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ABSTRACT In this paper, a novel solution for cooperative localization problem involving a network with
multiple mobile agents accessing to only one beacon agent is presented. The solution can be applied to
a network with a minimum number of communication links (subjecting the network topology to be an
undirected spanning tree). The objective is to provide each agent in the network with information on its
absolute position without using any on-board global positioning sensors such as GPS receivers. The proposed
solution uses an adaptive relative position estimation algorithm for each pair of neighboring mobile agents.
The proposed estimation algorithm requires each agent to measure the relative inter-agent distance. The
local velocity vector is also measured and transmitted to the neighboring agents. The estimation mechanism
incorporating a signum function outperforms the recently established relative position estimation algorithms,
in terms of positioning and tracking errors. An adaptive cooperative localization (ACL) algorithm is formed
by augmenting the relative position estimation in a cooperative observer scheme suitably applicable for
accomplishing localization task involving a network of mobile agents. The salient feature of the proposed
ACL algorithm is that the communication graph among the agents needs only to have one undirected path
between two agents in the network. Such convenience promotes easy practical implementation and lite
computation for each agent. The proof of the proposed algorithm is provided using the Lyapunov stability
theorem. Three simulation case studies are presented to evaluate the performance of the solution in different
scenarios, including the stationary and moving beacon agent as well as the non-cooperatively controlled and
cooperatively controlled network of mobile agents. The comparative studies reveal that the ACL algorithm is
superior to the recently investigated linear-convex algorithm. The number of communication links required
for the localization task to be carried out by the proposed algorithm is minimum, thus promoting a more
preferable energy-efficient solution.

INDEX TERMS Relative position estimation, adaptive cooperative localization, multi-agent systems,
autonomous mobile robot.

I. INTRODUCTION
Knowing the whereabout of static and dynamic objects with
reference to a fixed point has been an interesting on-going dis-
cussion and academic debate. The objects of interest (human,
landmarks, mobile devices and vehicles) may be located in
the sea, air or on the ground. Each of the environments has its
own challenges and constraints to be dealt with, specifically.

The associate editor coordinating the review of this manuscript and
approving it for publication was Lin Wang.

The problem of finding the location of desired objects in a
global or local coordinates is named as localization prob-
lem. Nowadays, availability of more accurate positions for
any static or dynamic object, specially in indoor environ-
ment is indispensable. One of the easy and cost-effective
solutions to this problem is using Geographical Positioning
System (GPS). GPS modules are no longer scarce, such that
they can be found in all mobile telecommunication devices.
These modules receive broadcasted signals by at least four
satellites located in the earth atmosphere and provide the

32368
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-7882-1998
https://orcid.org/0000-0002-9955-3152


A. Safaei, M. N. Mahyuddin: ACL Using Relative Position Estimation for Networked Systems

longitude, latitude and altitude of the position in the earth
global frame. This data is considered as the absolute position.
It is shown that the position data provided by the commercial
GPS modules in open sky conditions has the mean accuracy
of 4.9 meters in radius [1]. The range of this error varies
according to the time and location subjecting to ambient
conditions such as the weather and hindrance exists in the
line-of-sight between the GPSmodule and the satellites. Such
error may not have detrimental impact to the localization task
involving large dynamic systems like airplane, ship, car and
landmark. For a small dynamical system being less than one
meter in dimension, the errors in the GPS reading, drastically
affect the localization and consequently the navigation tasks.
In addition, the GPS signals are not available inside buildings
and also in a jammed environment, where the line-of-sight
from the satellites to the GPS module is not available. There
are numerous solutions proposed in the literature dealing with
the aforementioned issues and providing more accurate tools
for localization problem. These solutions can be categorized
as follows.
• Methods which are trying to improve the accuracy of
localization with GPS;
– Method-1: Improving the GPS data accuracy by

correction signals received from a node with exact
known position. This category contains Differential
GPS (DGPS) and Real-Time Kinematics (RTK).
Although these methods can provide the accuracy
within some centimeters, the high expenses to sup-
port the enabling infrastructure prove the methods
to be major hurdles in wide installations offered to
public customers [2].

– Method-2: Providing GPS modules with the actual
information of orbiting satellites in the earth atmo-
sphere. This technique is named as Assisted-GPS
(A-GPS) and is available now in smart phones with
accuracy of about 10 meters [3].

• Methods without any GPS module on the nodes (or
targets) undergone localization process;
– Method-3: By integrating the inertial sensor mea-

surements (so-called dead-reckoning), the informa-
tion about the position and orientation of a mobile
target can be obtained with reference to the initial
states. Inertial sensors (mostly named as Inertial
Measurement Unit or IMU in short) are the sen-
sors for measuring the kinematics parameters of a
mobile system [4]. However, errors in the measure-
ment will accumulate and the estimates will drift
after a definite time [4]–[7]. There are several filter-
ing methods such as extended Kalman filter (EKF)
and particle filter which are proposed to deal with
the error drift. However, the aforementioned esti-
mation algorithm relies on the inclusion of white
noise signals in the measured data (attributed to
the Persistent Excitation (PE) condition) in order
to achieve an accurate localization procedure [7].
In this regard, data from a global coordinate frame

or some geometric constraints can be utilized so
as to have better localization performance. More-
over, incorporating some data available in a network
including several agents can be useful. In other
words, if each agent only relies on propagating
its equation of motion using self-motion measure-
ments, the state estimation error drifts due to the
noise with a standard deviation that grows in time
without bound. To reduce the growth rate of this
estimation error, a cooperative localization strategy
can be employed [7].

– Method-4: Defining the target location using
received data from several fixed or mobile nodes
(usually named as beacon nodes) in a network.
WiFi and Cellular positioning methods belong
to this group [3]. In addition, the localization
algorithms proposed in the literature for wireless
sensor networks (WSNs) are considered in this
category [9]–[11], [13]. Here, the beacon nodes are
located on pre-defined positions or equipped with
the GPS modules (hybrid algorithms). The accu-
racy of available technologies ranges from 20 to
30 meters for WiFi positioning and from 30 to
60 meters for cellular positioning [3], [8].

