantages, there have been numerous attempts on building general and special purpose microprocessors
during the last three decades. Still, however, the number of asynchronous processors commercially available
is scarce, mainly due to an insufficient electronic design and automation tools support, an ambiguous design
flow and testing mechanisms for asynchronous logic and, most importantly, absence of a forum to look
for relevant works, explaining the design steps and tools for such microprocessors. This paper is intended
to bridge this gap by 1) reviewing the design principles of asynchronous logic, including classification,
signaling conventions, and pipelining approaches; 2) presenting the complete design flow and available
electronic design and automation tools; 3) developing an encyclopedia of various general and special purpose
microprocessors proposed by far; and 4) presenting an evaluation of those works in terms of area on the die
and performance metrics. This paper will also serve as guidelines for the asynchronous microprocessor
design and implementation in all phases from specification to tape-out.

INDEX TERMS Asynchronous logic, electronic design and automation, microprocessor.

I. INTRODUCTION
While reduction in feature sizes has led the digital circuits
to operate at increased clock-rates, the synchronous designs,
on the other hand, face certain challenges that are difficult to
overcome in the deep submicron era [1]. These include chip
wide clock distribution, and susceptibility to delay variations.
The former may be addressed by means of a balanced clock
tree with a sufficiently low skew, however, the strong clock
drivers will still pose a threat to energy requirements [2].
The asynchronous logic, which relies upon closed-loop hand-
shakes for communication between components, naturally

The associate editor coordinating the review of this manuscript and
approving it for publication was Songwen Pei.

eliminates the need for a clock, and at the same time pro-
vides an inherent ability to adapt to uncertainties and even
dynamic changes of timing parameters. Lower power dissi-
pation, reduced electromagnetic emission, higher operating
speed, and better modularity are among a few other traits
associated with asynchronous logic designs [3], [4].

In spite of the advantages that asynchronous logic enjoys
over its synchronous counterpart, it never flourished, and
failed to catch industries’ attention. The primary reason
behind this predicament is insufficiently mature electronic
design and automation (EDA) tools support [5]. For the same
reason, the principles of asynchronous logic, the existing
asynchronous systems − be them in the industry or in aca-
demics, and their design flow along with the EDA support,

33978
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-6954-926X
https://orcid.org/0000-0003-3647-8578


Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

are usually misunderstood and more often overlooked. Same
is the case with asynchronous microprocessors, which have
been developed during the past three decades using various
design flow and tools, but neither had they managed to be
among the processors of eminence, nor could they define the
standard design flow for asynchronous systems.

With proceeding miniaturization, and consequently grow-
ing number of functional units on a single chip, however,
the asynchronous logic once again is receiving attention of
the research community [6]. We believe there is a need to
comprehensively present principles of asynchronous logic, its
standard design flow and available EDA support, followed
by a thorough evaluation of various general and special pur-
pose microprocessors existing in literature. This is the main
contribution of the proposed work: while it serves as an
encyclopedia of asynchronous principles and microproces-
sors, it is intended to give direction for specifying, modeling,
synthesizing, and implementing all classes of asynchronous
circuits and systems, and to present a quantitative evaluation
of existing asynchronous microprocessors.

The rest of the manuscript is organized as follows: We
begin by presenting principles of the asynchronous logic
in Sect. II. Sect. III-A details the design flow and EDA
support for asynchronous circuits and systems. In Sect. III-
B, we present an overview of the existing processors, and
their quantitative evaluation. We conclude the manuscript in
Sect. IV.

II. FUNDAMENTALS OF ASYNCHRONOUS LOGIC
In what follows, we briefly review the fundamental principles
of asynchronous logic, knowing which is essential for under-
standing and designing asynchronous circuits and systems.

A. DATA AND CONTROL PATHS
Data path refers to a part of circuit that is responsible to
perform operations, such as, arithmetic and logic on data.
The control circuit, on the other hand, maintains the operation
sequence of data path, as well as controls the timing.

Two asynchronous circuits are connected in such away that
their data paths are directly connected to each other, while
their control paths are connected to each other by means of a
pair of signals, known as request and acknowledge− together
called the control signals. The latter indicate validity and safe
reception of data between sender and receiver on the data path
respectively. The instances at which the control signals are
asserted lead to a distinction between two delay models of
asynchronous logic; namely bounded and unbounded. In the
former, the control signals are automatically asserted once a
presumed delay, which is usually long enough for the corre-
sponding operation on the data path to complete, has elapsed.
On the other hand, in unbounded delay models, additional
steps need to be taken to know for sure the data validity
and their safe reception. Data and control paths are usually
separately synthesized to gate level netlists, because each of
them requires a different set of methodologies and tools.

FIGURE 1. (a) Push channel, (b) pull channel.

B. HANDSHAKING CONCEPT IN ASYNCHRONOUS
DESIGN
A channel is a point to point, unidirectional communication
link that connects two asynchronous circuits. Usually there
are three signals comprising a channel: request, data and
acknowledge; the request signal may be encoded into the
data bus in some cases. The sender places some data on the
data bus, and indicates their validity to the receiver using
a control signal. The receiver, on the other hand, receives
the data, consumes them, and indicates its availability for
receiving the subsequent data item, using the other control
signal. This request-acknowledge activity, to transfer a data
item, is termed as a handshake. The communication may be
initiated by the sender; in which case the channel is known
as a push channel, whereas, in a pull channel, the receiver
initiates the communication by asserting the request signal
fig. 1 depicts each type of channel with its block diagram and
corresponding waveform.

C. CLASSIFICATION OF ASYNCHRONOUS CIRCUITS
Asynchronous circuits can be classified according to their
delay models; the usual three classes are discussed next.

1) DELAY INSENSITIVE CIRCUITS
The class that is most robust against variations of process,
voltage and temperature (PVT), is called delay insensitive
(DI) [7], since it assumes arbitrary, but finite, wire and gate
delays [4], [8], [9]. The receiver, in such circuits, is bound to
properly acknowledge every transition by the sender, which

VOLUME 7, 2019 33979



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 2. (a) Delay insensitive, (b) quasi delay insensitive.

means the next transition is allowed only when the previ-
ous data are correctly accepted and/or consumed. However,
the number of asynchronous circuits that may be made DI,
is very small [10]. A DI circuit is illustrated in fig. 2(a): the
acknowledge signal is asserted once each of the two receivers
has issued its own acknowledgment; indicating its availabil-
ity for accepting the next one. The black box introduced,
is responsible for joining the two acknowledgments (waiting
for all the receivers to respond), since delay16=delay2, and
hence, their acknowledgments may arrive at different times
as well.

2) QUASI DELAY INSENSITIVE CIRCUITS
DI circuits with isochronic forks are said to fall in quasi delay
insensitive (QDI) class. This class of asynchronous circuits
compromises the delay insensitivity property, by assuming
that in isochronic forks, all the receivers receive the signal
at the same time, as presented in fig. 2(b). That is, the input
delay of each receiver is identical, so only one acknowl-
edgment from any of them ensures the completeness to the
sender. Isochronic forks, if not carefully implemented, may
cause a hazardous effect in the circuits [11].

3) SPEED INDEPENDENT CIRCUITS
Speed Independent (SI) class assumes arbitrary, but finite,
gate delays, and zero wire delays. This class is similar to

FIGURE 3. The 2-phase bundled data signaling.

synchronous style: it assumes that before the req signal is
asserted, the data have to be stable at the receiver side; similar
to synchronous approach, where the clock edge occurs suffi-
ciently later than the data becoming valid and stable. So to
achieve this, in asynchronous environment, there has to be
an appropriate delay, by means of a buffer or inverter chain,
in the req path. However, these circuits, by doing this, lose
their robustness against PVT variations.

D. SIGNALING CONVENTIONS
In asynchronous designs, the local controller, instead of a
global clock, governs the data movement on a channel [12].
The control signals follow some predefined pattern for accu-
rate operation, where the latter is specifically known as sig-
naling; this is discussed next.

1) 4-PHASE SIGNALING
To complete one handshake cycle, or to exchange one mes-
sage, the 4-phase signaling protocol uses four transitions,
two by each of the req and ack signals [13]. The waveforms
illustrated in fig. 1 are examples of 4-phase bundled data1

protocol. As may be seen in the waveform, the transition
to high level indicates any valid event, while the transition
to zero changes the phase that resets the communication
− giving this scheme another name, Return-to-Zero (RTZ)
protocol.

2) 2-PHASE SIGNALING
In 2-phase signaling, transition of request signal from zero to
one, as well as, from one to zero, indicate validity of the data,
as illustrated in fig. 3. Since there is no, unnecessary, resetting
phase involved, this type of signaling is also termed as Non-
Return to Zero (NRZ). Naturally, this type of signaling will
lead to faster circuits, besides being more energy efficient due
to fewer number of transitions required per data transfer.

In comparison to 2-phase signaling, the advantages that
4-phase signaling enjoys include increased robustness to
delay variations, since the RTZ phase provides sufficient
safetymargin, and the circuits are relatively simpler to design.
For instance, a level controlled latch can be directly driven
by using control signals of the 4-phase protocol: one level
switches it to opaque, while, the other makes it transparent.
The 2-phase signaling, on the other hand, requires some
additional logic to make the latch functional as required.

1II-E1

33980 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

E. DATA REPRESENTATION
The purpose of communication is to transfer meaningful
information in the form of data. The predefined suitable
representation of data is also called encoding, on which two
parties agree. Generally, in asynchronous logic, the data may
be encoded in one of the two ways: 1) single rail encoding
where one bit of data takes one line, 2) M-of-N encoding in
which single bit of data takes multiple lines. Next, we dis-
cussed these two encoding schemes.

1) SINGLE RAIL ENCODING
In single rail encoding as mentioned above, each wire carries
one bit of data [14]. The control signals use separate rails, and
are said to be bundled with the data signals− hence the name
bundled data encoding. In bundled data encoding, the control
signals may adopt either of the two signaling conventions
discussed above. In that case, the suitable prefix, 4-phase or
2-phase (whichever adopted), is placed before name of the
encoding scheme. Because of their simplicity, these schemes
are widely used, where the cost, in terms of area on the die,
is approximately the same as synchronous equivalents [15].

2) M-OF-N ENCODING
This type of encoding is used within the DI class of asyn-
chronous circuits, where N wires carry log2(N ) bits of infor-
mation (N is in a power of 2), and there is an explicit wire to
carry the acknowledgment [12]. The dual rail encoding [16]
is a special case of 1-of-N encoding, with N = 2. Each bit is
encoded using two rails: true and false. Level 0 is represented
by logic ‘1’ on the false rail, while ‘1’ on the true rail is used to
represent level 1. A ‘0’ simultaneously on both rails indicates
‘no valid data’. The two rails are mutually exclusive, so at a
time, only one is allowed to make a transition. The new data
validity at the receiver side is detected by transition, since no
explicit request signal is available. The completion detection
circuit performs this task. An example of dual rail encoding,
and completion detection logic for each type of protocol, are
illustrated in fig. 4 and 5 respectively.

Note in the completion detection mechanism, it is impor-
tant to detect the RTZ phase on all lines as well, which
cannot be handled by an AND gate. The reason behind this
deficiency in AND gates is the fact that a low on only one
input will cause a low on the output. Therefore, a component
that waits for all the inputs to go low before it could deassert
its output, should replace the AND gate. Muller C-element
(MC) [17] is one such component, which has been the prim-
itive for asynchronous logic since its inception.

From 1-of-N encoding class, one hot encoding represents n
bit data by 2n lines. It is different from the dual rail codes for
n = 2, in that it uses a 4-bit unique code to represent the 2-
bit data, unlike the dual rail codes, which would encode each
bit using two lines. This difference is presented in Table 1.
Although the area overhead for the two equivalents remains
the same, the fewer number of transitions in the 1-of-N
encoding makes it more energy efficient, and therefore the
preferred method.With 1-of-2 encoding, the 4-phase protocol

FIGURE 4. Dual rail encoding (a) 4-phase, (b) 2-phase.

FIGURE 5. Completion detection logics (a) 4-phase signaling with 1-bit
message, (b) 4-phase signaling with m-bit message, (c) 2-phase signaling
with m-bit message.

TABLE 1. 2-bit Representation using dual rail, and 1-of-4 code.

is known as Null Convention Logic (NCL) [18], [19], where
the RTZ phase is called a spacer or an empty word, used to
separate two code words. The other difference is usage of
the majority or threshold gates [20] for completion detection,
in comparison to MCs used in dual rail codes.

Level Encoded Dual Rail (LEDR) is another important
dual rail encoding scheme [21]. In these codes, the data bit is
the first bit in the codeword, followed by a 1-bit phase, which
keeps alternating between odd and even for each codeword.
Therefore, the two consecutive codewords are always differ-
ent in their phases, making it possible to distinguish identical
data items without the need of having a spacer in between −
resulting in more energy efficient codes.

F. ASYNCHRONOUS PIPELINE IMPLEMENTATIONS
Efficient asynchronous circuits are usually built as pipelines,
which increase the overall throughput by distributing the
task among several function units operating in parallel on
different data values. There are several types of asynchronous
pipelines, micropipelines [22], mousetrap [23], GasP [24],

VOLUME 7, 2019 33981



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 6. 4-phase bundled data pipeline.

QDI [25], [26], asP* [27], wave [28], [29], surfing [30], and
RAMP [31]; all of them have a common Muller pipeline
as their backbone though. The Muller pipeline is a simple
arrangement of MCs, such that each of them forms a single
stage. The output of each stage (MC) serves two purposes:
1) it becomes the input req to the successor stage, 2) it is
sent as the inverted ack to the predecessor stage. The first
stage receives its input req from the sender, and generates
ack in return. Similarly the last stage generates the output req
to the receiver, and receives the ack in return. The Muller
pipeline is a mechanism that relays handshakes [4]. The
pipeline is said to be empty when all theMCs are initialized to
zero. At this point in time, the left-environment (also called
sender or producer) can initiate the handshake by asserting
req. While this transition ripples through the pipeline to the
right-environment (also called receiver or consumer), due to
the symmetry, each stage sends the acknowledge to the pre-
vious stage. Now in case the producer is faster than the
consumer, it may deassert its req which should traverse the
entire pipeline up to the last stage and get blocked, waiting
for the receiver to consume the token by asserting the ack.
Sooner or later, a time may come when all the stages get
blocked because of the slow nature of the receiver. A fully
filled pipeline has an interesting characteristic, i.e., alter-
nating stages will always store opposite values. Singh and
Nowick [23] made use of this feature to build the mousetrap
pipeline.

