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ABSTRACT GSA is badly suffering from a slow convergence rate and poor local search ability when
solving complex optimization problems. To solve this problem, a new hybrid population-based algorithm
is proposed with the combination of dynamic multi swarm particle swarm optimization and gravitational
search algorithm (GSADMSPSO). The proposed algorithm has divided the main population of masses into
smaller sub-swarms and also stabilizing them by presenting a new neighborhood strategy. Then, by adopting
the global search ability of the proposed algorithm, each agent (particle) improves the position and velocity.
The main idea is to integrate the ability of GSA with the DMSPSO to enhance the performance of exploration
and exploitation of a proposed algorithm. In order to evaluate the competences of the proposed algorithm,
benchmark functions are employed. The experimental results have been confirmed a better performance of
GSADMSPSO as compared with the other gravitational and PSO variants in terms of fitness rate.

INDEX TERMS Gravitational search algorithm, dynamic multi swarm optimization, neighborhood strategy,

benchmark optimization problems.

I. INTRODUCTION

For solving optimization problems, most of the algorithms
cannot provide a suitable solution due to the search space
increasing exponentially with problem size [1], [2]. There-
fore, it is a hot research area that solving these problems
with swarm optimization algorithm. These nature-inspired
algorithms establish a vital branch of optimization methods.
Some algorithms could deliver an improved result for some
specific problems, but none of these algorithms were used
as widespread one. Several engineering problems include
objective functions with multimodal functions that require
optimization methods to find more than one result. In number
of problems generally has a number of global optima and
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several local optima that might be good replacements to the
global ones.

Gravitation search optimization (GSA) was firstly pro-
posed in [3]. It is encouraged by the well-known Newton’s
law of gravity and motion which is straightforward for us
to realize the convergence principle of GSA. In GSA, each
object has its individual mass, and the object with greater
mass produces a greater intensity of attraction. Thus, all the
objects move near the heaviest object by interval of time.
When compared with other state of the art algorithms, such as
PSO and genetic algorithm, GSA is verified to be capable of
providing good convergence speed and solution accuracy [3].

Various techniques have been defined to further improve
the performance of GSA. For instance, opposition-based
learning method for population initialization and genera-
tion jumping have been introduced by [4]. A novel oper-
ator called ‘““disruption” to increase the exploration and
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exploitation abilities of GSA have been established by [5].
In 2011, combined GSA with another method for solving
clustering problems have been introduced by [6]. In 2017,
Gravitational search algorithm with both attractive and
repulsive forces have been introduced by [7]. Fitness vary-
ing gravitational constant in GSA have been proposed
by [8]. Clustered GSA (C-GSA) is a new version of GSA
that uses clustering technique to reduce the computational
complexity have been presented by [9]. In 2012, a position-
based learning GSA [10] and Immune Gravitation Opti-
mization Algorithm (IGOA) [11] were proposed. Similarly,
to PSOGSA [12], social thinking and individual thinking
of PSO were incorporated to GSA for solving a contin-
uous problem [13]. A binary version of PSOGSA called
BPSOGSA to resolve the optimization problems. It has been
combined of adaptive values to balance exploration and
exploitation of BPSOGSA [14]. Avoiding GSA from rapidly
exploiting the optimum, Adaptive g-best-guided gravitational
search algorithm has been introduced by [15].