While a substantial advancement in the work to solve
the localization problem in all of the above categories is
evident, cooperative algorithms have been receiving a focal
attention, recently. The cooperative paradigm is adopted
mainly due to the emerging technologies in connectivity and
the trending in embedded control systems in the directions
toward Industrial Revolution 4.0. In addition, these solutions
have received more attentions in different types of applica-
tions including autonomous mobile robots. Collaborative or
cooperative localization using multiple mobile agents pro-
vides several potential advantages over using single mobile
agent, including increased localization accuracy and coverage
areas, robustness, and flexibility in case of limited sens-
ing ranges and possible measurement failures due to severe
environments [19]. For a network of mobile agents, there are
several localization solutions proposed in the literature, which
are reviewed with details in [12]. According to that survey,
cooperative localization algorithms for the network of mobile
agents are divided into five categories as grid-based algo-
rithms, probability distribution solutions, timing-based local-
ization, constrained localization algorithms and the solutions
for underwater sensor networks [12]. Among them, the algo-
rithms based on the probability distribution are used in many
localization cases. Particularly, the Bay’s rule is utilized to
provide the likelihood distribution for agents position in the
network [41]. These algorithms include EKF and particle
filters at each agent in the network. The EKF filters can be
used in a network with known dynamic and measurement
models for each agent in the network. By applying the EKF
filters, likelihood distribution of the agents positions have
been approximated by a Gaussian estimation method. This
leads to large localization error if the exact distribution for
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the agents position is not a Gaussian one [41]. On the other
hand, particle filters or sequential Monte Carlo methods can
be implemented for non-Gaussian systems. In this regard,
they are employed in many real practical localization prob-
lems. Despite multitude of benefits which the particle filter
can offer such as flexibility, simple implementation and no
requirement for huge memory to store the past data; these
solutions are very time consuming due to several samples
needed to produce the likelihood distribution of the agents
position [41]. Besides the categories mentioned in above,
all of the solutions proposed in the category of cooperative
localization algorithms for a network of mobile agents, can
be identified with the following properties;
• Ranged-based or range-free; regarding the availability of
inter-agent measurements (including distance and bear-
ing) in the network [13].

• Anchor-based or anchor-free; regarding the density of
nodes with pre-known location information (beacons or
anchors) in the network [14].

• Static or mobile; regarding the mobility of beacon nodes
in the network [15], [16].

• Distributed or centralized; depending on whether a cen-
tral processor exists or not, localization schemes can
be divided into centralized schemes and distributed
schemes [17], [18].

II. RELATED WORKS
All the available solutions for cooperative localization prob-
lem are seeking to reach more accurate information about
the position of either each agent in the network (i.e. self-
localization) or any other fixed or mobile target in both
outdoor and indoor environments. The initial investigation
on the cooperative localization is presented in [21], where
the leap-frogging motion pattern is suggested for a team
of mobile agents. The main disadvantage of that algo-
rithm is that, only one mobile agent or at-most a por-
tion of them is allowed to navigate in the environment
at each time step, leading to longer completion time of
the navigation-localization mission [20]. The leap-frogging
technique is further improved by other researchers as
in [22]–[24]. All of those solutions are in category of cen-
tralized cooperative localization algorithms. Due to the high
computational costs of the centralized algorithms, decentral-
ized (or distributed) cooperative localization algorithms are
developed so as to reduce the computational cost [20]. One of
the first distributed solution for the cooperative localization
problem in a team of mobile robots is presented in [25]
and [26]. The algorithm is further improved in [27] and huge
enhancement of the computational cost has been achieved
over the previously centralized solutions. The main drawback
is, however, the mobile agent dynamic should be known
as a set of a priori information. There are methods in the
literature which deal with the probabilistic localization in
the multi-agent systems. These methods rely less on the
agents dynamics; instead they are working on the probability
distribution generated based on the previous location of the

mobile agents and the inter-agent relative observations. One
of the most well-known probabilistic localization techniques,
is the Monte Carlo decentralized cooperative localization
algorithm, which is presented in [28]–[30]. Furthermore,
novel sampling and clustering techniques are proposed in [31]
and [32] so as to reduce the set of the particles as well as the
computational cost of the Monte Carlo localization solutions.
The problem of cross-correlation between the local position
estimations at each of the mobile agents is still existed in
the above solutions, leading to major unknown error in the
localization task [20].

For single-integrator agents, Oh and Ahn [33] have pro-
posed a cooperative position estimation law. It is claimed
that the estimated values converge to the actual positions of
the agents if the communication graph for the network is
uniformly connected. Moreover, the agents in the network
actively controls their position using the formation control
law utilizing the estimated position. Formation control, which
is one of the most actively studied topics within the realm of
multi-agent systems, generally aims to drive multiple agents
to achieve prescribed inter-agent differences in the state-
space [34], [54], [55]. In [7], two distributed EKF algorithms
are proposed for position estimation in a team of wheeled
mobile robots (WMRs). Similarly, Lu et al. [36] proposed
a cooperative localization among a team of three WMRs
using EKF. In [35], a network of multiple quadrotors is used
to track a moving target. Each quadrotor is equipped with
a cooperative EKF to estimate the position of the target.
Besides, an optimization problem is solved to define the
optimal path that quadrotors should move in the 3D space to
maximize both the accuracy of their own position estimation
and that of the mobile target. Since the cooperative EKF is
used in the mentioned solutions, the localization algorithm
is coupled with the dynamics of the agents as well as the
controller signals. Hence, the performance of the controller
affects the cooperative localization algorithm. Algorithm pro-
posed in [5], deals with the problem of mutual localiza-
tion (or self-localization) and formation control by using
vision-based measurements. In general, vision-based sensors
give projective measurements that do not contain distance
information. As a consequence, it is possible to obtain only
bearing information between two agents. In some cases, these
measurements can be augmented with distance information
by using an additional depth sensor or visible structures
with known dimensions. Chai et al. [19] aimed to solve the
cooperative localization problem for a group of mobile agents
with respect to a single landmark. Toward this goal, that paper
developed a cooperative estimation scheme for each mobile
agent to locate itself, i.e., estimating the relative coordinates
of each agent with respect to a stationary landmark. How-
ever, the estimation scheme is not applicable for a moving
landmark (or beacon). In that paper, every agent is equipped
with on-board interoceptive sensors for the measurement of
its own absolute velocity; and exteroceptive sensors for the
measurement of distances to its nearby agents and the change
in rates of the distances. Proposed algorithm in [37], tried to
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localize three flying quadrotors using amobile anchor located
on a WMR. The localization is not performed in a global
coordinate system. Instead, the performance of the proposed
method is investigated in an outdoor area covered by eight
cameras. Actually, there is local inertial coordinate system
and the quadrotors’ positions are estimated with regards to
the origin of that frame. In [38], the distributed localization
problem alongside with the mobile target tracking problem
is solved for a network of agents with nonlinear dynam-
ics. There, the decentralized cooperative position estimation
is performed using the nonparametric belief propagation
algorithm. The problem addressed in [6] is to localize a
GPS-denied unmanned aerial vehicle (UAV) (Agent B) with
the assistance of a nearby GPS-enabled UAV (Agent A).
Agent A broadcasts its global coordinates at discrete instants
in time. Both agents move around arbitrarily in 3D space.
There is a need for measurement of angle of arrival for the
signals communicated between the two agents. While this
type of measurement can be available easily for the stationary
agents, it is hard to synchronize the measurements of the
angle of arrival and the relative distance for the mobile agents
such as quadrotors in practical applications [39].