The 4-phase bundled data pipeline with datapath is illus-
trated in fig. 6. In a completely filled pipeline, one can
observe that only half of the pipeline stages store data, since
each pair of successive MCs hold alternating logic. This
pipeline configuration is just like a Master-Slave setup in
synchronous designs [4].

The 2-phase bundled data pipeline, also known as
micropipelines, was proposed by Sutherland [22]. As may be
observed in fig. 7, the control path is identical to the Muller
pipeline, with a slightly different signal interpretation, which
makes it follow the 2-phase handshaking.

III. ASYNCHRONOUS PROCESSORS, LANGUAGES AND
DESIGN TOOLS
A. TOOLS AND LANGUAGES
1) TANGRAM
Tangram [32], is a tool based on the dedicated programming
language (a CSP based VLSI programming language) with

FIGURE 7. 2-phase bundled data pipeline.

transparent silicon compiler. In a Tangram program, a pro-
grammer can define whether commands are executed concur-
rently or sequentially. The Tangram program first translates
into handshake circuits, as an intermediate state, prior to
the VLSI circuit layout. The intermediate translator, known
as tangram compiler, performs syntax-directed translation
into handshake circuits [33], where the compiler contains the
handshake circuits translation rule for each tangram program.
At the next stage, transparent silicon compile or handshake
circuit compiler performs two tasks: component substitu-
tion, and layout generation. In the former, the handshake
components are implemented into standard cell library, and
in the layout generation phase, commercial CAD tools are
used. Some asynchronous chips programmed in Tangram
are [34]–[38].

2) CHP: COMMUNICATING HARDWARE PROCESSES
CHP [39] is a programming language for fine grain dis-
tributed computation. Usually, a CHP program consists of the
parallel configuration of several concurrent processes, where
inside each process, the code is mostly sequential. These
processes do not share variables; the latter are local to each
process, but theymay be passed to other processes as commu-
nication channel messages. The procedures and functions are
also used as local variables. Integer (int), boolean (bool) and
symbol are three generic variable types. For structuring data,
two mechanisms named array and record are used, where
the latter may contain many variables, each having its own
type.

The process graph in CHP is made with a set of processes
as vertices, and communication channels as edges. Initially,
a process is declared and then instantiated. A process may be
of two types: a meta-process or a simple process, where the
former contains a number of sub-processes, and label meta
identifies this type. On the other hand, label chp identifies a
simple process.

Synthesizing a QDI system comprises few steps. At first,
the system is described as a sequential CHP program, which
is decomposed into a fine grain CHP process. This step is
known as process decomposition, after which a CHP program
is transformed into handshake expansion (HSE). Finally,
the HSE code is transformed into a productive rule set (PSR)
program. CHPsim locates and detects a deadlock, estimates
the performance, and debugs the system, as well as provides
syntactic and runtime checks, where the main and interesting

33982 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 8. Balsa design flow: reprinted from [46].

function of the CHPsim is co-simulation. Many projects have
been synthesized with CHP, including [40]–[45].

3) BALSA
Balsa [46], [47], is a language for describing asynchronous
hardware system, as well as, it is an asynchronous circuit
synthesis system that generates gate level netlists from Balsa
high-level description language. Balsa design flow, shown
in fig. 8, demonstrates the overall working.

Balsa contains a number of tools from which some of the
important ones are listed below.
• balsa-c: Balsa language compiler, intermediate lan-
guage breeze is the output of balsa-c compiler

• balsa-netlist: from a Breeze description it produces an
appropriate netlist of the target CAD/technology frame-
work.

• breeze2ps: postscript file of the handshake circuit graph
is produced by this tool.

• breeze-cost: circuit area cost estimation tool.
• balsa-md: makefiles generating tool.
• balsa-mgr: for balsa-md, a graphical front-end with
project management facilities.

• blasa-make-test: for a Balsa description it automatically
generates test harness.

• breeze-sim: at the handshake component level the pre-
ferred simulator.

• breeze-sim-control: for the simulation and visualization
environment a graphical front-end.

Balsa adopts a syntax directed translation method to yield
communicating handshake components, where the compila-
tion approach is transparent and similar to Philips Tangram

FIGURE 9. Tiempo asynchronous/synchronous circuit design flow:
reprinted from [48].

system [32]. The set of≈45 handshake components are listed
in [47], which are connected by channels, on which the com-
munications take place.

4) ASYNCHRONOUS CIRCUIT COMPILER
Asynchronous Circuit Compiler (ACC) is the first fully auto-
mated synthesis tool for asynchronous and delay-insensitive
circuits. It is used in Tiempo [48] asynchronous circuit design
flow [49] as shown in the fig. 9. The input of ACC is a
description written in Transaction Level Modeling (TLM)
using SystemVerilog [50] description language. Such a for-
mat gives logical integration of Tiempo clockless technol-
ogy into verification platforms such as Mentor Graphics
QuestaTM, Cadence NCsimTM and Synopsys VCSTM. It pro-
duces output at gate level netlist in Verilog description lan-
guage. In addition to standard cell libraries, ACCuses Tiempo
asynchronous cells for circuit mapping. The gate-level netlist
representation generated using standard back-end and electri-
cal simulation tools can be placed-and-routed and simulated
respectively. As ACC is made interoperable and compliant
to standard design flows, it can be integrated/used with any
tool based on industry standard. As an example, TAM16 [51]
IP core is designed by using Tiempo fully asynchronous and
delay insensitive technology.

5) PETRIFY
Petrify [52], [53] is a tool for synthesis of Petri Nets (PN)
and asynchronous circuits. It manipulates concurrent speci-
fication as well as optimized asynchronous control circuits.
Petrify generates bi-similar and simpler PNs or a Signal
Transition Graph (STG) from the originally described PN
or STG (fig. 10). Furthermore, it transforms a specification
using token flow analysis of the initial PNwhich in turn yields
a Transition System (TS). In an initial TS, the same label
transitions are counted as one event. The condition required
to obtain pure. unique, free and non-redundant PN is that
the TS is transition re-labeled and transformed. By using
design gate library, Petrify generates asynchronous controller
net list while the input-output behavior remains unchanged.

VOLUME 7, 2019 33983



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 10. Petrify framework: reprinted from [52].

By solving complete state problem, it performs state assign-
ment when asynchronous circuits are synthesized, and gener-
ates speed independent circuits [54].

6) OTHER TOOLS
In the literature, there are a number of other simi-
lar tools including Teak [55], Occam [56], LARD [57],
DESI [58], VSTGL [59], Workcraft [60], VERISYN [61],
Pipefitter [62], CHAINworks [63] and TiDE [64].

B. PROCESSORS
Processors that are dependent on a global clock are syn-
chronous where the clock regulates processing. The global
clock in such processors may become problematic, in par-
ticular, when the processing environment is more complex.
The main issues faced in a synchronous processor are the
clock skew and the clock circuit itself. The later can dis-
sipate an enormous amount of power because it’s always
running. A alternative choice among the research community
is to consider asynchronous designs. In an asynchronous
design. each functional unit communicates with other by
using a local clock or more technically using handshak-
ing. Such a design choice delivers simplified interfacing
and average case performance as compared to the worst
case performance in synchronous design. In asynchronous
designs, the clock delay is larger than the delay of slowest
component. Asynchronous processors are efficient in power
dissipation as only the required part of the circuit is alive.
In this section, different asynchronous processor designs are
explored.

1) CALTECH ASYNCHRONOUS MICROPROCESSOR
Caltech Asynchronous Microprocessor (CAM) [40] is a
16-bit RISC type architecture with 16 general purpose regis-
ters, an ALU, four buses, and two adders. The two adders are
used for memory addresses calculation and program counter

calculation, respectively. The CAM use 4-phase handshaking
protocols with dual rail-data transfer. The estimated perfor-
mance of the CAM processor was approximately 15 MIPS
at 7V when realized with 2µm Scalable CMOS version at
room temperature and 30MIPS at 12V when a chip is cooled
with liquid nitrogen. The performance was estimated to be
26MIPS at 10V@105mA when realized with HP 1.6µm
SCMOS. The processor is realized usingHarvard architecture
and its chip consists of 2000 transistors.

2) FULLY ASYNCHRONOUS MICROPROCESSOR
Fully Asynchronous Microprocessor (FAM) [65] is a 32-bit
RISC like architecture with 4-stage pipeline. Its data path
includes 32-bit ALU, 32 registers (each 32-bit wide), 32-bit
barrel shifter, multiplier and an adder. The 4-stage pipeline
uses ALU and register file and includes operations instruc-
tion fetch, memory access, instruction decode and instruction
execute. It consists of two types of blocks: a computation
block and an interconnection block. The computation block
includes adder, shifter and register while the interconnection
block includes combinational logic, pipeline register and a
data latch. The instruction set of FAM microprocessor has
18 instructions, uses 4-phase handshaking protocol with dual
rail-data transfer and is based on CMOS technology with
approximately 71000 transistors. Its design is based on Dif-
ferential Cascade Voltage-Switch-Logic (DCVSL) for com-
pletion detection of combinational logic with performance
measured 300MIPS in 0.5 micron CMOS.

3) NON-SYNCHRONOUS RISC PROCESSOR
Non-Synchronous RISC (NSR) [66] is a 16-bit load/store
architecture with 16 general purpose registers and contains
5-state pipeline. The 5-stage pipeline include units for
instruction fetch, instruction decode, execute unit, memory
interface and register file. In NSR, stalling caused by a
slower instruction is covered by adding self-timed FIFO
queues between concurrent units. Each block accepts data
from other blocks for processing and sends the result by
means of FIFO queues. An instruction that does not need a
particular pipeline stage is never passed through that stage.
For example, if an instruction does not use the memory, it is
never passed through the memory interface pipeline stage.
The self-timed concurrent blocks in NSR design communi-
cates using 2-phase bundled data protocol. For a prototype
NSR, seven Actel Field Programmable Gate Arrays (FPGAs)
are used. To test any unit of NSR processor, each unit request
is blocked by using a switch to hide the request and acknowl-
edge signals from other units. The best case performance of
NSR is estimated to be 1.3MIPS.

4) COUNTERFLOW PIPELINE PROCESSOR ARCHITECTURE
Counterflow Pipeline Processor (CFPP) [67] architecture
(fig. 11) is realized using SPARC instruction set and is based
on the idea that instruction flows in one direction and its
result on other within a pipeline. The CFPP have multi-stage
pipeline design in which program counter is at the bottom

33984 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 11. Counter flow pipeline processor: reprinted from [67].

while the register file is placed at top (of pipeline). An instruc-
tion flows up for execution and stalls when the upper pipeline
stage cannot accept a new instruction. An instruction may
also stall if it reaches execution stage while at the same time
the upper stage include a stalled instruction. Such situation
may be avoided if there is a gap of arbitrary size in a pipeline
which leaves some stages empty (without any instruction).

An instruction include opcode, source and destination
bindings as shown in the fig. 11. Each binding contain three
fields register name, validity bit and a value.When an instruc-
tion reaches execution stage, the new data value is loaded to
a destination binding and marked valid after the execution.
Similarly, when an instruction reaches top pipeline stage,
the data value from destination binding is loaded to a spec-
ified location of a register file. Afterwords, the destination
binding flows downward in the pipeline on the result of a
subsequent instruction.

There are two bindings in a result pipeline. If a subse-
quent instruction needs source binding with its register name
matching the register name of result binding, it garner the
value from register pipeline to instruction pipeline, just like
bypassing or forwarding. On the other hand, if the executed
instruction destination binding matches with the result bind-
ing, then the result binding garner the value from destination
binding. With any register that match, the new instruction
source binding updates with most recent values. Another
situation arises when an instruction yet to execute with result
binding match with destination binding, the result in binding
is killed. As the result binding is not valid for later instruc-
tions, all the rules just described guarantee the correct result
binding for instructions. A multi-result binding on different
stages of a pipeline at the same is similar to register renaming.

Issues like trap and incorrect branch predictions are
resolved by the architecture effectively. Trap caused by any
instruction on any stage generates trap-result bound to a result
pipeline (not to a destination binding). The instruction that
causes a trap is set to invalid that may proceed to next pipeline
stage but will have no effect on register file or result pipeline.
The trap-result is interpreted by stage responsible for program
counter control which changes program counter to a suitable
trap handler. The incorrect branch predictions are similarly
(to traps) handled while the program counter control starts
execution from the proper path.

In CFPP architecture, non-identical stages perform differ-
ent processing: one stage, for example, performs multipli-
cation while the other performs addition. This architecture
may use siding which performs execution of long compu-
tation delays instruction. This implies, when multiplication
instruction reaches multi-launch, it stalls till all operands
required become valid before launch.Multiplication is shifted
to siding multiplier and execution result is recovered in later
multi-recover stage. Other sidings such as adder and memory
sidings are also available in this architecture.

Non-identical stages weakens the performance of archi-
tecture: if a store instruction, for example, is dependent on
multiplication instruction then the compiler must reschedule
independent instructions between them. This way, when the
multiplication instruction propagates to eight stage, the store
instruction would propagate to fourth stage. When the mul-
tiplication stores the result in 10th stage, there will be
five empty stages between multi-recover and the mem-
ory launch. The result from multiplication enters pipeline
and propagates through five stages to reach awaiting store

VOLUME 7, 2019 33985



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 12. AMULET1 organization: reprinted from [68].

instruction which affects the throughput. It had long stage
pipeline which requires an excessive amount of area. This
version was not implemented on hardware.

5) AMULET1
AMULET1 [68] is an asynchronous version of ARM proces-
sor and is object code compatible with ARM6 (32-bit) proces-
sor. It consists of functional units address interface, register
bank (with 30 general purpose registers each 32-bit wide),
execution unit and data interface (fig. 12). Each functional
unit in AMULET1 works concurrently and independently.
To avoid control hazards, coloring mechanism is used [69].
In this mechanism, a color bit is used to represent the state
of the processor as well as the same color bit is allocated
to an instruction fetch at a particular moment. Whenever the
instruction and processor color bits mismatches, the instruc-
tion is discarded. The processor color bit changes on the
termination of the instruction stream. This architecture uses
register locking mechanism, 2-phase single rail protocol for
communication and bounded delay timing model and operate
on fundamental mode of operation.