Furthermore, GSA and its variants presently have been
applied in various areas because of their better performance
of optimization problems. Application of binary quantum-
inspired gravitational search algorithm in feature subset
selection was proposed by [16]. Combined PSO with GSA
to train feedforward neural networks have proposed by [17].
A new method for image segmentation based on BP neural
network and gravitational search algorithm enhanced by cat
chaotic mapping have been proposed by [18]. A hybrid of
K-harmonic means into GSA for clustering problems have
been presented by [19]. A prototype classifier based on grav-
itational search algorithms was proposed to solve the classi-
fication problems [20]. In addition, GSA has been applied in
bioinformatics [21], business [22], software design [23] and
engineering [24], [25]. Although GSA acquires to enhance
the performance in search ability, GSA still has its integral
drawbacks, such as its slow exploitation ability. Exploration
requires an algorithm to search the optima broadly, while
exploitation needs the searching to be restricted in the current
space locally. GSA undergoes from slow exploitation and
declines in final iterations [17], [26]. In GSA, the masses
activities are calculated on their weights and the weights
are considered by the fitness function. Thus, the masses that
have good values of fitness function are reflected as heavy
objects, and therefore, they move slowly. Particles should
walk through the search space at initial iterations. In the final
iterations, masses have almost the same weights. They nearly
attract each other with the same intensity of gravitational
forces. Therefore, they are not able to run toward the best
solution. To overcome this problem, DMSPSO combines
with GSA. To consider the cooperation among sub-swarms
for the multi-swarm technique, a dynamic multi-swarm par-
ticle swarm optimizer (DMS-PSO) is used [27]. A new hybrid
population-based algorithm is proposed with the combina-
tion of dynamic multi swarm particle swarm optimization
and gravitational search algorithm (GSADMSPSO). The pro-
posed algorithm divides the main population of masses into
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smaller sub-swarms and also stabilizing them by presenting
new neighborhood strategy. Then, by adopting the global
search ability of proposed algorithm, each agent (particle)
improves the position and velocity. The main idea is to
integrate the ability of GSA with the DMSPSO to enhance
the performance of exploration and exploitation of a pro-
posed algorithm. In order to evaluate the competences of the
proposed algorithm benchmark functions are employed. The
experimental results have been confirmed a better perfor-
mance of GSADMSPSO as compared to the other gravita-
tional and PSO variants in terms of fitness rate.

The rest of this paper is ordered as follows. The basic
concept of GSA is introduced in Section 1. Section 2 ana-
lyzes the gravitational search algorithm and dynamic multi
swarm particle swarm optimization. In Section 3, introduce
methodology of GSADMSPSO in detail. Section 4 provides
the experimental results. Section 5 is dedicated to the discus-
sion of contrast analysis. Finally, the last section presents the
conclusions.

Il. RELATED WORK
A. GRAVITATIONAL SEARCH ALGORITHM
The typical GSA is a newly projected search algorithm, which
is encouraged by the Newton’s law of gravity and motion.
Alike to other stochastic optimization methods, GSA firstly
initializes the positions of N agents randomly, shown as:

Xi = (xl coaxd

I ,x?) fori=1,2,....N ()

where D is the dimension index of the search space, and xlfi

represents the i agent in the 4" dimension. Based on GSA,

agents are considered as the objects and the mass of each

agent is calculated by the fitness of the current population.
The equations are shown as follows:

_ fiti(t) — worst(t)

¢ (1) = best (t) — worst(t) @
;@) = 20 3
qj (1)
j=1

where fit; (t) and M;(¢) represent the fitness and the mass
of the i agent at the current 1™ iteration respectively. Con-
cerning the minimization problem, best (t) and worst (t) are
defined in the following equations:

best (t) = minjeqq, .., N}fitj (1) 4)

worst (1) = maxje(1,..., N}fitj (1) 5)

According to Newton’s law of gravitation, the force acting
upon i"* agent from j agent is defined as follows:

M; (t) x M; (1)

Rijte

f6 =60 @ o —x'@®)  ®

where R;; represents the Euclidian distance between the
agent i and j and € is a small constant. G(t) is a function of the
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iteration time t, which exponentially decreases with the lapse
of time, shown as:

G (t) = Goe T (7

where Gy is the initial value, « is a shrinking parameter, and T’
represents the maximum number of iterations. The total force
of the current population acting on the i”* agent is defined as:

o= )

JjEKbest j#i

rand; F{ (1) ®)

where Kbest is the set of the first K agents with the biggest
mass, and it will decrease linearly according to time t, at the
end of the iterative process there is only one agent in Kbest.
rand is auniformly distributed random number located in the
interval [0, 1], which is used to ensure the stochastic charac-
teristic of the search process. Based on Newton’s second law
of motion, the acceleration of the i agent is calculated as
follows:

Fe (1)
al (1) = 71— ©)
M; (1)
Further velocity is updated using the following equation.
vl (1 4+ 1) = rand;xv? (1) 4 af (1) (10)
x+ 1) =xf v e+ 1) (1)

By summing the equations, the acceleration can also be writ-
ten as.

adn= >

JjEKbest j#i

G@®

dixM; (t
randjx ]()Rij(t)+€

(xj’ (") —x¢ (z))
(12)

B. DYNAMIC MULTI SWARM PARTICLE SWARM
OPTIMIZATION

DMS PSO is alocal version of PSO with a new neighborhood
topology. swarm is separated into slight sized sub-swarms.
They search for improved positions in the search space by
means of their own members. The sub-swarms are dynamic
and they are reformed regularly by using a regrouping sched-
ule, which is an episodic exchange of information. Particles
from different sub-swarms are regrouped to a new configu-
ration through the random regrouping schedule. In this way,
the search space of each small sub-swarm is expanded and
better solutions are possible to be found by the new small sub-
swarms [28]. Kennedy claimed that PSO with large neigh-
borhoods would perform better on simple problems and PSO
with small neighborhoods might perform better on complex
problems [29]. A very small population size for DMS-PSO is
enough when solving relatively complex problems, which is
also one of its significant features [28].