In one of the most recent works on the cooperative local-
ization, an integrated solution for relative localization and
leader-follower formation control in a team of quadrotors has
been proposed in [39]. The work made an assumption that
each quadrotor has on-board sensors to measure the local
velocity (using IMU module) and the inter-agent relative dis-
tance (using ultra-wide-band (UWB) module). The objective
was to estimate the relative position of the agents in a 2D
environment. There was not any aim to estimate the absolute
position of the agents and localize them in a global frame.
In this regard, the communication graph between the agents
needs to have at-least two paths from one agent in the network
to reach another agent, which is restrictive and often hard to
be practically achieved.

Recently, a distributed algorithm is suggested for coopera-
tive localizationwithin a network ofmobile dynamic systems,
where the network includes at least one beacon agent and at
least three listening agents [40], [41]. The solution uses the
popular triangulation method among four neighboring agents
in the network. Due to the reliance on the method of inclusion
test (at-least R2 enveloping space), there must be three or
more communication links to other agents locally at each
agent so as to have the cooperative localization algorithm into
account. This imposes a restrictive requirement for practical
implementation of the algorithm, where the least possible
communication links is more desirable. In addition, the coop-
erative localization solution proposed in [40] and [41] can not
be implemented in a network of less than four mobile agents.

Here in our proposed ACL algorithm, first an adaptive
estimation algorithm is proposed for estimating the rela-
tive position of two neighboring agents using the measure-
ments on local velocity and the inter-agent relative distance.
Then, a cooperative observer is presented for estimating the
absolute positions of every agents in the network using the

estimated relative positions between the neighboring agents
and the absolute position data available at the only beacon
agent of the network. TheACL algorithm can be implemented
within a network including any number of mobile agents
with the minimal communication links among the agents.
The algorithm requires the network to be an undirected span-
ning tree, which provides the minimum possible number of
communication links in the network so as to have it to be
connected. Moreover, the proposed solution is completely
decoupled from the dynamics of agents as well as the control
algorithm used at each agent in the network. Hence, it can
be applied to any team of nonlinear moving agents with
completely unknown dynamics and unknown bounded distur-
bances. In this regard, the main contributions of the proposed
cooperative localization solution can be described as follows;
• the proposed ACL algorithm can provide the absolute
positions of all agents using only one beacon agent in a
network consisting more than one mobile agent (i.e. one
beacon agent plus one listening agent is the minimum
requirement);

• the requirement on the communication graph between
the agents is minimal and it needs only one undirected
path between two adjacent agents, offering practical
convenience.

In the rest of the manuscript, first the adaptive relative
position estimating algorithm is proposed for two mobile
agents with non-zero relative velocity in Section III. Then,
a cooperative observer is presented in Section IV in order to
use the provided information of the relative position estima-
tion for estimating the absolute positions of all the agents in
the network by the help of only one beacon agent. The conver-
gence analyses for the methods are provided using Lyapunov
stability theorem. The combination of two methods men-
tioned above, forms the ACL algorithm for absolute local-
ization in a network of mobile agents. The ACL algorithm is
presented in Section V. In Section VI, three simulation case
studies including two comparative analyses, are exemplified
to observe the performance of the proposed ACL algorithm.
These case studies confirm the incorporation of the proposed
solution with the non-cooperatively controlled as well as the
cooperatively controlled network of mobile agents.

III. ADAPTIVE RELATIVE POSITION ESTIMATION
Definition 1: Consider two moving agents with unknown
dynamics establish a communication link between each other,
through which the relative distance and the relative velocity
of one to another can be measured. In this regard, we define
dr ∈ R+ as the relative distance and Vr ∈ Rn×1 as the relative
velocity. The kinematics of relative motion between the two
agents can be presented as follows

Ṗr = Vr , (1)

where Pr ∈ Rn×1 is the unknown unmeasurable relative
position between the agents. In this regard, one can observe

d2r = PTr Pr . (2)
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Here, n > 0 is the number of position dimensions in the envi-
ronment where the agents are located. Obviously, we have
n ∈ {2, 3}.
Proposition 1: The objective of the adaptive relative posi-

tion estimating algorithm is to estimate the relative position
between the two agents defined in Definition 1, such that the
relative position estimation error, i.e.

ε = Pr − P̂r (3)

as well as the corresponding distance estimation error
defined by

e = d2r − P̂
T
r P̂r , (4)

converge to a small set around zero as t → ∞, where P̂r ∈
Rn×1 is the estimated relative position between the two agents
and t > 0 is the symbol representing time.
Assumption 1: It is assumed that the agents defined in

Definition 1 move in a way that their relative position and
velocity are always non-zero and bounded. In this sense,
we have V 2

m ≤ V T
r Vr ≤ V 2

M and P2m ≤ PTr Pr ≤ P2M for
t ∈ [0,∞} and VM ,Vm,PM ,Pm ∈ R+. Consequently, one
can observe Dm ≤ dr ≤ DM and Ddm ≤ ḋr ≤ DdM , where
DM ,Dm,DdM ,Ddm ∈ R+.
Assumption 2: The orientation of the local frames at the

two agents defined in Definition 1 are consistent [39]. This
can be achieved by having access to the orientation of the
earth magnetic field and also measuring the Euler angles of
the local frames using special IMU modules [42].
Assumption 3: The initial relative position (i.e Pr (0) at

t = 0) between the agents defined in Definition 1 is avail-
able while they are stationary. According to [39], this can be
achieved during an initialization process for the two static
agents. The algorithm proposed in [43] can be considered as
a solution for the initialization process.
Theorem 1: Providing Assumption 1, Assumption 2 and

Assumption 3, if one can estimate the relative position
between the two agents defined in Definition 1, by

˙̂Pr = [1+ α sgn(eg)]Vr , (5)

where

g = V T
r P̂r , (6)

sgn(.) is the signum function and α ∈ (0, 1]; then the objec-
tives presented in Proposition 1 will be achieved.