The AMULET1 processor is fabricated using two CMOS
processes where 1µm process at ES2 gives the performance

of 20.5K Dhrystone (@5V and 152mW, 77MIPS/W) while
0.7 µm process at GEC Plessey Semiconductor gives the per-
formance of 40K Dhrystone @ 5V [69]. It does not give best
performance compare to its synchronous version ARM6 but
gives a clear way for asynchronous implementation.

6) TITAC: DESIGN OF A QUASI-DELAY-INSENSITIVE
MICROPROCESSOR
TITAC [70] is a non-pipelined asynchronous implementation
of 8-bit Von Neumannmicroprocessor. The processor is orga-
nized as a control section and data path section. The con-
trol section contains two independent controllers (controller
1 and controller 2) where the first controller is hard wired
controlled. The other controller is microprogrammed which
controls outside chip storage. Either controller can be selected
to control data path section. TITAC microprocessor is based
on quasi-delay insensitive timing model and uses 4-phase
communication protocol. It is realized using 1µmCMOS and
uses≈22068 transistors with the estimated performancemea-
sured 11.2MIPS and 1.8MIPS, respectively, for controller
1 and controller 2.

7) THE GALLIUM ARSENIDE ASYNCHRONOUS
MICROPROCESSOR
The Gallium Arsenide (GaAs) Asynchronous Micropro-
cessor [71] with a 16-bit RISC pipeline architecture is
the modified implementation of Caltech Asynchronous
Microprocessor using GaAs Technology. The processor data
path includes program counter, 16 general purpose registers,
an ALU and memory unit for load/store operation execution.
All data path gates, completion detection circuit and buffers,
except NAND gates, are Direct Coupled-FET Logic (DCFL).
The performance of the processor measured is 50MIPS/W.

8) FRED ARCHITECTURE
Fred [72] is a self-timed decoupled pipeline computer archi-
tecture based on micro-pipelining and roughly based on
NSR III-B3. It uses most of the Motorola 88100 instruc-
tion set. Fred organization include dispatch unit, register file
(32 general purpose registers) and execution unit as shown in
the fig. 13. Dispatch unit is the main control unit that controls
program counter, instruction fetch and sends instructions to
other functional units. It issues instructions and monitors data
hazards after satisfying data dependencies by resolving reg-
ister destination conflict. Execution unit has five functional
units (arithmetic, logic, control, memory and branch unit)
where a distributor is responsible for sending an instruction to
appropriate unit. The result of each functional unit is written
back to register directly or by a register (R1) queue. In Fred
architecture, direct result forward to other functional units is
not allowed due to complexity.

Many decoupled independent processes of Fred architec-
ture are connected via FIFO queues (dedicated paths) of
arbitrary length to process various instructions at a time.
As each pipeline stage passes data by communicating locally
with the neighbor stage, no extra control circuitry is used for

33986 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 13. Fred block diagram: reprinted from [72].

adding additional pipeline stages. Fred prototype is described
in hardware description language VHDL and is fully func-
tional. For performance measurement, different benchmark
programswere run through Fred and the average performance
measured was 149.67 MIPS.

9) HADES ARCHITECTURE
Hatfield Asynchronous DESign (HADES) [73], [74] is a
superscalar RISC type processor with Harvard architecture.
HADES is a step towards the design of an asynchronous
superscalar processor. It includes four pipeline stages namely
instruction fetch (fetches in groups), instruction decode
(twofold operation), execution (independent functional units)
and write-back stage. In the write-back stage, two register
files integer and boolean are used. The condition generated by
integers comparison is stored in the boolean register file for
resolving branches. It addresses read-after-write and write-
after-write hazards using register locking mechanism and
decoupled operand forwarding. To resolve such hazards, each
functional unit in execution stage have separate forwarding
register. This architecture is capable of issuing single and
multiple instructions: instructions are issued in order but
allows their out of order completion. Furthermore, it uses
4-phase protocol for communication. A formal specification
language, Communication Sequential Processes (CSP) [75],
is used for designing baseline of HADES processor in which
all concurrent processes communicate asynchronously. The
specification language CSP and description language VHDL
allows the designer to check correctness of the design and
simulate them easily.

10) ASYNCHRONOUS PROCESSOR BASED ON PETRI NETS
The processor in [76] is based on Holton’s [77] 3-bit sim-
ple synchronous processor design where the asynchronous
version employed the same instruction set specified in
synchronous implementation. It performs the operations
load general register (LdGR), load accumulator (LdAcc),

FIGURE 14. Asynchronous microprocessor high level specification with
Petrinets: Reprinted from [76].

arithmetic operation (Arth) and store. At first stage, labeled
petri nets are produced (as shown in fig. 14) where places
are represented by circles and transitions are represented
by bars. An abstract labeled petri net includes two places
and two transitions for instruction fetch and execute mode.
An instruction and word fetch results program counter (PC)
increment while an instruction execute transition produces
complex structure. An instruction can be one or two-word
wide: on the completion of one word instruction, the pro-
cessor executes next instruction while on the completion of
two-word instruction, the instruction (first) word remains in
the instruction register as the second word fetched contains
data.

Instruction execution completes as follows: the load
instruction is decomposed into decoding of instruction LdAcc
and fetching the second word Accdta. Arithmetic instruction
execution is completed using ALU and latching result to the
accumulator. Store instruction is completed after memory
address register write (loading address) and memory write.

After the completion of labeled petri nets, the designer
derives the temporal relation between the transitions. The
analysis shows the increment of PC is concurrent with all
execution transitions. The designwas improved (from version
1) by refining using decoupling ALU as arithmetic instruc-
tions do not require data from memory. In this refinement,
the acknowledge is sent to Memory Address Register (MAR)
after decoding. In this improved version (version 2), the ALU

VOLUME 7, 2019 33987



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 15. Pipelined processor model with two latches: reprinted
from [76].

and Accres (latching result to accumulator) are concurrent
to MARr and Memr (memory read) that produces reduction
in arithmetic operation execution time. In this later version,
modules are decoupled further because of low concurrency.
Furthermore, instruction register is concurrent with ALU
and Accres where instruction decode work concurrent with
MARr and Memr. This, however, introduces deadlock and
stall signal. With further refinement (version 3), the deadlock
was removed by adding new register for storing fetched word
and allow MAR to accept request from this transition. The
stall signal allows new PC value to MAR only when previous
instruction start to decode.

Further improvement was brought in version 3 (of the
processor) after analyzing the temporal relation of modules
in the processor. Extra latch was introduced for decoupling
memory and instruction registers. The instruction register
is now concurrent with MARr and Memr (version 4 of
the processor). This include 4-stage micro-pipeline with
extra feedback as shown in fig. 15. The performance of
the designs was measured using UltraSAN. In version 4,
PC-cycle takes 109.0ns and execution of Arithmetic opera-
tion takes 100.0ns. At the second stage, the labeled petri nets
are translated to asynchronous circuits where the translation
method employed was inspired from Patil’s work [78].

FIGURE 16. Execution pipeline of Amulet1 (left) and Amulet2 (right):
Reprinted from [79].

11) Amulet2e: AN ASYNCHRONOUS EMBEDDED
CONTROLLER
Amulet2e [79] is an asynchronous embedded controller pow-
ered by asynchronous ARM core. Amulet2e has asyn-
chronous ARM core, RAM/cache of 4Kbyte and memory
interface to connect with external memory. For performance
gain, amulet1 was modified to amulet2 where the main
change in execution pipeline is reduction of pipeline stages
as shown in fig. 16. In amulet2, stall due to register lock-
ing is resolved with forwarding mechanism using the last
result register (LRR) and last loaded value (LLV) techniques
to bypass the register read as shown in fig. 17. To pre-
dict branches, amulet2 introduced Branch Target Cache as
shown in fig. 18. Branch prediction is another performance
edge compare to amulet1. In amulet1, issues raised due to
sequentially pre-fetch instructions from program counter are
corrected by execution pipeline.

In amulet2, HALT is introduced for power efficiencywhere
the system resumes full performance on interrupt. The range
of chip select lines, address bus and bidirectional data bus in
the memory interface of amulet2e makes it more convenient
than amulet1. Furthermore, amulet2e uses 4-phase bundled
data protocol for communication. When all performance fea-
tures are turned on, the performance measured is 42MIPS
(Dhrystone 2.1 benchmark). On the downside, amulet2e is
only used as a research prototype and is not suitable for
commercial use.

12) ASYNCHRONOUS MIPS R3000 MICROPROCESSOR
The asynchronous version of MIPS R3000 microprocessor
is known as MiniMIPS [41]. The microprocessor MiniMIPS
has a 32-bit RISC CPU, memory management unit and two
4Kbyte on-chip caches (instruction cache and data cache).

33988 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 17. Organization of register forwarding: reprinted from [79].

FIGURE 18. Organization of branch target cache: reprinted from [79].

It contains 32 general purpose registers (each 32-bit wide),
two special purpose registers for division and multiplication
and a program counter. The pipeline structure in MiniMIPS
includes fetch loop and execution pipeline. The fetch loop
has program counter, fetch and decode unit. The execution
pipeline, on the other hand, includes execution, register and
write back units. All execution units (e.g., adder and multi-
plier) are parallel and works concurrently. This means, mul-
tiplier’s result is directly written to register and is not passed
to any other execution unit or write back unit.

The MIPS R3000 microprocessor is a 3-stage pipeline
architecture where as MiniMIPS is very carefully pipelined
to gain performance. The main design goals are to achieve,
without sacrificing low power advantage of the asyn-
chronous design, high throughput, address the architec-
ture issues missed in CAM, precise exception, branch
delay slot, branch prediction, register bypassing and caches.

MiniMIPS microprocessor operates on two modes: user and
kernel mode. The design uses 4-phase handshaking protocol
(dual rail or 1 of N code) and quasi-delay insensitive timing
model. The performance of MiniMIPS measured is 180MIPS
@ (4W and 3.3V @ 25◦).

13) TITAC-2
TITAC-2 [80], an asynchronous implementation of MIPS
R2000, is a 32-bit microprocessor based on scalable-delay
insensitive model. It has a modified version of instruction set
and include multiply/divide, delay slot of branch and privi-
lege instructions. As the instructions encoding of TITAC-2
and MIPS R2000 are different, they are not object-code com-
patible. They, however, are similar in pipeline stages (both
have five pipeline stages), precision exception handling,
external interruption, memory protection and chip cache. The
pipeline stages include instruction fetch, instruction decode,
execution, memory access and write back.

TITAC-2 introduced new timing model based on scalable-
delay-insensitive (SDI) model. In short circuit functions,
the delay becomes K times larger than estimated delay, where
K is the maximum variation ratio. The SDI model is faster
than delay-insensitive (DI) or quasi-delay-insensitive. This
model is used for subsystems where global interconnec-
tion uses DI model. By using Dhrystone V2.1 benchmark,
the measured performance of TITAC-2 is 52.3VAXMIPS
(@ 2.11W and 3.3V).

14) ASYNMPU
ASYNMPU [81], fully asynchronous CISC microprocessor,
is the first implementation of CISC microprocessor that is
pin-to-pin compatible with Intel 8/16-bit microprocessor. The
functional units of ASYNMPU include pre-fetch, decode,
control, execute unit, three ports (one read and two write
ports) and its register bank has 26 registers. The execute
unit includes bus interface, arithmetic logic unit, mov unit
and a miscellaneous unit for handling microinstructions.
As ASYNMPU is pin-to-pin compatible with Intel 8/16-bit
microprocessor, the bus interface unit makes it possible to
interface the external synchronous system with asynchronous
processor. In Von Neuman architecture, the control (read,
write data) and pre-fetch (for instruction fetch) unit may
access bus interface at same time, result metastable state.
In ASYNMPU, the bus interface unit has arbiter [82], [83]
block for avoiding such metastable state.

The design of ASYNMPU addresses the complex feature
of CISCmicroprocessor using asynchronous processing tech-
niques. Among its major features are instruction set compat-
ibility, controller-sequencer and variable instruction length
handling. The ASYNMPU uses 2-phase bundled data hand-
shake protocol and its instruction size varies from 1-6 bytes.
Its performance is equivalent to an Intel 8/16-bit microproces-
sor (uses a 33MHz clock) and the average power dissipation
calculated is 110mW. Bus interface of ASYNMPU unit in the
busy state uses 11mW where as it uses 0.73mW in idle state:
a distinctive feature of asynchronous implementation.

VOLUME 7, 2019 33989



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

15) ECSTAC
Event Controlled Systems Temporally specified Asyn-
chronous CPU (ECSTAC) [84], [85], is a fast asynchronous
microprocessor based on event controlled system design
methodology. It is a linear pipeline Harvard architecture and
uses RISC like ISA with 8-bit data path and 24-bit address
path. This mismatch results in a performance trade-off.
ECSTAC architecture includes program counter, instruction
and data cache, instruction decode FIFO, operand fetch, ACS
(24-bit adder, comparator, and stack processing), ALU, order
unit, register and scoreboard. The instruction decode unit is
heavily pipelined to accommodate the data received from
instruction cache. After instruction decode stage, the operand
fetch stage fetches the operands which requires registers.
The output is formed with immediate value (if any) and sent
to ACS unit which performs 24-bit address offset addition.
It checks the jump condition: if it is true, a signal is sent to
all preceding units to invalidate instruction within it due to
branch.

The instruction decode unit includes stack pointer that
provides address for reading and writing from data memory.
Order unit maintains instruction order of ACS and records
the unit (ALU or data memory) used by the instruction. Fur-
thermore, the order unit multiplex data bus of ALU and data
memory to register bank (8-bit 16 general purpose register
and flag register). It returns events from register bank to ALU
and data memory. The scoreboard scheme, on the other hand,
is used to prevent data hazards. It is based on a transition
signaling operating under fundamental mode. Processor gives
peak performance of 28MIPS while fabricated in ES2 0.7µm
DLM CMOS process.

16) TinyRISC TR4101 MICROPROCESSOR CORE
ARISC [86] is an asynchronous implementation of TR4101
embedded microprocessor core based on Harvard architec-
ture. Its pipeline structure includes fetch, decode, flush,
register read, register write, issue and execution units.
The PC register holds address of token (32-bit instruc-
tion word) that is used by the fetch unit to provide a
token to decode unit. After the instruction is decoded, it is
sent to flush unit which checks branch condition. If the
branch condition is true, the instruction pipeline is flushed.
The issue unit issues instruction to relevant execution unit
when the operands are ready and issues new PC value for
PC-ALU.