Proof: Let us define

U1 =
1
4
e2. (7)

By taking the time-derivative, we have

U̇1 = e(dr ḋr −
˙̂PTr P̂r ). (8)

Besides, using the time-derivative of (2), one can reach to

dr ḋr = V T
r Pr . (9)

By replacing (9) and (5) in (8), we lead to

U̇1 = e[V T
r Pr − V

T
r P̂r − α sgn(eg)V

T
r P̂r ]. (10)

Then, by using (6) and a little rearranging, one can have

U̇1 = eδ − α|e||g|, (11)

where δ = V T
r Pr − V T

r P̂r and |.| is the symbol for repre-
senting the absolute values. Recalling Assumption 3 and by
considering (1) and (5), one can have (for t > 0)

Pr = Pr (0)+ Vr t (12)

and

P̂r = Pr (0)+ [1+ α sgn(eg)]Vr t. (13)

Utilizing (12) and (13), δ can be written as

δ=V T
r Pr (0)+V

T
r Vr t−V

T
r Pr (0)−[1+α sgn(eg)]V

T
r Vr t,

(14)

and consequently, we reach to

δ = −α sgn(eg)V T
r Vr t. (15)

Hence, the first term in the right-hand side of equation in (11)
is written as follows

eδ = −α sgn(g)|e|V T
r Vr t. (16)

In this equation, we have

g = V T
r Pr (0)+ [1+ α sgn(eg)]V T

r Vr t. (17)

It can be easily shown that the second term in g is positive as
long as 0 < α ≤ 1. Thus, by assuming P(0) = 0 without any
loss of generality, one can say that g > 0 and consequently
sgn(g) > 0. By applying this in (16) and rephrasing (11), one
can reach to

U̇1 = −α sgn(g)|e|V T
r Vr t − α|e||g| ≤ 0. (18)

Then, since U1 > 0 and U̇1 ≤ 0, the value of e converges
to zero asymptotically, based on Lyapunov stability theorem.
Since dr is bounded based on Assumption 1, and by consid-
ering the definition of e in (4), we have

P2hm ≤ P̂
T
r P̂r ≤ P

2
hM , (19)

where P2hm = D2
m, P

2
hM = D2

M and Phm,PhM ∈ R+. This
shows that P̂r is bounded. Consequently ε = Pr − P̂r is
bounded, since Pr is assumed to be bounded per Assumption
1. Thus for EM ∈ R+, one can define

εT ε ≤ EM . (20)

In addition, by utilizing (12) and (13), the value of ε can be
represented as follows

ε = Pr (0)+ Vr t − Pr (0)− Vr t − α sgn(eg)Vr t

= −α sgn(eg)Vr t. (21)

Besides, we have

ε̇ = Vr − [1+ α sgn(eg)]Vr = −α sgn(eg)Vr =
1
t
ε. (22)
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As the second part of the proof, let us define

U2 =
1
2
εT ε + U1. (23)

Then, we would have

U̇2 = ε̇
T ε + U̇1 (24)

By replacing (22), we lead to

U̇2 =
1
t
εT ε + U̇1. (25)

Then, by recalling (18) and (20), we reach to

U̇2 ≤ −H + η, (26)

where

H = α sgn(g)|e|V T
r Vr t + α|e||g| ≥ 0 (27)

and

η = EM . (28)

Based on LaSalle-Yoshizawa theorem [53], since η is a pos-
itive constant value and it is shown previously that e is con-
verging to zero asymptotically, one can say that ε is uniformly
ultimately bounded and converges to a bounded set around
the origin. Then, the objective presented in Proposition 1 is
satisfied and the proof is completed.
Remark 1:The adaptive law proposed in (5) can be used for

estimating the relative position between each pair of moving
agents that have a joint communication link. An intuitive
rival for this algorithm is ˙̂Pr = Vr [40]. In addition, a novel
estimator is presented in [39] to have more suitable estima-
tion of the relative positioning among the moving agents.
A comparative study is presented in SectionV to show that the
proposed algorithm in (5) outperforms the other twomethods.
Moreover, This algorithm can be utilized as the basis for the
cooperative localization within a team including several pair
of mobile agents.

IV. COOPERATIVE OBSERVER FOR ESTIMATING THE
ABSOLUTE POSITION
Having the relative position between each pair of mobile
agents be estimated by (5), a cooperative observer is proposed
in this section for estimating the absolute position of the
mobile agents in a network.
Definition 2: Consider a network consisting of N hetero-

geneous agents. Let G(z, E,A) be a graph with the set of N
nodes z = (v1, v2, ..., vN ), a set of edges E = (eij) ∈ RN×N

and associated adjacency matrixA = (aij) ∈ RN×N . An edge
eij in G is a link between a pair of nodes (vi, vj), representing
the flow of information from vj to vi. The eij is in existence
if and only if aij > 0. The graph is undirected, i.e. the eij and
eji in G are considered to be the same. We name vi and vj as
neighbors, if eij ∈ E . The communication graph is considered
to be connected, meaning that there is a path between each
pair of agents in the network. The in-degree matrix is defined
as D = diag(d1, d2, ..., dN ) ∈ RN×N , where each di is the

input degree to each node, i.e. di = 6N
j=1aij. Hence, we can

define Laplacian matrix L as below [54], [55]

L = D −A. (29)

Furthermore, by considering a beacon agent with known
absolute position, one can define the beacon pinning gain
matrix as follows

B = diag(b1, b2, ..., bN ) ∈ RN×N , (30)

in which bi indicates the existence of a communication
link between the beacon agent and the ith agent in the
network [54], [55]. Then, we denote

H = L+ B. (31)

Assumption 4: There is at least one communication link
between one of the agents and the beacon. In other words,
at least one of the diagonal elements in B is non-zero.
Proposition 2: For the connected agent i to the beacon

agent (i ∈ [1,N ]), the position pi ∈ Rn×1 can be presented
as [51]

pi = pb + δib, (32)

where pb ∈ Rn×1 is the position for the beacon agent and
δib ∈ Rn×1 is the relative position between the connected
agent and the beacon agent. It is assumed that δib is available
locally at agent i connected to the beacon.
Proposition 3: For the unconnected agent i to the beacon