Opaque latch controller is used on the input of each par-
allel execution unit for faster and power efficient instruction
execution. The register locking mechanism ensures the cor-
rect register write and read which avoids data hazards. The
ARISCmicroprocessor operates onMIPS-II/MIPS16modes,
where all units, except fetch and decode units, operate inde-
pendently. The data path is designed and verified using
Verilog hardware description language and Synopsys synthe-
sis tool, respectively. The speed independent control logic
design is accomplished partly by hand and using Petrify

tool. Its design was simulated (can be used as well) with
three different configurations: 1) separate instruction and
data cache, 2) shared cache, and 3) synchronize bus inter-
face and synchronous shared memory module @83MHz.
The 4-phase bundled data protocol and normally opaque
latch controller (where needed) are used for communica-
tion. High MIPS are achieved by using asynchronous con-
figuration as configuration 1) gives performance of 74MIPS
and 635MIPS/W(Stanford benchmark) and 123MIPS(Peak
benchmark) with Vdd = 3.3V .

17) ASPRO-216
ASPRO [87] is a standard-cell QDI 16-Bit RISC asyn-
chronous microprocessor based on A. Martin’s method
specifically design for an embedded application. It is a scalar
processor where instruction issues in order and completes out
of order. The fetch-decode loop includes PC-unit which sends
addresses to program memory interface. The program mem-
ory interface fetches instructions either from on-chip memory
or external memory. The external and program memory is
48K and 16K words each, respectively, and the instruction
words are 24-bit wide. The external and program mem-
ory together with instruction decoder work in fetch-decode
loop. The decoder sends information to data-path loop and
acknowledge to PC-unit. At this point, if branch or uncon-
ditional branch is taken, the PC-unit sends target address,
otherwise, the incremented address is sent to fetch-decode
loop.

The data-path loop includes register file (16 general pur-
pose register), bus interface and the processing units. The pro-
cessing unit includes ALU, branch unit, load/store unit and
custom unit (for future enhancement). The ALU has ‘‘Min’’
and ‘‘Max’’ instructions that are used for image processing,
bit reversing used in FFT computation and ‘‘Slt’’ for carry
and overflow testing. This architecture also has data mem-
ories (64Kbytes, byte/word addressable) where 256-word
area is reserved for peripherals (accessed with dedicated
instructions). ASPRO design is completed using standard
cell library of 0.25µm 5 metal layer CMOS technology
with automatically generated RAM and gives a performance
of 140(peak)MIPS [42].

18) 80C51 MICROCONTROLLER
The microcontroller 80C51 [36] is an asynchronous imple-
mentation of 8-bit CISC type microcontroller for achieving
power effectiveness. The 80C51 asynchronous microcon-
troller is fully bit and timing compatible with synchronous
80C51. Asynchronous 80C51 is based on the latch with
latch enable signals as well as demand-driven peripher-
als. Its design has been described in description language
Tangram [88]. Standard cell gate-level netlist is achieved
from Tangram description after intermediate handshake cir-
cuit level. The handshake circuit uses 4-phase bundled data
protocol. The design is processed in 0.5µm 3 metal layer
CMOS which contain data RAM of 256bytes and pro-
gram ROM of 16Kb. Gate level simulation of asynchronous

33990 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

80C51 results 2.10MIPS(943MIPS/W) when memories are
excluded, and worst-case condition is assumed.

19) AMULET3
AMULET3 [89], successor of AMULET1 and AMULET2e,
is a 100 MIPS asynchronous embedded processor based Har-
vard architecture. It is a viable asynchronous processor for
commercial use as it supports 4T version of ARM architec-
ture and 16-bit Thumb compressed instruction set2 for more
detail on Thumb please check [90]. The AMULET3 pro-
cessor has six pipeline stages that include instruction pre-
fetch, instruction decode, execute, data memory reference,
record buffer, and register result write-back stage as shown
in fig. 19. Branch prediction unit in instruction pre-fetch stage
supports thumb code. The decode and register read stages
include logic, such as ARM and Thumb decode, and mecha-
nisms such as register read and forwarding. It either decodes
thumb critical control signals directly with thumb instruction
decoder, or it first converts them to ARM equivalent instruc-
tion and then uses ARM instruction decoder. Register read
and forwarding stage traces operand in the register file and
search the reorder buffer if the operand is not available. The
forwarding process stalls till the value become valid, where
three read ports are available for AMULET3 register file.

Execution stage has adder with carry arbitrary scheme,
multiplier (computes 32x32 product in approximately 20ns)
and shifter. The program status register is fit logically into the
execution stage. Reorder buffer stage stores result from exe-
cution pipeline stage and data memory interface. The results
in reorder buffer may be orderly written-back to register file
as well as used for forwarding purpose. The AMULET3 uses
4-phase communication protocol, gain high performance as
compared to its predecessor and operates up to 120MIPS
(Dhrystone 2.1).

20) A8051
A8051v1 [91] is a novel asynchronous pipeline architec-
ture for CISC type embedded controller and is compatible
with Intel 8051. It proposes optimized instruction execution
scheme by skipping the redundancy and bubble states and
uses only required stages. The A8051v1 is a multi-looping
pipeline architecture and handles variable length instructions
(1 to 3 bytes) for CISC type machine. It has 5-stages pipeline
which include instruction fetch (pre-decode with branch pre-
dictor unit), instruction decode, operands fetch, microinstruc-
tion execution and write back unit. The instruction decode
unit checks data dependency for the previous instructions.
The microcontroller uses 4-phase handshake protocol, dual
rail encoding and delay insensitive timing model. It was
realized using 0.35µm CMOS technology while the perfor-
mancemeasured by the designers was 75.5MIPSwith 5-stage
pipeline. Without the pipeline, the A8051v1 delivers with
performance of 35.8MIPS.

2Effect on the processor is same as 32-bit ARM instruction.

FIGURE 19. AMULET3 organization: reprinted from [89].

21) THE LUTONIUM MICROCONTROLLER
Lutonium [92] is an asynchronous implementation of 8-bit
CISC type 8051 microcontroller for low ET 2 where E is
average energy per instruction and T is the cycle time. Based
on Harvard architecture, the 8051 microcontroller supports
255 variable length instructions, with each instruction varies
from one to three bytes. Lutonium architecture, as shown in
the fig. 20, includes fetch/IMem, decode, execute, branch and
register units. Fetch/IMem includes fetch uni, program mem-
ory (holding code up to maximum 8kB) and switch box. Two
bytes can be fetched from program memory and the switch
box route the instruction to decode unit. Optimization of the
fetch loop gives the average throughput of 1.37bytes/cycle.

The decode unit is decomposed into many processes
(control0 and control1) which consumes dynamic energy as
per requirement. Control0 decode the first byte of instruc-
tion opcode and the next two byes (if any) are decoded
by control1. The decoded bytes are sent to an appropriate
execution unit. Lutonium stops all switching activities in
deep sleep mode and wakes up without any delay from
the deep sleep mode. In the deep sleep mode, only coun-
ters operate. Lutonium uses 4-phase handshake protocol and

VOLUME 7, 2019 33991



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 20. Block diagram of Lutonium: reprinted from [92].

Quasi-delay-insensitive timing model. The performance of
Lutonium prototype implementation using TSMC SCN018
0.18 µm CMOS process by MOSIS at 1.8V was estimated
200MIPS (1800MIPS/W).

22) MODELLING SAMIPS
SAMIPS [93], [94], a synthesizable asynchronousMIPS pro-
cessor, is based on the MIPS application architecture. The
main purpose of the design was to use it as a test case
in an integrated formal verification and distributed simula-
tion environment [95]. The pipeline in SAMIPS consist of
five stages: instruction fetch, instruction decode, execution,
memory, and a write-back stage. In instruction decode stage,
the read/write register operation is performed. The instruction
decode unit, based on asynchronous design, checks six MSB
and five LSB (in R-type only) to generate control signals
bundled with data. The processor handles data hazards using
forwarding mechanismwhich is based on history information
recorded in DHdetection unit inside the register bank.

The execution unit includes ALU (without multiplication
and division operation), a functional unit for branch test,
a shifter, color matching mechanism and ForWarding mecha-
nism (FW) unit. For control hazards, SAMIPS uses coloring
mechanism that is first used in AMULET1 [69]. In this mech-
anism, one bit is used to represent the state of the processor
as well as instructions at a particular moment. When the
instruction and processor color bit mismatch, the instruc-
tion is discarded. The processor color bit changes on the
termination of instruction stream. The model of SAMIPS
is described in Balsa: a CSP based asynchronous hardware
description language and synthesis tool with LARD [57] is
used for behavioral simulation.

23) SENSOR NETWORK ASYNCHRONOUS PROCESSOR
Sensor Network Asynchronous Processor/Low Energy
(SNAP/LE) [96] is an ultra low-power processor for sensor

networks. It is a 16-bit data-driven RISC core processor based
on ISA of SNAP [97] (MIPS architecture) and optimized
for data monitoring in sensor network. It has extremely low
power idle state and very fast wake-up response. The target
sensor node remains idle most of the time which makes the
asynchronous technique as the best choice for processors for
that types of nodes. The asynchronous processor design has
hardware support for commonly-occurring sensor network
operations. The low power consumption of the processor
maximizes the network lifetime. The SNAP core includes
event queue, instruction fetch, decode, execute units, buses,
register file, message FIFO’s and memories (two on-chip
4KB memory banks).

The execution units include adder, logic unit, load-store
unit (for memory), timer unit (for timer coprocessor inter-
facing), jump branch unit, a linear-feedback shift register
and a shifter. Two types of buses are commonly used: a fast
and a slow bus. The execution units in sensor networks are
placed on a fast bus. The SNAP architecture is completely
event-driven and remains idle until external event hit event
queue. After completion of an event, the DONE instruction
halts the processor until the next event appears on an event
queue. A 4-phase protocol and Quasi-delay insensitive timing
model was adopted for asynchronous circuits. The processor
shows the performance of 200MIPS @ 1.8V consuming ≈
218pJ/instruction while using 0.18µm TSMC process.

24) BITSNAP
BitSNAP [98] is a dynamic significance compression for a
low-energy sensor network asynchronous processor based
on SNAP ISA [97], [96]. It uses bit-serial data-path with
dynamic significance compression for achieving low energy
consumption. The processor is proposed as a logical exten-
sion of SNAP/LE [96] processor. On a bit-serial data stream,
BitSNAP employed dynamic adaptive compression known
as length adaptive, making the processor a length adaptive
data path processor. For each word, the delimiter bit and bits
prior it are only sent instead of 16-bit word which reduces
switching activity. The architecture of BitSNAP is similar
to SNAP/LE with some modification: dynamic significance
compression and parallel bit data path conversion to serial bit
data path. All execution units, register file and all data path
bus split andmerge units are bit-serial units operating on LAD
digits. The memories, ShareI (shares input word with decode
unit or data path) and fetch unit are bit parallel circuits. The
BitSNAP processor uses special hardware for interfacing bit
parallel data to bit serial units and interfacing LAD data to
bit parallel units. In 0.18µm CMOS process, the expected
speed of BitSNAP presented by designer was 6 and 54MIPS
while consuming 17pJ/ins at 0.6V and 152pJ/ins at 1.8V
respectively.

25) HT80C51
HT80C51 microcontroller [99], an asynchronous implemen-
tation of 80C51, is a commercial product by Handshake
Solutions (Philips). It is functionally compatible with the

33992 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

instruction set and peripherals of 80C51 with some unique
features. These features include extremely low power, low
electromagnetic emission, low supply-current peaks, zero
standby power with immediately wake-up, asynchronous and
optional synchronous mode. Single process HT80C51 exe-
cute an instruction in sequential phases fetch, decode,
read, execute and the write phase. The structure of the
microcontroller is based on Harvard architecture and the
instructions are variable length (one, two or three bytes).
The high-level programming language Haste, by Hand-
shake Technology design flow (technology independent),
was used for designing microcontroller and its peripherals.
The HT80C51 non-pipelined asynchronous microcontroller
was realized in 0.14µm CMOS where transistor count was
30820 with performance (worst case) of 8.9 MIPS @ 1.8V,
0.7mW [100].

26) ASYNCHRONOUS 8051 MICROCONTROLLER CORE
A8051 [101] is an asynchronous implementation of Intel
8051 microcontroller for low voltage and low energy
applications (hearing aid). The designers of the micro-
controller used a number of techniques for yielding low
power dissipation. To minimize system activity, they used
two-stage asynchronous pipeline including instruction fetch
and decode-execute stages that operate independently. The
design they offer is without predictive approach and include
indirect RAM access. Using partial decoding algorithm,
the most significant nibble of instruction is decoded to iden-
tify type of operation and the least significant nibble identifies
the addressing mode. As is common in microcontrollers,
A8051 is comprised of registers, latches and decoder based
memory altogether contribute to larger area. To reduce area of
proposed A8051 and enhance the performance, the designer
proposed methodology for interfacing asynchronous system
synchronous IP memory blocks (RAM and ROM) [102].

The proposed 8-bit asynchronous microcontroller contains
4K×8 ROM as an instruction memory and 128×8 RAM
as a data memory with Harvard architecture. Its design was
completed in Balsa as an electronic design automation tool.
The microcontroller 8051 was fabricated within the dual core
microcontroller systemDC8051 [103], [104] with twomodes
of operation: synchronous operation is based on Synopsys
DW8051 IP core whereas asynchronous mode is based on
A8051. The cores share 1kbyte ROM and 128byte RAM
as well as 1kbyte external RAM. The DC8051 system was
implemented using 130nm CMOS and the measured perfor-
mance of A8051 using Dhrystone v2.1 benchmark reported
as 7.4MIPS consuming 349 pJ/I.

27) VORTEX PROCESSOR
The Vortex [105] processor is based on a superscalar asyn-
chronous processor design. Vortex CPU supports 32-bit inte-
ger data path and execute up to nine instruction per cycle. The
Vortex architecture prototype is shown in fig. 21. It includes
dispatcher (instruction decoder and control signal generator),
a crossbar (input/output router) and functional units. All the

FIGURE 21. Vortex prototype: reprinted from [105].

parallel functional units communicate through central cross-
bar, instead of a register file. Each instruction consists of
two parts: prefix and body. The prefix of instruction is used
by the dispatcher for choosing a destination of the instruc-
tion: a specific functional unit or crossbar. The asynchronous
low-level circuitry is based on the ‘‘integrated pipelining’’
templates [25]. It was fabricated as a part of Testchip2 real-
ized using 0.15 µmG process by TSMC.