(i ∈ [1,N ]), the position pi is represented as follows [51]

pi = pj + δij (33)

where δij ∈ Rn×1 is the relative position between the agent i
and the neighboring agent j ∈ [1,N ]. It is assumed that the
values of δij are available at agent i, if there is a communica-
tion link between the agents i and j.
Proposition 4: Suppose that all of the agents in the net-

work are following the conditions presented in Assumption
1, Assumption 2 and Assumption 3; then, we can use P̂r
estimated by (5) in Theorem 1 to compute the values of δij
and δib as the relative position (not relative distance) between
the neighboring agents, required in (32) and (33).
Proposition 5: In general, the relative difference between

two vectors is identical in all of the orthogonal local or global
coordinates frames. Hence, the relative difference between
the agents position in a local frame Pi at agent i can be
presented as follows

δij = [δij]Pi = [1Pi
i −1

Pj
j ]Pi , (34)

where 1Pi
i ∈ Rn×1 for i ∈ [1,N ] is the vector for position of

agent i in the local framePi. In addition, [.]Pi is the symbol for
presenting the relative difference in the local frame Pi. Since
the local frame Pi is fixed to agent i, the time-derivative of
1

Pi
i in Pi is zero, i.e.

[1̇Pi
i ]Pi = 0. (35)
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Similarly, we can define

δib = [δib]Pi = [1Pi
i −1

Pb
b ]Pi , (36)

where 1Pb
b ∈ Rn×1 is the position of the beacon agent at the

local frame Pb fixed to it.
Definition 3: According to Proposition 2 and Proposi-

tion 3, a consensus error can be defined for observing the
position of agent i as follows

τ i =

N∑
j=1

aij[p̂i − (p̂j + δij)]+ bi[p̂i − (pb + δib)]. (37)

By recalling (34) and defining

ŝi = p̂i −1Pi
i ,

ŝj = p̂j −1
Pj
j , (38)

the localization consensus error can be represented in a
lumped format as follows

τ = (H⊗ In)ŝ− (B ⊗ sb)1, (39)

where ŝ = [ŝ1; ŝ2; ...; ŝN ], sb = pb −1Pb
b and 1 ∈ RNn×1 is

a vector with one for all the elements.
Proposition 6: If the consensus error defined in (39) con-

verges to zero, one can say that the distributed observation
objective is achieved and p̂i reaches to pi for all i ∈ [1,N ].
Definition 4: We define a function M(.) for generating a

diagonal matrix M ∈ Rn×n with zero off-diagonal elements,
by the elements of a vector l ∈ Rn×1 as follows

M =M(l) =Ml, (40)

where M [j0, j0] = l[j0] for j0 ∈ [1, n].
Theorem 2: If one uses the following equation as the rate

for observing the position of agent i,

˙̂pi = −λτ i − [M(sgn{
N∑
j=1

(H(i, j)τ j)} Mb] (41)

where λ > 0 is a scalar, M(sgn{6N
j=1(H(i, j)τ j)}) ∈ Rn×n

is a diagonal matrix whose elements on the main diameter
are the sign of elements in 6N

j=1(H(i, j)τ j) ∈ Rn×1 (refer to
Definition 4) andMb

∈ Rn×1 includes themaximum absolute
values for the elements of ṡb; then the Proposition 6 can be
achieved. Proof: . Considering the following Lyapunov
function

U3 =
1
2
τT τ, (42)

one can have

U̇3 = τ
T [(H⊗ In)˙̂s− (B ⊗ ṡb)1]. (43)

Since the summation of all elements in each row of the
Laplacian matrix is zero [54], [55], we can say that,

(L⊗ ṡb)1 = 0. (44)

Hence, (43) can be represented as

U̇3 = τ
T (H⊗ In)˙̂s− τT (H⊗ ṡb)1. (45)

Considering ˙̂s = −λτ + ŝ1, we have

U̇3 = −λτ
T (H⊗ In)τ + τT (H⊗ In)ŝ1 − τT (H⊗ ṡb)1.

(46)

Recalling Definition 2 and Assumption 4, (H ⊗ In) is sym-
metric with positive diagonal and non-positive off-diagonal
elements. This means that, the matrix (H ⊗ In) has positive
determinant and positive eigenvalues. Hence, it is a non-
singular M-matrix [54]–[56]. As a result, one can say that
(H ⊗ In) > 0. Then, the first term in (46) is surely negative.
To achieve U̇3 < 0, we should show that

U31 = τ
T (H⊗ In)ŝ1 − τT (H⊗ ṡb)1 ≤ 0. (47)

Recalling the mixed-product property of Kronecker product,
we have

(H⊗ ṡb) = (H⊗ In)(IN ⊗ ṡb). (48)

Hence, (47) can be written as following

U31 = τ
T (H⊗ In)ŝ1 − τT (H⊗ In)(IN ⊗ ṡb)1, (49)

and then

U31 ≤ τ
T (H⊗ In)ŝ1 + ABS(τT (H⊗ In))(IN ⊗Mb)1,

(50)

where for v ∈ RNn×1, we define

ABS(v) = [|v(1)|, |v(2)|, ..., |v(Nn)|]T . (51)

Now, we should only show that

τT (Hs ⊗ In)ŝ1 + ABS(τT (H⊗ In))(IN ⊗Mb)1 = 0. (52)

Thus, we reach to

τT (H⊗ In)ŝ1 = −ABS(τT (H⊗ In))(IN ⊗Mb)1, (53)

and then

τT (H⊗ In)ŝ1
= −τT (H⊗ In)M(sgn{τT (H⊗ In)})(IN ⊗Mb)1, (54)

where M(sgn{τT (H ⊗ In)}) ∈ RNn×Nn is a diagonal matrix
whose diagonal elements are the sign of each element in
τT (H⊗ In) ∈ R1×Nn. Finally, since

(ττT (H⊗ In))−1ττT (H⊗ In) = IN ⊗ In, (55)

we have

ŝ1 = −M(sgn{τT (H⊗ In)})(IN ⊗Mb)1, (56)

and then the rates for observed parameters are

˙̂s = −λτ −M(sgn{τT (H⊗ In)})(IN ⊗Mb)1. (57)

By utilizing ˙̂s from (57), we can have U̇3 < 0, which in
turn shows that the consensus error on observation (i.e. τ )
is asymptotically stable and converges to zero referring to
the Lyapunov stability theorem. Hence, the Proposition 6 is
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achieved. Moreover, the observer for agent i can be repre-
sented as follows

˙̂si = −λτ i − [M(sgn{
N∑
j=1

(H(i, j)τ j}) Mb]. (58)

Then, the equation in (41) is achieved by referring to (35)
and (38). This completes the proof.
Remark 2: The values forMb can be determined according

to the actuator limits and also several previous experiments
of the dynamic agent. For example, for pb as the position of
a mobile robot, Mb is the maximum absolute values for the
mobile robot speed, which can be defined according to the
actuators specifications and some data from previous field
experiments.
Remark 3: The value of scalar gain λ should be large

enough in order to reach fast finite-time convergence of the
distributed estimation algorithm in (41).