28) ARM996HS PROCESSOR
ARM996HS [106], the first licensable and clockless proces-
sor core, is a 32-bit RISC type asynchronous processor core
implemented using Harvard architecture. The processor is
fully compatible with ARMv5TE (ISA), debug architecture
and supports 16-bit Thumb instruction set. The ARM996HS
processor has 5-stage integer pipeline that includes fetch,
decode, execute, memory and write-back stages. All these
stages are connected with pipeline control unit. It has a 32-bit
fast multiply-accumulate (MAC) block, divide coprocessor
and tightly coupled memory. The memory protection unit
and non-maskable interrupts provision are used for specific
security enhancement.

Factors such as low electromagnetic emission, ultralow
power and high robustness converge are the principals of
design that were successfully achieved. The compiled code

VOLUME 7, 2019 33993



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 22. AsynRISC processor microarchitecture: reprinted from [107].

for ARM9E CPUs family can be run on ARM996HS. The
Processor was implemented using handshake technology,
Timeless Design Environment (TiDE) design flow, based on
Haste high-level design entry language (formerly known as
Tangram). The TiDE design flow is a frontend to synchronous
EDA tools. The Tiempo handshake interface is used to adapt
changes in environmental conditions such as supply current,
voltage and temperature. The performance measured under
worst condition was 54 DMIPS (1.08V, 125◦C) and with
nominal condition (1.2V, 25◦C) was 83 Dhrystone MIPS.
These statistics are based on netlist simulation (post layout)
by using the Artisan Sage-X library for the 0.13µm TSMC
process.

29) TAM16 MICROCONTROLLER
TAM16 [51] is a 16-bit clockless microcontroller IP core
by Tiempo. It had complete and power efficient instruction
set along with adapted software development kit for ultra-low
power application. The software development kit include
a linker, assembler, instruction set debugger and simulator.
To make its instruction set binary compatible with other cus-
tomers’ microcontroller, the instruction set can be customized
easily. Two memory interfaces, 1 UART, 3 cascadable timers,
16-bit Programmable Input/Output (PIO), interrupt controller
and boot configurations pins are embedded peripherals in
TAM16.

In Tiempo technology, the IP is designed for ultra low
noise, ultra low power consumption and ultra-low EMI.
These features make Tiempo, the fully asynchronous and
DI processor, robust against fault injections. It is a com-
mercial product for ultra-low power embedded electron-
ics chips. TAM16, for example, is used in RFID tags,
sensor networks, smart cards, e-metering devices and for
low electromagnetic emission chips. The low electromag-
netic emission chips are used in medical, aeronautics and
automotive industries. TAM16 is available as a place and
route silicon proven Verilog-netlist. By using CMOS 130nm
technology, the TAM16 is designed and processed as test

chip. It shows the performance of 7.1 and 15.5MIPS at 0.7V
and 1.2V, respectively. The consumption of core is 33.4 and
49µA/MIPS at 0.7V and 1.2V, respectively.

30) AsynRISC
AsynRISC [107] is an asynchronous pipelined processor with
instruction set similar to MIPS R2000. It has five pipeline
stages as shown in fig. 22. The pipeline stages include instruc-
tion fetch, instruction decode and register fetch, instruction
execution or memory address calculation, memory access
and register write back. Control hazards are solved using
two one-bit registers instcolor (in instruction fetch stage) and
syscolor (in execution stage). As all control transfer takes
place in execution stage, in IF stage, every new instruc-
tion proceeds to next stages after attaching color bit of the
instcolor register. The color bit is later checked by execution
stage by matching the color bit with syscolor register. If the
color bits match, the instruction is executed normally, other-
wise, it is discarded.

Data hazards are resolved by adding two extra fields in
every general purpose register. A pending bit indicates reg-
ister is up-to-date or waiting for new contents. Two bits,
known as pending instruction index, records the instruction
which produces the new contents for a register. At IF stage,
the 2-bit instruction index register provides an index to every
new instruction. As at most four instruction reside in data-
path, two bits are enough for this register. It was designed
and verified using Balsa asynchronous hardware description
language and Balsa simulation system respectively. The per-
formance was measured by executing a particular program
having 500 dynamic instruction taking 21256799 unit3 exe-
cution time.

31) A8051v2
A8051v2 [108], the second version of asynchronous
8051 [91], is a low-power implementation of asynchronous

3As unit is not mentioned, the assumed unit is ns.

33994 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

8051 employing adaptive pipeline structure. While there are
many dissimilarities in system architecture and instruction
execution scheme, the instruction set architecture of the
proposed design is fully compatible with Intel 8051 [109].
Among the major changes are inclusion of additional features
for multi-cycle instruction. These features are multi-looping
control, branch prediction (for unconditional branches) and
single threading (in the execution stage). It was realized
using adaptive micropipeline for skipping and combining
pipeline stages for gaining power efficiency and performance.
Stage skipping and combining mechanisms are controlled by
adding extra inputs i.e ELN for latch controller and ECN for
pipeline stage bundled with the latched data. The decision,
whether or not to skip the operation of Nth pipeline stage,
is taken by an ECN signal. Furthermore, the decision if theNth
latch is transparent or not, is determined by an ELN signal.
The A8051v2 was simulated with NanoSim tool and mapped
into Hynix 0.35 µm CMOS technology with a nominal
voltage of 3.3V. A8051v2 @ 3.3V shows the performance of
84.2MIPS (2316MIPS/W)measured by executingDhrystone
V2.1 benchmark.

32) PA8051
PA8051 [110] is a pipelined asynchronous 8051 soft-core
microcontroller implemented in description language Balsa.
Its design consists of 5-stage pipeline as shown in fig. 23. The
pipeline stages include instruction fetch, instruction decode,
operand fetch, execution stage and write back stages. The
design also include a memory unit which is not part of the
pipeline. The instruction fetch stage contains ROM interface,
fetch controller and two buffers (as instruction cache to the
program memory).

The memory unit provides the memory interface to
RAM − READ − ARBITOR where the arbiter [111] is
used to read/write data and read instructions from/to fetch
and instruction decode units, respectively. The memory
exchange with write back unit is likewise arbitrated by
the MEM − INTERFACE as shown in the fig. 23. The
PA8051 microcontorller uses 4-phase bundled data commu-
nication protocol to reduce the area cost. The design of the
microcontroller is described in the CSP based asynchronous
HDL language Balsa and synthesized into Xilinx netlist. The
synthesis was completed with Xilinx ISE for the target device
Spartan-IIE 300 ft256 FPGA.

33) NCTUAC18
NCTUAC18 [112] is a quasi-delay-insensitive microproces-
sor core implementation for microcontrollers. It is an 8-bit
asynchronous microprocessor core with an instruction set of
PIC18. The 4-stage pipeline of NCTUAC18 include instruc-
tion fetch, instruction decode, operand fetch and execu-
tion/write back stages. The instruction decode stage includes
instruction decode block, branch control block, stall control
and NPC control. The instruction decode block generates the
control signal for the whole processor and checks whether or
not the instruction is a conditional branch. If it is a conditional

FIGURE 23. PA8051 architecture overview: reprinted from [110].

branch, the instruction decode block requests the branch con-
trol block to take over, otherwise, it requests NPC (for next
PC value). On conditional branch instruction, the stall control
generates request signal to NPC for generating the same PC
value to retrieve the instruction. The NPC control is responsi-
ble for the correct generation of the PC value. In NCTUAC18,
the execution and write back stages are combined in one
stage.

The design uses Muller pipeline with 4-phase protocol,
dual-rail encoding, quasi-delay insensitive timing model.
The proposed design was verified by using ModelSim
6.0 and its gate level design was synthesized using Altera
Quartus II software for the target FPGA Altera Cyclone
EP1C20F400C8. The maximum path delay in the instruc-
tion decode stage, the critical stage of the design, was
≈455ns. The designer admitted that the design deals with
branch instruction inefficiently and the quasi-delay insen-
sitive model makes the circuit design difficult. Later on,
the NCTUAC18S [113] was introduced with new stall mech-
anism which handled branch instructions effectively. Fur-
thermore, an acknowledge wire was added to the instruction
decode and write back stages. The wire is used to generate
an acknowledgement, by the write back stage, on completion
of previous instruction. With this modification, the branch
instruction is stalled in the instruction decode stage until the
acknowledgement is received. The NCTUAC18S was imple-
mented with dual-rail Muller pipeline and 5-stage pipeline
with separate execution andwrite back stages. In themodified
design, it is possible to write and read data at the same time.
The design was gate-level modeled in hardware description
language Verilog, verified with ModelSim 6.0 and synthe-
sized using design compiler with TSMC 0.13µm process
library.

34) DRAP
The Dynamically Reconfigurable Asynchronous Proces-
sor (DRAP) [114], [115], is a processor based on novel
clocked architecture called RICA [116]. The design main
goal was to make an architecture that fulfill the demand of

VOLUME 7, 2019 33995



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

TABLE 2. Operational cells in sample array. Reprinted from [114].

high-throughput mobile applications for energy efficiency
and programmability using high-level languages. The DRAP
processor consists of a heterogeneous array of course-grain
asynchronous cells that are implemented using a reconfig-
urable data-path architecture. An abstract and comprehensive
architecture view is presented in [114] and [117]. The design
is based on operational cells where each interconnection of
operational cells performs limited operations such as logic
operation, addition and multiplication. The interconnection
design for sample array is based on island-style structure
as set-up in standard FPGA’s [118]. Configurable routing
switches are assembled around the operation cells to allow
each cell to interface with its nearest four neighbors. Assem-
bling routing switches, in addition, assist handshake signals
and execute conditional acknowledge synchronization using
technique presented in [119]. The sample array in DRAP
contains 18-bit 400 asynchronous operational cells as listed
in Table 2. These cells are interconnected using switches that
are based on multiplexer.

Different blocks of instructions are executed by changing
the operational cells and interconnects configuration similar
to the architecture of CPU. For general application, an ade-
quate mixture of the cells is selected manually while for a
specified application other specific cells can be selected. Inte-
grated circuits and the interconnect switches are controlled by
the configuration bits stored in the program memory. A total
of 9260 configuration bits are required for the reconfigurable
core with the selected type of operational cells and intercon-
nects. The program and data memories are interconnected to
each other by using special cells of the core. The 4-phase
single rail handshake protocol was adopted for the design of
operational cells. A network of programmable switches plays
a role of interconnection for data-path creation.

Using a UMC 0.13µm technology, the sample array was
realized and compared with the architectures Custom RICA
400 [116] (0.13µm), ASIC (0.13µm), ARM7TDMI-S [120]
(0.13µm) and TIC64x 8-way VLIW [121]. The algorithms
bilinear demosaicing [122], 8K-point radix-2 1-D FFT [123]
and 2-D DCT [124] are the benchmarks for the evaluation
of the design. For the same throughput, the power con-
sumption of each design was calculated for each bench-
mark. The power and area rating of the Custom RICA
400, sample DRAP and ASIC design were originated using
PrimePower (from Synopsys) post-layout simulation. The
ratings for ARM7TDMI-S core and TIC64x are provided
in [120] and [125], respectively. All these ratings are mea-
sured @1.2V where the energy ratings are measured only for
data-path without a memory. Comparison results are listed
in Table 3.

TABLE 3. Comparison of DRAP. Reprinted from [114].

FIGURE 24. Block diagram of asynchronous neural signal processor.
Reprinted from [126].

35) ASYNCHRONOUS NEURAL SIGNAL PROCESSOR
Asynchronous neural signal processor [126] is a 0.25V
460nW processor with inherent leakage suppression design
for spike-sorting function. The spike sorting function was
completed in three steps in this processor: spike detection,
alignment and feature extraction. The algorithm employed
for spike sorting in this design exhibits best suitable
power-density characteristic for wireless neural signal pro-
cessing in real-time [127]. The processor receives 8-bit dig-
ital data from a neural signal acquisition front-end running
at 20kHz. The synchronous-asynchronous interface converts
the synchronous input into 4-phase dual-rail data. All mod-
ules communicate using 4-phase dual-rail handshaking proto-
col. The asynchronous neural signal processor block diagram
is represented in fig. 24. Both versions of the processor, syn-
chronous and asynchronous, were realized in a 65nm CMOS
for performance comparison. The asynchronous version pro-
totype shows the 2.3x reduction in power.

36) uaMIPS
The Micro-Watt Asynchronous MIPS (uaMIPS) [128],
a sub-threshold ultra-low power processor, is an asyn-
chronous implementation of 8-bit 5-stage conventional
synchronous MIPS processor. Designed for a benchmark
purpose, the instruction and data memories are based on
flip-flop to simplify its design. Using a pipeline oriented
de-synchronization tool [129], the synchronous version was
converted to 4-phase bundled data asynchronous version.
The unavailable asynchronous elements in the standard cell
library were manually inserted using different techniques.
The asynchronous design flow is shown in fig. 25. Quasi-
Delay-Insensitive (QDI) implementation was created in Sys-
tem Verilog CSP and proteus backend flow [130]. The QDI
is not much attractive approach towards ultra-low-power
design because of its performance/power ratio. The proposed

33996 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

TABLE 4. Evaluation of available asynchronous processors.

VOLUME 7, 2019 33997



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

TABLE 4. (Continued.) Evaluation of available asynchronous processors.

33998 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

FIGURE 25. Asynchronous design flow. Reprinted from [128].

FIGURE 26. Comparison between uaMIPS and other ultra-low-power
processor. Reprinted from [128].

uaMIPS asynchronous (bundled data) processor in 28nm
HKMG, HVT(VT=0.6V) shows better power efficiency as
shown in fig. 26.

37) ANSYNCHRONOUS MSP430
Asynchronous MSP430 [131] design is a low power and
relative timing-based asynchronousMSP430microprocessor.
It is asynchronous implementation of openMSP430 [132]
16-bit processor with RISC type ISA. The design of
MSP430 had two directly connected finite state machines:
decode and execute. In an asynchronous implementation,
the data-path is nearly identical to its parent design. A new
conjunctive stateful communication method is employed
between the asynchronous finite state machines.

The MSP430 microprocessor uses 4-phase bundled data
protocol with relative timing methodology as described
in [131]. Both designs, asynchronous and synchronous, are
designed in the same computer-aided design (CAD) tool
and synthesized using the same IBM 65nm 10SF node with
same EDA tools and scripts. A comparison shows that the
synchronous design consumes 5% more area than asyn-
chronous design. The asynchronous design is on the aver-
age 33% slower, consumes less than one-tenth the power
and consumes one-seventh the energy per operation as com-
pared to the synchronous. These statistics are concluded

after executing different benchmark programs. Furthermore,
asynchronous implementation of openMSP430 shows an
improvement in power dissipation.

C. DISCUSSION
Starting with Martin’s [40], we have investigated a number
of asynchronous microprocessors on abstract level, and com-
piled their summaries into one document. During this work,
we have observed that most of the designers implemented
an equivalent asynchronous version of one of the available
synchronous benchmark processors, such as MIPS and ARM
etc, and they had adopted various specification methods, and
tools. Following are some observations that we have made;
this may be considered as conclusion of conducting this work.

1) Most of the proposed asynchronous microprocessors
are pipelined architectures.

2) Specifically talking of the pipelined processors, most of
the designers used a different number of pipeline stages
to resolve data and control hazards. Some proposed
their novel schemes by claiming that the synchronous
methods were not directly applicable to asynchronous
logic − mainly due to its distributed control nature.

3) From Table 4, one can observe that pipeline stages,
technology, and voltage directly affect the perfor-
mance.

4) AMULET3 [89], Lutonium [92] and SNAP/LE [96]
showed better performance and power ratio, in com-
parison to others. This is evident in Table 4.

IV. CONCLUSION
We have elaborated on asynchronous logic design principles,
along with their available electronic design and automation
tools support for specifying, modeling, synthesizing, and
implementing asynchronous circuits and systems. The main
objective of the work, beside collecting most of the con-
tributions towards designing asynchronous microprocessors,
is defining the asynchronous design flow and summarizing
the available tools, which, to the best of our knowledge,
have been misunderstood or mostly overlooked. We have
presented an entire encyclopedia of general, as well as, spe-
cial purpose asynchronous microprocessors ever developed,
irrespective of their classification, signaling mechanisms,
architectures, and process. We have presented a thorough
evaluation of those processors in terms of performance and
area utilization.

REFERENCES
[1] S. R. Naqvi, ‘‘A non-blocking fault-tolerant asynchronous networks-

on-chip router,’’ Ph.D. dissertation, Inst. Comput. Eng., Vienna Univ.
Technol., Vienna, Austria, 2013.

[2] S. Naqvi, ‘‘An asynchronous router architecture using four-phase bundled
handshake protocol,’’ in Proc. Int. Multi-Conf. Comput. Global Inf. Tech-
nol. (IARIA), 2012, pp. 200–205.

[3] S. R. Naqvi, V. S. Veeravalli, and A. Steininger, ‘‘Protecting an asyn-
chronous NoC against transient channel faults,’’ in Proc. IEEE 15th
Euromicro Conf. Digit. Syst. Design (DSD), Sep. 2012, pp. 264–271.

[4] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design:
A Systems Perspective. Norwell, MA, USA: Kluwer, 2001.

[5] A. Kondratyev and K. Lwin, ‘‘Design of asynchronous circuits by syn-
chronous CAD tools,’’ in Proc. ACM 39th Annu. Design Autom. Conf.,
2002, pp. 411–414.

VOLUME 7, 2019 33999



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

[6] B. Rahbaran and A. Steininger, ‘‘Is asynchronous logic more robust than
synchronous logic?’’ IEEE Trans. Dependable Secure Comput., vol. 6,
no. 4, pp. 282–294, Oct. 2009.

[7] S. R. Naqvi, R. Najvirt, and A. Steininger, ‘‘A multi-credit flow
control scheme for asynchronous NoCs,’’ in Proc. IEEE 16th Int.
Symp. Design Diag. Electron. Circuits Syst. (DDECS), Apr. 2013,
pp. 153–158.

[8] W. A. Clark, ‘‘Macromodular computer systems,’’ in Proc. ACM Spring
Joint Comput. Conf., Apr. 1967, pp. 335–336.

[9] M. J. Stucki, S. M. Ornstein, and W. A. Clark, ‘‘Logical design of
macromodules,’’ in Proc. ACM Spring Joint Comput. Conf., Apr. 1967,
pp. 357–364.

[10] A. J. Martin, ‘‘The limitations to delay-insensitivity in asynchronous
circuits,’’ inBeauty is Our Business. NewYork, NY,USA: Springer, 1990,
pp. 302–311.

[11] K. van Berkel, ‘‘Beware the isochronic fork,’’ Integr., VLSI J., vol. 13,
no. 2, pp. 103–128, 1992.

[12] N. Toosizadeh, ‘‘Enhanced synchronous design using asynchronous tech-
niques,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 2010.

[13] R. Najvirt, S. R. Naqvi, and A. Steininger, ‘‘Classifying virtual chan-
nel access control schemes for asynchronous NoCs,’’ in Proc. IEEE
19th Int. Symp. Asynchronous Circuits Syst. (ASYNC), May 2013,
pp. 115–123.

[14] A. Peeters and K. van Berkel, ‘‘Single-rail handshake circuits,’’ in Proc.
IEEE 2ndWork. Conf. Asynchronous Design Methodol., 1995, pp. 53–62.

[15] J. Bainbridge, Asynchronous System-on-Chip Interconnect. London,
U.K.: Springer, 2013.

[16] T. Verhoeff, A Theory of Delay-Insensitive Systems. Eindhoven,
The Netherlands: Eindhoven Univ. Technology, 1994.

[17] D. E. Muller, ‘‘A theory of asynchronous circuits,’’ in Proc. Int. Symp.
Theory Switching, Apr. 1959, pp. 204–243.

[18] K. M. Fant and S. A. Brandt. Null Convention
Logic. Accessed: Jan. 10, 2019. [Online]. Available:
http://www.theseusresearch.com/NCLPaper01.htm

[19] K. M. Fant and S. A. Brandt, ‘‘Null convention logic: A complete and
consistent logic for asynchronous digital circuit synthesis,’’ in Proc. IEEE
Int. Conf. Appl. Specific Syst., Archit. Processors (ASAP), Aug. 1996,
pp. 261–273.

[20] G. E. Sobelman and K. Fant, ‘‘CMOS circuit design of threshold gates
with hysteresis,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 2,
May/Jun. 1998, pp. 61–64.

[21] M. E. Dean, T. Williams, and D. Dill, ‘‘Efficient self-timing with level-
encoded 2-phase dual-rail (LEDR),’’ in Proc. Adv. Res. VLSI, 1991,
pp. 55–70.

[22] I. E. Sutherland, ‘‘Micropipelines,’’ Commun. ACM, vol. 32, no. 6,
pp. 720–738, Jun. 1989.

[23] M. Singh and S. M. Nowick, ‘‘MOUSETRAP: Ultra-high-speed
transition-signaling asynchronous pipelines,’’ in Proc. IEEE ICCD,
Sep. 2001, p. 0009.

[24] I. Sutherland and S. Fairbanks, ‘‘GasP: Aminimal FIFO control,’’ inProc.
IEEE ASYNC, Mar. 2001, pp. 46–53.

[25] A. M. Lines, Pipelined Asynchronous Circuits. Pasadena, CA, USA:
California Inst. Technol., 1998.

[26] R. O. Ozdag and P. A. Beerel, ‘‘High-speed QDI asynchronous
pipelines,’’ in Proc. IEEE 8th Int. Symp. Asynchronous Circuits Syst.,
2002, pp. 13–22.

[27] C. E. Molnar, I. W. Jones, W. S. Coates, J. K. Lexau, S. M. Fairbanks,
and I. E. Sutherland, ‘‘Two FIFO ring performance experiments,’’ Proc.
IEEE, vol. 87, no. 2, pp. 297–307, Feb. 1999.

[28] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, ‘‘Wave-
pipelining: A tutorial and research survey,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 6, no. 3, pp. 464–474,
Sep. 1998.

[29] O. Hauck and S. A. Huss, ‘‘Asynchronous wave pipelines for high
throughput datapaths,’’ in Proc. IEEE Int. Conf. Electron., Circuits Syst.,
vol. 1, Sep. 1998, pp. 283–286.

[30] B. D. Winters and M. R. Greenstreet, ‘‘A negative-overhead, self-timed
pipeline,’’ inProc. IEEE 8th Int. Symp. Asynchronous Circuits Syst., 2002,
pp. 37–46.

[31] S. R. Naqvi, J. Lechner, and A. Steininger, ‘‘Protection of Muller–
Pipelines from transient faults,’’ in Proc. IEEE 15th Int. Symp. Qual.
Electron. Design (ISQED), Mar. 2014, pp. 123–131.

[32] K. van Berkel, Handshake Circuits: An Asynchronous Architecture for
VLSI Programming, vol. 5. Cambridge, U.K.: Cambridge Univ. Press,
1993.

[33] A. Peeters, ‘‘Single-rail handshake circuits,’’ Ph.D. dissertation, Dept.
Math. Comput. Sci., Eindhoven Univ. Technol., Eindhoven, The Nether-
lands, 1996.

[34] K. van Berkel, R. Burgess, J. Kessels, A. Peelers, M. Roncken, and
F. Schalij, ‘‘A fully asynchronous low-power error corrector for the DCC
player,’’ IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1429–1439,
Dec. 1994.

[35] K. van Berkel et al., ‘‘A single-rail re-implementation of a DCC error
detector using a generic standard-cell library,’’ in Proc. IEEE 2nd Work.
Conf. Asynchronous Design Methodol., May 1995, pp. 72–79.

[36] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor,
andG. Stegmann, ‘‘An asynchronous low-power 80C51microcontroller,’’
in Proc. IEEE 4th Int. Symp. Adv. Res. Asynchronous Circuits Syst.,
Mar./Apr. 1998, pp. 96–107.

[37] J. Kessels, T. Kramer, G. den Besten, A. Peeters, and V. Timm, ‘‘Applying
asynchronous circuits in contactless smart cards,’’ in Proc. IEEE 6th
Int. Symp. Adv. Res. Asynchronous Circuits Syst. (ASYNC), Apr. 2000,
pp. 36–44.

[38] J. Kessels, T. Kramer, A. Peeters, and V. Timm, ‘‘DESCALE: A design
experiment for a smart card application consuming low energy,’’ in Proc.
Eur. Low Power Initiative Electron. Syst. Design, 2001, pp. 247–262.

[39] A. J. Martin and C. D. Moore, ‘‘CHP and CHPsim: A language and
simulator for fine-grain distributed computation,’’ Dept. Comput. Sci.,
California Inst. Technol., Pasadena, CA,USA, Tech. Rep. CS-TR-1-2011,
2011.

[40] A. J. Martin, S. M. Burns, T. Lee, D. Borkovic, and P. J. Hazewin-
dus, ‘‘The design and implementation of an asynchronous microproces-
sor,’’ Ph.D. dissertation, Dept. Comput. Sci., California Inst. Technol.,
Pasadena, CA, USA, 1989.

[41] A. J. Martin et al., ‘‘The design of an asynchronous MIPS R3000
microprocessor,’’ in Proc. IEEE 17th Conf. Adv. Res. VLSI, Sep. 1997,
pp. 164–181.

[42] M. Renaudin, P. Vivet, and F. Robin, ‘‘ASPRO: An asynchronous 16-bit
RISC microprocessor with DSP capabilities,’’ in Proc. Proc. IEEE 25th
Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 1999, pp. 428–431.

[43] R. Manohar and C. Kelly, ‘‘Network on a chip: Modeling wireless net-
works with asynchronous VLSI,’’ IEEE Commun. Mag., vol. 39, no. 11,
pp. 149–155, Nov. 2001.

[44] K. A. Boahen, ‘‘A burst-mode word-serial address-event link-I: Trans-
mitter design,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 7,
pp. 1269–1280, Jul. 2004.

[45] G. N. Patel, M. S. Reid, D. E. Schimmel, and S. P. DeWeerth, ‘‘An asyn-
chronous architecture for modeling intersegmental neural communica-
tion,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 2,
pp. 97–110, Feb. 2006.

[46] D. Edwards and A. Bardsley, ‘‘Balsa: An asynchronous hardware synthe-
sis language,’’ Comput. J., vol. 45, no. 1, pp. 12–18, 2002.

[47] D. Edwards, A. Bardsley, L. Janin, L. Plana, and W. Toms, ‘‘Balsa:
A tutorial guide, version V3.5,’’ School Comput. Sci., Univ. Manchester,
Manchester, U.K., Tech. Rep., 2006.

[48] Tiempo Secure. ACC: Asynchronous Circuit Compiler. Accessed:
Dec. 23, 2018. [Online]. Available: http://www.tiempo-
ic.com/products/sw-tools/acc.html

[49] A. Yakovlev, P. Vivet, and M. Renaudin, ‘‘Advances in asynchronous
logic: From principles to GALS&NoC, recent industry applications, and
commercial CAD tools,’’ in Proc. Conf. Design, Autom. Test Eur., 2013,
pp. 1715–1724.

[50] C. Spear, SystemVerilog for Verification: A Guide to Learning the Test-
bench Language Features. New York, NY, USA: Springer, 2008.

[51] Tiempo Secure. TAM16: 16-Bit Microcontroller IP Core.
Accessed: Dec. 23, 2018. [Online]. Available: http://www.tiempo-
ic.com/products/ip-cores/TAM16.html

[52] U. P. de Catalunya. Petrify: A Tool for Synthesis of Petri Nets and
Asynchronous Circuits. Accessed: Dec. 24, 2018. [Online]. Available:
http://www.cs.upc.edu/~jordicf/petrify/

[53] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, ‘‘Petrify: A tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,’’ IEICE Trans. Inf. Syst.,
vol. E80-D, no. 3, pp. 315–325, 1997.

[54] T. Akram, S. R. Naqvi, S. A. Haider, and M. Kamran, ‘‘Towards
real-time crops surveillance for disease classification: Exploiting paral-
lelism in computer vision,’’ Comput. Electr. Eng., vol. 59, pp. 15–26,
Apr. 2017.