V. PRESENTING THE ACL ALGORITHM
By combining the results provided in Theorem 1 and The-
orem 2, the ACL algorithm is presented in TABLE 1.
As declared in this table, the input variables are all available
locally at each agent, either by on-board measurements or by
having the communication links with the neighboring agents.

TABLE 1. ACL algorithm.

The output variables in ACL algorithm include the estimated
absolute position for each agent and the estimated relative
position for each pair of connected agents in the network.

VI. SIMULATION STUDIES
In this section, three different case studies are presented to
evaluate the ACL algorithm. In the first two cases, the per-
formance of the ACL algorithm is compared with two recent
localization solutions.

A. CASE STUDY-1: ONE MOBILE AGENT WITH ONE
BEACON AGENT
Suppose that we have a mobile agent in 2D environment with
a nonlinear double-integrator dynamics as follows

ṗ = v

v̇ = u−v sin(0.2t)+ 0.5p cos(0.1t), (59)

where p = [px; py] ∈ R2, v = [vx; vy] ∈ R2 and u =
[ux; uy] ∈ R2 are the position, velocity and the control
input of the mobile agent, respectively. No on-board sensor
to measure the absolute position on the mobile agent is
assumed. Instead, the relative distance to a beacon agent can
be measured using the UWB antennas located on both agents.
Moreover, the velocity of the mobile agent can be computed
using the on-board IMU module combined with a Kalman-
filter [7]. In addition, the velocity and absolute position of the
beacon agent are transmitted to the mobile agent via the exist-
ing communication link. The beacon agent has an on-board
sensor to measure its own absolute position, i.e pb. In this
sense, the relative velocity and relative distance between the
mobile agent and the beacon are available at the mobile agent.
Thus, the estimation algorithm proposed in (5) can be used
to estimate the relative position of the mobile agent to the
beacon. After that, the estimated absolute position of the
mobile agent p̂ in a 2D environment can be computed online
according to (32). In this study, themobile agent uses a simple
back-stepping controller [52] to satisfy the tracking objective
for the dynamics model presented in (59), as follows

u = kc1ep − k
c
2v, (60)

where kc1 and kc2 are two positive constant scalars and ep =
pd − p̂ is the tracking error (pd is the desired trajectory)
based on the estimated positions. The beacon agent having
the same dynamics as in (59), also uses the same controller
as presented in (60); but its corresponding position tracking
error is computed using the measured absolute values, i.e. pb.
Note that use of the controller in (60) can satisfy conditions
on the boundedness of the relative velocity and the relative
distance of the two agents requested in Assumption 1. Here,
the initial value for estimated position of the mobile agent is
set at [0; 0].

In order to evaluate the performance of the proposed adap-
tive relative position estimator in (5), the algorithm is com-
pared with two other relative position estimation solutions.
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TABLE 2. Case study-1: The values of tuning parameters for the controller
and the relative positioning algorithms.

The first solution has an intuitive formula as [40]

˙̂Pr = Vr . (61)

The second solution is presented as follows [39]

˙̂Pr = [1+ β(2dr ḋr − 2V T
r P̂r )]Vr , (62)

where β ∈ R+. The comparative study among the mentioned
three algorithms (i.e. algorithms in (5), (61) and (62)) is
presented in TABLE 3 and TABLE 4 for three different
desired trajectories of the moving agent. These trajectories
are a step input as p(1)d = [5;−6], a square wave signal as
p(2)d = [Sq(5, 1000, 50); Sq(10, 1500, 50)]; and also a sine
wave as p(3)d = [5 sin(0.1t); 3 sin(0.2t)]. Here, Sq(As,Ts,Ws)
is a square wave signal with ‘‘As’’ amplitude, ‘‘Ts’’ duration
and ‘‘Ws’’ pulse width percentage. Moreover, the study has
been done for two cases with stationary and moving beacon
agent. The desired position of the beacon agent is pbd = [0; 0]
for the first case with stationary beacon and pbd = [2;−3]
for the second simulation with moving beacon. Furthermore,
the initial position of the moving agent is set at p(0) = p̂(0) =
[0; 0] for all of the simulations and the parameters of the
controller and the relative position estimation algorithms are
tuned according to TABLE 2. Here, the cumulative values
for positioning and tracking errors are considered for the
comparison, as follows

C1 =

∫
ξT ξ dt,

C2 =

∫
eTr er dt, (63)

where ξ = p − p̂ is the absolute positioning error and
er = pd − p is the tracking error based on the real absolute
position of the mobile agent. As can be observed in TABLE 3
and TABLE 4, while a similar tracking controller is used for
all of the algorithms, the proposed adaptive relative position
estimating algorithm in (5) has lower values for C1 and
C2 parameters and consequently outperforms the two other
algorithms.

B. CASE STUDY-2: A NETWORK OF NON-COOPERATIVELY
CONTROLLED MOBILE AGENTS WITH ONE BEACON
Here, we have a network of four mobile agents with the
dynamic system in (59) and one stationary beacon agent
in a 2D environment. Here, each of the agents has a local
controller as presented in (60) and it operates individually
without any cooperative protocol in the network. In other

TABLE 3. Case study-1: Comparing the performance of three relative
position estimation algorithms with a stationary beacon agent
(pb

d = [0;0]).