[55] A. Bardsley, L. Tarazona, and D. Edwards, ‘‘Teak: A token-flow imple-
mentation for the balsa language,’’ in Proc. IEEE 9th Int. Conf. Appl.
Concurrency Syst. Design (ACSD), Jul. 2009, pp. 23–31.

34000 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

[56] G. K. Theodoropoulos, G. K. Tsakogiannis, and J. V. Woods, ‘‘Occam:
An asynchronous hardware description language?’’ in Proc. IEEE
23rd EUROMICRO Conf. New Frontiers Inf. Technol. (EUROMICRO),
Sep. 1997, pp. 249–256.

[57] P. Endecott and S. B. Furber, ‘‘Modelling and simulation of asynchronous
systems using the LARD hardware description language,’’ in Proc. ESM,
1998, pp. 39–43.

[58] B. Kangsah, R. Wollowski, W. Vogler, and J. Beister, ‘‘DESI: A tool for
decomposing signal transition graphs,’’ inProc. 3rd ACiD-WGWorkshop,
2003, pp. 1–2.

[59] S. Frankild and H. Palbÿl. Visual STG Lab. Accessed: Dec. 24, 2018.
[Online]. Available: http://vstgl.sourceforge.net/

[60] WorkCraft. Accessed: Dec. 24, 2018. [Online]. Available:
https://workcraft.org/

[61] Electrical Engineering and NUS Engineering. Asynchronous High Level
Synthesis Tool (VERISYN). Accessed: Dec. 24, 2018. [Online]. Available:
http://async.org.uk/besst/verisyn/

[62] I. Blunno and L. Lavagno, ‘‘Automated synthesis of micro-pipelines
from behavioral Verilog HDL,’’ in Proc. IEEE 6th Int. Symp. Adv. Res.
Asynchronous Circuits Syst. (ASYNC), Apr. 2000, pp. 84–92.

[63] DEMO Session. Accessed: Jan. 2, 2019. [Online]. Available:
http://conferences.computer.org/async2007

[64] Handshake-Solution. Tide—Timeless Design Environment. Accessed:
Jan. 2, 2019. [Online]. Available: http://www.handshakesolutions.com

[65] K.-R. Cho, K. Okura, and K. Asada, ‘‘Design of a 32-bit fully asyn-
chronous microprocessor (FAM),’’ in Proc. IEEE 35th Midwest Symp.
Circuits Syst., Aug. 1992, pp. 1500–1503.

[66] E. Brunvand, ‘‘The NSR processor,’’ in Proc. 26th Hawaii Int. Conf. Syst.
Sci., vol. 1, Jan. 1993, pp. 428–435.

[67] C. E. Molnar, R. F. Sproull, and I. E. Sutherland, ‘‘Counterflow pipeline
processor architecture,’’ IEEE Design Test Comput., vol. 11, no. 3, p. 48,
Jul. 1994.

[68] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods,
‘‘AMULET1: A micropipelined ARM,’’ in IEEE Compcon Spring Dig.
Papers, Feb./Mar. 1994, pp. 476–485.

[69] J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Paver, and
S. Temple, ‘‘AMULET1: An asynchronous ARMmicroprocessor,’’ IEEE
Trans. Comput., vol. 46, no. 4, pp. 385–398, Apr. 1997.

[70] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamura, ‘‘TITAC:
Design of a quasi-delay-insensitive microprocessor,’’ IEEE Design Test
Comput., vol. 11, no. 2, pp. 50–63, Jun. 1994.

[71] J. A. Tierno, A. J.Martin, D. Borkovic, and T. K. Lee, ‘‘A 100-MIPSGaAs
asynchronousmicroprocessor,’’ IEEEDesign Test Comput., vol. 11, no. 2,
pp. 43–49, Jun. 1994.

[72] W. F. Richardson and E. Brunvand, ‘‘Fred: An architecture for a self-
timed decoupled computer,’’ in Proc. IEEE 2nd Int. Symp. Adv. Res.
Asynchronous Circuits Syst., Mar. 1996, pp. 60–68.

[73] C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven, ‘‘Hades-
towards the design of an asynchronous superscalar processor,’’ in Proc.
IEEE 2nd Work. Conf. Asynchronous Design Methodol., May 1995,
pp. 200–209.

[74] C. J. Elston, D. B. Christianson, P. A. Findlay, and G. B. Steven,
‘‘HADES—An asynchronous superscalar processor,’’ in Proc. IEE Col-
loq. Design Test Asynchronous Syst., 1996, p. 10.

[75] C. A. R. Hoare, ‘‘Communicating sequential processes,’’Commun. ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[76] A. Semenov, A. M. Koelmans, L. Lloyd, and A. Yakovlev, ‘‘Designing
an asynchronous processor using Petri nets,’’ IEEE Micro, vol. 17, no. 2,
pp. 54–64, Mar. 1997.

[77] W. C. Holton, ‘‘The large-scale integration of microelectronic circuits,’’
Sci. Amer., vol. 237, no. 3, pp. 82–95, 1977.

[78] S. S. Patil, ‘‘Cellular arrays for asynchronous control,’’ in Proc. ACM
Conf. Rec. 7th Annu. Workshop Microprogram., 1974, pp. 178–185.

[79] S. B. Furber et al., ‘‘AMULET2e: An asynchronous embedded con-
troller,’’ Proc. IEEE, vol. 87, no. 2, pp. 243–256, Feb. 1999.

[80] A. Takamura et al., ‘‘TITAC-2: An asynchronous 32-bit micropro-
cessor based on scalable-delay-insensitive model,’’ in Proc. IEEE Int.
Conf. Comput. Design, VLSI Comput. Processors (ICCD), Oct. 1997,
pp. 288–294.

[81] J. M. C. Tse and D. P. K. Lun, ‘‘ASYNMPU: A fully asynchronous CISC
microprocessor,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), vol. 3,
Jun. 1997, pp. 1816–1819.

[82] S. R. Naqvi, A. Steininger, and J. Lechner, ‘‘An SET tolerant tree
arbiter cell,’’ in Proc. IEEE 19th Int. Symp. Asynchronous Circuits
Syst. (ASYNC), May 2013, pp. 31–39.

[83] S. R. Naqvi, T. Akram, S. A. Haider, and M. Kamran, ‘‘Artificial
neural networks based dynamic priority arbitration for asynchronous
flow control,’’ Neural Comput. Appl., vol. 29, no. 7, pp. 627–637,
2018.

[84] S. V. Morton, S. S. Appleton, and M. J. Liebelt, ‘‘ECSTAC: A fast asyn-
chronous microprocessor,’’ in Proc. IEEE 2nd Work. Conf. Asynchronous
Design Methodol., May 1995, pp. 180–189.

[85] S. V. Morton, ‘‘Fast asynchronous VSLI circuit design techniques
and their application to microprocessor design,’’ Ph.D. dissertation,
Dept. Elect. Electron. Eng., Univ. Adelaide, Adelaide, SA, Australia,
1997.

[86] K. T. Christensen, P. Jensen, P. Korger, and J. Sparso, ‘‘The design of an
asynchronous TinyRISC TR4101 microprocessor core,’’ in Proc. IEEE
4th Int. Symp. Adv. Res. Asynchronous Circuits Syst., Mar./Apr. 1998,
pp. 108–119.

[87] M. Renaudin, P. Vivet, and F. Robin, ‘‘ASPRO-216: A standard-cell
Q.D.I. 16-bit RISC asynchronous microprocessor,’’ in Proc. IEEE 4th Int.
Symp. Adv. Res. Asynchronous Circuits Syst., Mar./Apr. 1998, pp. 22–31.

[88] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij,
‘‘The VLSI-programming language Tangram and its translation into
handshake circuits,’’ in Proc. Conf. Eur. Design Autom., Feb. 1991,
pp. 384–389.

[89] S. B. Furber, D. A. Edwards, and J. D. Garside, ‘‘AMULET3: A 100MIPS
asynchronous embedded processor,’’ in Proc. IEEE Int. Conf. Comput.
Design, Sep. 2000, pp. 329–334.

[90] ARM. The THUMB Instruction SET. Accessed:
Jan. 14, 2019. [Online]. Available: http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.ddi0210c/CACBCAAE.html

[91] J.-H. Lee, W.-C. Lee, and K.-R. Cho, ‘‘A novel asynchronous pipeline
architecture for CISC type embedded controller, A8051,’’ in Proc.
IEEE 45th Midwest Symp. Circuits Syst. (MWSCAS), vol. 2, Aug 2002,
pp. II-675–II-678.

[92] A. J. Martin et al., ‘‘The Lutonium: A sub-nanojoule asynchronous 8051
microcontroller,’’ in Proc. IEEE 9th Int. Symp. Asynchronous Circuits
Syst., May 2003, pp. 14–23.

[93] Q. Zhang and G. Theodoropoulos, ‘‘Towards an asynchronous MIPS
processor,’’ in Advances in Computer Systems Architecture (Lec-
ture Notes in Computer Science). Berlin, Germany: Springer, 2003,
pp. 137–150.

[94] Q. Zhang and G. Theodoropoulos, ‘‘Modelling SAMIPS: A synthesisable
asynchronous MIPS processor,’’ in Proc. 37th Annu. Symp. Simulation,
2004, pp. 205–212.

[95] D. Edwards. An Integrated Framework for Formal Verification and Dis-
tributed Simulation of Asynchronous Hardware. Accessed: Jan. 2, 2019.
[Online]. Available: http://www.cs.bham.ac.uk/research/projects/parlard/

[96] V. Ekanayake, C. Kelly, IV, and R.Manohar, ‘‘An ultra low-power proces-
sor for sensor networks,’’ ACM SIGOPS Oper. Syst. Rev., vol. 38, no. 5,
pp. 27–36, 2004.

[97] C. Kelly, IV, V. Ekanayake, and R. Manohar, ‘‘SNAP: A sensor-network
asynchronous processor,’’ in Proc. IEEE 9th Int. Symp. Asynchronous
Circuits Syst., Jun. 2003, pp. 24–33.

[98] V. N. Ekanayake, C. Kelly, and R. Manohar, ‘‘BitSNAP: Dynamic sig-
nificance compression for a low-energy sensor network asynchronous
processor,’’ in Proc. 11th IEEE Int. Symp. Asynchronous Circuits
Syst. (ASYNC), Mar. 2005, pp. 144–154.

[99] Handshakesolution. Handshake Solutions HT80C51. Accessed:
Jan. 3, 2019. [Online]. Available: http://www.keil.com/dd/chip/3931.htm

[100] T. van Hoek, ‘‘Designing a high-speed asynchronous 80C51 microcon-
troller,’’ M.S. thesis, Fac. Elect. Eng., Eindhoven Univ. Technol., Eind-
hoven, The Netherlands, 2008.

[101] K.-L. Chang and B.-H. Gwee, ‘‘A low-energy low-voltage asynchronous
8051 microcontroller core,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2006, pp. 3181–3184.

[102] K.-L. Chang, B.-H. Gwee, andY. Zheng, ‘‘A semi-custommemory design
for an asynchronous 8051 microcontroller,’’ in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2008, pp. 3398–3401.

[103] K.-L. Chang, T. Lin, W.-G. Ho, K.-S. Chong, B.-H. Gwee, and
J. S. Chang, ‘‘A dual-core 8051 microcontroller system based on
synchronous-logic and asynchronous-logic,’’ in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2013, pp. 3022–3025.

[104] K.-L. Chang, B.-H. Gwee, J. S. Chang, and K.-S. Chong, ‘‘Synchronous-
logic and asynchronous-logic 8051microcontroller cores for realizing the
Internet of Things: A comparative study on dynamic voltage scaling and
variation effects,’’ IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 3, no. 1,
pp. 23–34, Mar. 2013.

VOLUME 7, 2019 34001



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

[105] A. Lines, ‘‘The Vortex: A superscalar asynchronous processor,’’ in Proc.
13th IEEE Int. Symp. Asynchronous Circuits Syst. (ASYNC), Mar. 2007,
pp. 39–48.

[106] A. Bink and R. York, ‘‘ARM996HS: The first licensable, clockless 32-bit
processor core,’’ IEEE Micro, vol. 27, no. 2, pp. 58–68, Mar./Apr. 2007.

[107] M.-C. Chang and D.-S. Shiau, ‘‘Design of an asynchronous pipelined
processor,’’ in Proc. IEEE Int. Conf. Commun., Circuits Syst. (ICCCAS),
May 2008, pp. 1093–1096.

[108] J. H. Lee, Y. H. Kim, and K. R. Cho, ‘‘A low-power implementation of
asynchronous 8051 employing adaptive pipeline structure,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 55, no. 7, pp. 673–677, Jul. 2008.

[109] Intel Corporation, Intel Microprocessor and Peripheral Handbook:
Microprocessor, vol. 1. Santa Clara, CA, USA: Intel Corporation, 1987.

[110] C.-J. Chen, W.-M. Cheng, R.-F. Tsai, H.-Y. Tsai, and T.-C. Wang,
‘‘A pipelined asynchronous 8051 soft-core implemented with balsa,’’ in
Proc. IEEE Asia–Pacific Conf. Circuits Syst. (APCCAS), Nov./Dec. 2008,
pp. 976–979.

[111] S. R. Naqvi and A. Steininger, ‘‘A tree arbiter cell for high speed resource
sharing in asynchronous environments,’’ in Proc. Conf. Design, Autom.
Test Eur., 2014, p. 295.

[112] C.-J. Chen et al., ‘‘A quasi-delay-insensitive microprocessor core imple-
mentation for microcontrollers,’’ J. Inf. Sci. Eng., vol. 25, no. 2,
pp. 543–557, 2009.

[113] T. Hung-Yue, W.-M. Cheng, Y.-T. Chang, C.-J. Chen, and
F.-C. Cheng, ‘‘A self-timed dual-rail processor core implementation
for microcontrollers,’’ in Proc. IEEE Int. Conf. Electron. Devices, Syst.
Appl. (ICEDSA), Apr. 2011, pp. 39–44.

[114] K. A. Fawaz et al., ‘‘A dynamically reconfigurable asynchronous proces-
sor for low power applications,’’ in Proc. IEEE 8th Symp. Appl. Specific
Processors (SASP), Oct. 2010, pp. 93–96.

[115] K. A. Fawaz et al., ‘‘A dynamically reconfigurable asynchronous pro-
cessor for low power applications,’’ in Proc. IEEE Conf. Design Archit.
Signal Image Process. (DASIP), Oct. 2010, pp. 76–83.

[116] S. Khawam, I. Nousias, M. Milward, Y. Yi, M. Muir, and T. Arslan,
‘‘The reconfigurable instruction cell array,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 16, no. 1, pp. 75–85, Jan. 2008.

[117] K. A. Fawaz, ‘‘A dynamically reconfigurable asynchronous processor,’’
Ph.D. dissertation, School Eng., Univ. Edinburgh, Edinburgh, U.K., 2012.
[Online]. Available: https://www.era.lib.ed.ac.uk/bitstream/handle/1842/
9442/Fawaz2012.pdf

[118] J. Rose and S. Brown, ‘‘Flexibility of interconnection structures for field-
programmable gate arrays,’’ IEEE J. Solid-State Circuits, vol. 26, no. 3,
pp. 277–282, Mar. 1991.

[119] K. Fawaz, T. Arslan, and I. Lindsay, ‘‘Conditional acknowledge syn-
chronisation in asynchronous interconnect switch design,’’ in Proc.
IEEE NASA/ESA Conf. Adapt. Hardw. Syst. (AHS), Jul./Aug. 2009,
pp. 126–131.

[120] ARM7 Thumb Family Datasheet, document 0035-3/02.02, ARM, 2002.
[121] S. Agarwala et al., ‘‘A 600-MHz VLIW DSP,’’ IEEE J. Solid-State

Circuits, vol. 37, no. 11, pp. 1532–1544, Nov. 2002.
[122] X. Li, B. Gunturk, and L. Zhang, ‘‘Image demosaicing: A systematic

survey,’’ Proc. SPIE, vol. 6822, p. 68221J, Jan. 2008.
[123] J. W. Cooley and J. W. Tukey, ‘‘An algorithm for the machine calculation

of complex Fourier series,’’Math. Comput., vol. 19, no. 90, pp. 297–301,
1965.

[124] D. W. Trainor, J. P. Heron, and R. F. Woods, ‘‘Implementation of the 2D
DCT using a Xilinx XC6264 FPGA,’’ in Proc. IEEE Workshop Signal
Process. Syst., SIPS Design Implement., Nov. 1997, pp. 541–550.

[125] G. Martinez, ‘‘TMS320VC5501/02 power consumption summary,’’
Appl. Rep. TI SPRAA48, Texas Instrum. Incorporated, Dallas, TX, USA,
2004.

[126] T.-T. Liu and J. M. Rabaey, ‘‘A 0.25 V 460 nW asynchronous neural
signal processor with inherent leakage suppression,’’ IEEE J. Solid-State
Circuits, vol. 48, no. 4, pp. 897–906, Apr. 2013.

[127] V. Karkare, S. Gibson, and D. Markovic, ‘‘A 130-µW, 64-channel neural
spike-sorting DSP chip,’’ IEEE J. Solid-State Circuits, vol. 46, no. 5,
pp. 1214–1222, May 2011.

[128] R. Diamant, R. Ginosar, and C. Sotiriou, ‘‘Asynchronous sub-threshold
ultra-low power processor,’’ in Proc. IEEE 25th Int. Workshop
Power Timing Modeling, Optim. Simulation (PATMOS), Sep. 2015,
pp. 89–96.

[129] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, ‘‘Desynchro-
nization: Synthesis of Asynchronous Circuits From Synchronous Speci-
fications,’’ IEEE Trans. Comput.-Aided Design Integr., vol. 25, no. 10,
pp. 1904–1921, Oct. 2006.

[130] P. A. Beerel, G. D. Dimou, and A. M. Lines, ‘‘Proteus: An ASIC flow for
GHz asynchronous designs,’’ IEEE Design Test Comput., vol. 28, no. 5,
pp. 36–51, Sep./Oct. 2011.

[131] D. Bhadra and K. S. Stevens, ‘‘Design of a low power, relative timing
based asynchronous msp430 microprocessor,’’ in Proc. Conf. Design,
Autom. Test Europe, 2017, pp. 794–799.

[132] O. Girard. OpenMSP430. Accessed: Jan. 3, 2019. [Online]. Available:
https://opencores.org/project/openmsp430

[133] A. Bardsley and D. A. Edwards, Balsa: An Asynchronous Circuit Synthe-
sis System. Manchester, U.K.: Univ. Manchester, 1998.

[134] L. Necchi, L. Lavagno, D. Pandini, and L. Vanzago, ‘‘An ultra-low energy
asynchronous processor for wireless sensor networks,’’ in Proc. 12th
IEEE Int. Symp. Asynchronous Circuits Syst., Mar. 2006, p. 85.

[135] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin,
and C. Sotiriou, ‘‘Handshake protocols for de-synchronization,’’ in
Proc. IEEE 10th Int. Symp. Asynchronous Circuits Syst., Apr. 2004,
pp. 149–158.

[136] Y. Liu, G. Xie, P. Chen, J. Chen, and Z. Li, ‘‘Designing an asynchronous
fpga processor for low-power sensor networks,’’ in Proc. IEEE Int. Symp.
Signals, Circuits Syst. (ISSCS), Jul. 2009, pp. 1–6.

[137] S. Ghosh, J. Tessier, and M. A. Bayoumi, ‘‘ASPEN: An asynchronous
signal processor for energy efficient sensor nodes,’’ in Proc. 17th IEEE
Int. Conf. Electron., Circuits, Syst. (ICECS), Dec. 2010, pp. 268–272.

[138] M. Laurence, ‘‘Introduction to Octasic asynchronous processor tech-
nology,’’ in Proc. IEEE 18th Int. Symp. Asynchronous Circuits Syst.
(ASYNC), May 2012, pp. 113–117.

[139] M. Herrera and F. Viveros, ‘‘Asynchronous 8-bit processor mapped
into an FPGA device,’’ in Proc. IEEE Colombian Conf. Commun.
Comput. (COLCOM), Jun. 2014, pp. 1–7.

[140] S. Keller, A. J. Martin, and C. Moore, ‘‘DD1: A QDI, radiation-hard-
by-design, near-threshold 18uW/MIPS microcontroller in 40 nm Bulk
CMOS,’’ in Proc. 21st IEEE Int. Symp. Asynchronous Circuits Syst.
(ASYNC), May 2015, pp. 37–44.

[141] A. Przybylski, K. Haque, and P. Beckett, ‘‘The Bel array: An asyn-
chronous fine-grained co-processor for DSP,’’ in Proc. IEEE 10th Int.
Conf. Signal Process. Commun. Syst. (ICSPCS), Dec. 2016, pp. 1–7.

[142] M. Fiorentino, Y. Savaria, C. Thibeault, and P. Gervais, ‘‘A practical
design method for prototyping self-timed processors using FPGAs,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2016, pp. 1754–1757.

[143] M. Fiorentino, Y. Savaria, and C. Thibeault, ‘‘FPGA implementation of
token-based self-timed processors: A case study,’’ in Proc. 15th IEEE Int.
New Circuits Syst. Conf. (NEWCAS), Jun. 2017, pp. 313–316.

ZAHEER TABASSAM was born in Haripur,
Pakistan, in 1994. He received the B.S. degree
in electronics from The University of Haripur,
Haripur, in 2016, and the M.S. degree in electri-
cal engineering from the COMSATS University
Islamabad at Wah, Pakistan, in 2019, where he
has been a Research Associate with the Depart-
ment of Electrical and Computer Engineering,
since 2017. His current research interests include
asynchronous processors and logic, neuromorphic

computing, brain-inspired computing, and electronic systems.

SYED RAMEEZ NAQVI was born in Islamabad,
Pakistan, in 1983. He received the B.Sc. degree
in computer engineering from the COMSATS
Institute of Information Technology, Islamabad,
in 2005, and the M.Sc. degree in electronic
engineering from The University of Sheffield,
Sheffield, U.K., in 2007. He was awarded a fully
funded scholarship for the Ph.D. degree by The
PhD School of Informatics, Vienna University of
Technology, Vienna, Austria, from 2009 to 2013,

where he worked on fault-tolerant asynchronous logic with the Embedded
Computing Systems Group, Institute of Computer Engineering. Since 2014,
he has been an Assistant Professor with the Department of Electrical and
Computer Engineering, COMSATSUniversity Islamabad,WahCantonment,
Pakistan, where he is teaching at both undergraduate and postgraduate
levels and leading a research group on digital systems design and VLSI.
He has published 30 research articles in various international conferences and
journals.

34002 VOLUME 7, 2019



Z. Tabassam et al.: Toward Designing Asynchronous Microprocessors: From Specification to Tape-Out

TALLHA AKRAM received the B.S. degree
in computer engineering from the COMSATS
University Islamabad at Abbottabad, Pakistan,
in 2006, the M.S. degree in embedded systems
and control engineering from Leicester University,
U.K., in 2008, and the Ph.D. degree in computer
vision and pattern recognition from Chongqing
University, China, in 2014. He is currently an
Assistant Professor with the Electrical and Com-
puter Engineering Department, COMSATS Uni-

versity Islamabad at Wah, Pakistan. He is the author of number of
peer-reviewed journals and conferences. His research interests include com-
puter vision, pattern recognition andmachine learning, artificial intelligence,
and applied optimization.

MUSAED ALHUSSEIN was born in Riyadh,
Saudi Arabia. He received the B.S. degree in
computer engineering from King Saud University,
Riyadh, in 1988, and the M.S. and Ph.D. degrees
in computer science and engineering from the
University of South Florida, Tampa, FL, USA,
in 1992 and 1997, respectively. Since 1997, he has
been on the Faculty of the Computer Engineering
Department, College of Computer and Information
Science, King Saud University. He is currently the

Founder and the Director of Embedded Computing and Signal Processing
Research Laboratory. His research interests include the typical topics of
computer architecture and signal processing and with an emphasis on VLSI
testing and verification, embedded and pervasive computing, cyber-physical
systems, mobile cloud computing, big data, eHealthcare, and body area
networks.

KHURSHEED AURANGZEB received the
B.S. degree in computer engineering from the
COMSATS Institute of Information Technology
at Abbottabad, Pakistan, in 2006, the M.S. degree
in electrical engineering (System-on-Chip) from
Linköping University, Sweden, in 2009, and
the Ph.D. degree from Mid Sweden University,
Sundsvall, Sweden, in 2013. From 2013 to 2016,
he was an Assistant Professor/HoD with the Elec-
trical Engineering Department, Abasyn university,

Peshawar, Pakistan. He is currently an Assistant Professor with the College
of Computer and Information Science, King Saud University, Riyadh, Saudi
Arabia. His research interests includewireless visual sensor networks, design
methods and implementation of embedded systems, applied image/signal
processing, image compression, traffic monitoring, cloud computing, edge
computing, the Internet of Things, smart grids, smart buildings, machine
learning, and deep learning.

SAJJAD ALI HAIDER received the B.S. degree
in computer engineering from the COMSATS
University Islamabad (CUI) at Wah, Pakistan,
in 2005, the M.S. degree in embedded systems
and control engineering from Leicester Univer-
sity, U.K., in 2007, and the Ph.D. degree from
ChongqingUniversity, China, in 2014. Since 2005,
he has been with the Department of Electrical
Engineering, CUI Wah, where he is currently an
Assistant Professor. His research interests include

embedded systems, control systems, and machine learning.

VOLUME 7, 2019 34003


	INTRODUCTION
	FUNDAMENTALS OF ASYNCHRONOUS LOGIC
	DATA AND CONTROL PATHS
	HANDSHAKING CONCEPT IN ASYNCHRONOUS DESIGN
	CLASSIFICATION OF ASYNCHRONOUS CIRCUITS
	DELAY INSENSITIVE CIRCUITS
	QUASI DELAY INSENSITIVE CIRCUITS
	SPEED INDEPENDENT CIRCUITS

	SIGNALING CONVENTIONS
	4-PHASE SIGNALING
	2-PHASE SIGNALING

	DATA REPRESENTATION
	SINGLE RAIL ENCODING
	M-OF-N ENCODING

	ASYNCHRONOUS PIPELINE IMPLEMENTATIONS

	ASYNCHRONOUS PROCESSORS, LANGUAGES AND DESIGN TOOLS
	TOOLS AND LANGUAGES
	TANGRAM
	CHP: COMMUNICATING HARDWARE PROCESSES
	BALSA
	ASYNCHRONOUS CIRCUIT COMPILER
	PETRIFY
	OTHER TOOLS

	PROCESSORS
	CALTECH ASYNCHRONOUS MICROPROCESSOR
	FULLY ASYNCHRONOUS MICROPROCESSOR
	NON-SYNCHRONOUS RISC PROCESSOR
	COUNTERFLOW PIPELINE PROCESSOR ARCHITECTURE
	AMULET1
	TITAC: DESIGN OF A QUASI-DELAY-INSENSITIVE MICROPROCESSOR
	THE GALLIUM ARSENIDE ASYNCHRONOUS MICROPROCESSOR
	FRED ARCHITECTURE
	HADES ARCHITECTURE
	ASYNCHRONOUS PROCESSOR BASED ON PETRI NETS
	Amulet2e: AN ASYNCHRONOUS EMBEDDED CONTROLLER
	ASYNCHRONOUS MIPS R3000 MICROPROCESSOR
	TITAC-2
	ASYNMPU
	ECSTAC
	TinyRISC TR4101 MICROPROCESSOR CORE
	ASPRO-216
	80C51 MICROCONTROLLER
	AMULET3
	A8051
	THE LUTONIUM MICROCONTROLLER
	MODELLING SAMIPS
	SENSOR NETWORK ASYNCHRONOUS PROCESSOR
	BITSNAP
	HT80C51
	ASYNCHRONOUS 8051 MICROCONTROLLER CORE
	VORTEX PROCESSOR
	ARM996HS PROCESSOR
	TAM16 MICROCONTROLLER
	AsynRISC
	A8051v2
	PA8051
	NCTUAC18
	DRAP
	ASYNCHRONOUS NEURAL SIGNAL PROCESSOR
	uaMIPS
	ANSYNCHRONOUS MSP430

	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	ZAHEER TABASSAM
	SYED RAMEEZ NAQVI
	TALLHA AKRAM
	MUSAED ALHUSSEIN
	KHURSHEED AURANGZEB
	SAJJAD ALI HAIDER