TABLE 4. Case study-1: Comparing the performance of three relative
position estimation algorithms with a moving beacon agent
(pb

d = [2;−3]).

words, these mobile agents move according to their individ-
ual desired trajectory oblivious of their neighboring agents.
Similar to the first case study, here the mobile agents do
not have any on-board sensor for measuring the absolute
position. Instead, they communicate with the neighboring
agents in the network so as to estimate their absolute position
by using the ACL algorithm presented in TABLE 1. The
relative distance and the relative velocity to the neighbor-
ing agents can be determined using the data provided via
the communication graph. The communication graph of the
network (FIGURE 1) satisfies the conditions requested in
Definition 2 and Assumption 4. The absolute position of the
beacon agent is communicated to only one of the mobile
agent via the provided communication link. In this regard,
the corresponding adjacency and beacon pinning gain matrix
for the communication graph of the network are defined as
follows

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 , B =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (64)

Here, the performance of the ACL algorithm is compared
with a recently investigated linear-convex (LC) algorithm for
localization in a network of mobile robots which is presented
in [40]. That algorithm incorporates the triangulation method
among the neighboring agents in the network and provides a
trade-off between the triangulation and the intuitive relative
position estimation proposed in (61). Based on [40], the posi-
tion of the ith mobile agent can be estimated by the following
adaptive law (to be updated at k step)

p̂ik+1 = β0p̂
i
k + (1− β0)[

3∑
j=1

aijk p̂
j
k ]+ v

i, (65)
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where β0 ∈ R+ is a design parameter and it is non-zero if
there is a triangulation set available around agent i. In addi-
tion, the values for 0 ≤ aijk ≤ 1 are the barycentric coordi-
nates of agent i with respect to the neighboring agent j at step
k and are computed as follows [40]

aijk =
Aj2i

(k)

A2i (k)
, (66)

in which 2i is the triangulation set around agent i including
its three neighboring agents. A2i (k) is the value for area
of the triangle produced by the three neighboring agents at
the kth step, while Aj2i

(k) is the area of that triangle by
removing the jth neighboring agent and replacing the agent
i. The values for areas (or volumes in a 3D environment) are
computed by exploiting theCayley-Menger determinant [40].
The LC algorithm needs to have communication links to three
neighboring agents in order to utilize the triangulation tech-
nique, otherwise the estimation would be driven with only the
velocity measurements, i.e vi. In this sense, for a network of 4
mobile agents and one stationary beacon agent, there will be a
requirement of 7 undirected communication links among the
agents in the network, including only one communication link
between the beacon and agent-1. On the other hand, the ACL
algorithm proposed in the current paper requires only 4 com-
munication links (according to FIGURE 1). Having lower
number of communication links can provide lower energy
consumption at each agent and consequently for the whole
network. Besides, as it is declared in TABLE 5, the tracking
and positioning errors are much lower for the ACL algorithm
in comparison with the LC algorithm suggested in [40]. Note

FIGURE 1. Case study-2: the communication graph among the agents in
the network that the ACL algorithm is applied to.

TABLE 5. Case study-2: Comparing the performance of the ACL algorithm
against the LC algorithm proposed in [40].

FIGURE 2. Case study-2: position estimation error for the mobile agents
in the network (Agent-1 and Agent-2).

FIGURE 3. Case study-2: position estimation error for the mobile agents
in the network (Agent-3 and Agent-4).

that Here, the simulations are performed for tracking the
square wave desired trajectory at each agent and the values
for tuning parameters are set same as in the second row of
TABLE 2. Also, we used β0 = 0.25 as suggested in [40]. The
simulation results for this comparative study are presented in
FIGURE 2 to FIGURE 7. It is evident that, by combining
the ACL algorithm and the stable controller in (60), absolute
positions of the mobile agents converge to the desired val-
ues, asymptotically (FIGURE 4 and FIGURE 5). Moreover,
the absolute positioning errors are much smaller using ACL
algorithm in comparison with the ones provided by utilizing
the LC algorithm (FIGURE 2 and FIGURE 3).

C. CASE STUDY-3: A NETWORK OF COOPERATIVELY
CONTROLLED MOBILE AGENTS WITH ONE BEACON
In this section, performance of the ACL algorithm is evalu-
ated in a network of cooperatively controlled mobile agents
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FIGURE 4. Case study-2: consensus error of the cooperative observer for
mobile agents in the network (Agent-1 and Agent-2).

FIGURE 5. Case study-2: consensus error of the cooperative observer for
mobile agents in the network (Agent-3 and Agent-4).

FIGURE 6. Case study-2: absolute position of the mobile agents in the
network (Agent-1 and Agent-2).

FIGURE 7. Case study-2: absolute position of the mobile agents in the
network (Agent-3 and Agent-4).

in a 2D environment. In this sense, the agents with the same
dynamic system presented in (59), use decentralized cooper-
ative controllers for achieving the consensus objective in the

network. Here, the properties of the network are same as the
ones for the network in Case study-2. Thus, the adjacency
and the beacon pinning gain matrices are similar to the ones
presented in (64). Moreover, the beacon agent is supposed to
have the similar dynamic system to (59) and it is controlled
with an adaptive model-free controller as follows [45]

u0 = [u0aux1; u
0
aux2; u

0
x; u

0
y] = u01 + u

0
2

u01 =
1
2
R0(B0)TP0σ 0

u02 = (B0)−1{[ṗ0des; v̇
0
des]− Â

0[p0; v0]− ĝ0 − ζ 0

+ (I4 + 2(P0)−1Q0
+ Â0)σ 0

} −
3
4
R0(B0)TP0σ 0.

(67)

Here, the superscript 0 is used to designate a beacon as a
reference node or a leader node by virtue of multi-agent
theory. In (67), I4 ∈ R4×4 is the identity matrix, B0, R0

and Q0 are constant positive definite matrices in R4×4 and
P0 = {P0}T ∈ R4×4 is a positive definite matrix defined by
using [45]

Ṗ0 = {Â0}TP0 + P0Â0 − P0B0R0{B0}TP0 + 2Q0. (68)

Moreover, the following adaptive laws are incorporated [45]

˙̂g0 = −00
1 P

0σ 0
− ρ010

0
1 ĝ

0

v̇Â0 = −0
0
2 P

0M(σ 0)([p0; v0]− σ 0)− ρ020
0
2vÂ0 , (69)

for online estimation of the unknown nonlinear dynamics
(the dynamics in (59) is assumed to be unknown from the
controllers points of view), where 00

1 and 0
0
2 are two positive

definite diagonal matrices in R4×4 including the adaptive
gains and ρ01 and ρ02 are two positive scalar leakage gains.
We have σ 0

= e0p + ζ
0, where e0p is the tracking error at the

beacon agent and ζ 0 =
∫
e0p dt . Noth that vÂ0 is a vector

whose elements are the diagonal entities in Â0. The detailed
convergence analysis of the controller and the adaptive laws
proposed in (67) to (69) can be found in [44] and [45] for
single-input single-output and multi-input multi-output non-
linear dynamic systems. Moreover, the applications of this
control algorithm are presented in [46]–[48] for a chaotic res-
onator, a robotic manipulator and an underwater autonomous
robot, respectively.

To provide consensus among the mobile agents, a model-
free decentralized cooperative controller is used. The
exploited controller at the ith agent in the network is defined
as follows [50]

ui =
1

H(i, i)
(BTB)−1BT [−KcPice

i
c − KI ζ

i
c −H(i, i)ĝic

−

N∑
j=16=i

{H(i, j)(T̂ jc − Â
j
c[p̂

j
; vj]− 2ĝjc)}

+ bi(u0 − Âic[p
0
; v0])], (70)
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where B ∈ R4×4 is a positive definite matrix and

eic =
N∑
j=1

aij([p̂i; vi]− [p̂j; vj])+ bi([p̂i; vi]− [p0; v0])

εic =

N∑
j=1

aij(T̂ ic − T̂
j
c)+ bi(T̂

i
c − u

0)

˙̂gjc = γ1
N∑
k=1

(H(k, j)Pkce
k
c )− ρ1ĝ

j
c

˙̂Ajc = γ2w̃
jr j

T
− ρ2γ2Âjc

˙̂T jc = −µε
j
c − [M(sgn{

N∑
k=1

(H(j, k)εkc )})× u
0
M ]

w̃i =
s

s+ 1
[p̂i; vi]−

1
s+ 1

Bui −
1

s+ 1
ĝic − Âcr

i

r i =
1

s+ 1
[p̂i; vi] (71)

where s is the symbol for Laplace variable in Laplace trans-
form in the filter expression and Pic is solution of the follow-
ing continuous algebraic Riccati equation

(Âic)
TPic + P

i
cÂ

i
− PicK

i
cP

i
c = −Q. (72)

In above,K i
c,K

i
I are positive definite matrices inR4×4,H(i, j)

is the element of H in ith row and jth column and ζ ic =∫
eicdt ∈ R4×1. Moreover, µ, γ1 and γ2 are positive constant

scalars defining the adaptation rates, while ρ1 and ρ2 are
another positive scalars acting as the leakage gains in the
cooperative adaptive laws. The detailed proof of the above
controller is presented in [49] and [50].

The desired path that the beacon should track and all
of the other agents in the network must follow is p0des =
[3 sin 0.1 t; 6 sin 0.1 t]. The values for constant parameters
in the ACL algorithm, the model-free controller at the beacon
agent and the model-free decentralized cooperative controller
at the mobile agents are presented in TABLE 6. The simula-
tion results for the current case study are depicted in FIG-
URE 8 to FIGURE 15. Appropriate performance of the algo-
rithms can be observed and the consensus over the desired

TABLE 6. Case study-3: the constant parameters for the ACL algorithm,
the model-free controller at the beacon agent and the model-free
decentralized controller at the other agents in the network.

FIGURE 8. Case study-3: position estimation error for the mobile agents
in the network (Agent-1: bounded in [−0.25,0.25]; and Agent-2:: bounded
in [−0.47,0.47]).

FIGURE 9. Case study-3: position estimation error for the mobile agents
in the network (Agent-3: bounded in [−0.55,0.55]; and Agent-4 bounded
in [−0.60,0.60]).

FIGURE 10. Case study-3: localization consensus error for the mobile
agents in the network (Agent-1: bounded in [−0.055,0.055]; and Agent-2:
bounded in [−0.060,0.060]).

FIGURE 11. Case study-3: localization consensus error for the mobile
agents in the network (Agent-3: bounded in [−0.065,0.065]; and Agent-4:
bounded in [−0.070,0.070]).

position is achieved in the network by combination of the
cooperative localization algorithm and the model-free coop-
erative controller. In addition, it is shown that the position
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FIGURE 12. Case study-3: estimated absolute position of the agents in
the network (Agent-1 and Agent-2).

FIGURE 13. Case study-3: estimated absolute position of the agents in
the network (Agent-3 and Agent-4).

FIGURE 14. Case study-3: control consensus errors at the agents in the
network (Agent-1 and Agent-2).

FIGURE 15. Case study-3: control consensus errors at the agents in the
network (Agent-3 and Agent-4).

estimation errors (i.e. eips) in FIGURE 8 and FIGURE 9,
the consensus localization errors (i.e. τ is) in FIGURE 10 and
FIGURE 11 as well as the control consensus errors (i.e. eics)
in FIGURE 14 and FIGURE 15 are all bounded in the small
sets around zero.

VII. CONCLUSION
In this paper, an adaptive relative position estimator is incor-
porated in a cooperative observer to provide a solution for
the cooperative localization problem in a network including
one or more mobile agents. The solution does not depend
on the dynamics of the agents and the local control signals.
The algorithm needs each pair of the mobile agents to have
non-zero relative velocities and non-zero relative distances.
In contrast to the recent established work, the proposed algo-
rithm does not require the measurement of the communicated
signals’ angle of arrival. In addition, the absolute positions
of the mobile agents can be estimated by accessing to only
one beacon agent in the network. There is only a require-
ment for an undirected communication path between each
two agents in the communication graph of the network to
confirm the stability and convergence of the solution. This
is the least possible requirement for a spanning-tree commu-
nication graph, which leads to more convenience for practi-
cal implementations. According to the provided simulation
studies, the adaptive relative position estimator works well
for each pair of the mobile agents and it outperforms two
other state-of-the-art relative position estimation algorithms.
Furthermore, it is shown that the proposed ACL algorithm
has better performance in comparison with the LC algorithm
which exploits the triangulation technique among the three
neighboring agents in a network. Besides, the ACL algorithm
requires less communication links among the agents, while
the LC algorithm needs the maximum number of links to
the neighboring agents. In addition, the appropriate perfor-
mance for the ACL algorithm has been observed in a team
of mobile agents, which are cooperatively controlled using
a decentralized adaptive model-free cooperative controller.
The proven results promise a profound advantage especially
in the context of a network of autonomous mobile robots
application in a remote place such as search and rescue (SAR)
mission when GPS signal is degraded and often obscured.
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