Ill. THE PROPOSED HYBRID ALGORITHM

The efficacy of a swarm based metaheuristic algorithms
depends upon the stability between exploration and exploita-
tion competences. In the initial iterations of the search pro-
cess, exploration of search space is favored. It can be gotten
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by letting to attain large step sizes by agents throughout
the initial iterations. In the later iterations, exploitation of
search space is mandatory to avoid the condition of frisking
the global optima. Thus the candidate solutions should have
small step sizes for exploitation in later iterations. The strong
exploration ability of GSA and the strong exploitation ability
of DMSPSO algorithm are combined to obtain the better
optimization ability. GSA undergoes from slow exploitation
and get worse in final iterations. In GSA, the masses activities
are calculated to create on their weights and the weights are
calculated by the fitness function. Accordingly, the masses
that have good values of fitness function are deliberated as
heavy objects, and they move slowly. Then particles should
walk through the search space at initial iterations. Then, after
obtaining a good solution, they have to wrinkle around that
solution in order to exploit the best solution. In GSA, masses
become heavier and heavier. In the final steps of iterations,
masses have nearly the similar weights due to congregation
around a solution. They roughly fascinate each other with
the identical strength of gravitational forces. So, they are not
capable to travel near the finest solution quickly. GSA has
been faced with different sorts of drawbacks. The proposed
algorithm has the ability to overcome these kind of problems
which has been faced by GSA. Therefore, in this manuscript
GSADMSPSO proposed with dynamic multi swarm (DMS)
with neighborhood strategy. The proposed method empha-
sizes exploration in first iterations and exploitation in the final
iteration. In the first phase, the proposed algorithm deals with
masses of the agents. Since the low weight fitness implies
that the agent is not near the optima, low weight agents can
be recruited to explore the search space while heavier weight
agents can be appointed to exploit their neighborhood with
the help of neighborhood strategy. Therefore, a dynamic multi
swarm (DMS) with new neighborhood strategy is used, which
has been explained in equation (13) shown below.

0.9xfit;
best; (t) — worst; (t) (13)
mod (ﬁtj) = 0 then regroup the subswarm

m; (1) =

where fit;(¢) represents the fitness value of the agent; and
worst(t) and best;(t) are defined as fallow.

best (t) = lowje regorup of swarms ﬁti (1) (14)
worst (1) = highje regorup of swarm ﬁti (1) (15)

According to the equation (13) swarm is separated into mul-
tiple sub-swarms. And neighbor of each agent are able to
smear the gravity force on agent to attract it. They search
for better positions in the search space using their own
members. Though, the sub-swarms are dynamic and they are
regrouped often by using a regrouping schedule, which is an
intermittent exchange of information. Agents from different
sub-swarms are reformed to a new formation through the
arbitrary regrouping schedule. So, DMS has a capability to
pick the neighbors which have the smaller distance dynam-
ically. These neighbors has been called an agent;. so each
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component determines the consequence of the agent to attract
another agent of the swarm. Worst and best defined by the
DMS of agent;. And at the final iteration, by adopting the
global search ability of DMS PSO algorithm, equation (16)
is used to update the position and velocity of the individual.

Vf“ = va + cllrlafl 1) + c/2r2 (gbest — x; (1)) (16)
X = i (17)
where V;(t) is the velocity of agent; at iteration t, ¢; and ¢
are accelerating coefficients, ; and r, is a random number
between 0 and 1, the first component is the same as that of
GSA, in which the exploration of the masses is emphasized.
The second component is responsible for attracting masses
towards the best masses obtained so far. The distance of each
mass from the best mass is calculated by gbest — x; (¢). The
final force towards the best mass is a random fraction.

In the proposed method, initialize the algorithm parame-
ters, including the total number of particles N, the number of
iterations t, the gravitational constant Gy and the decreasing
coefficient . And randomly generate populations. The posi-
tion vector of the particle is set as X; = (xlgxz, X3eeunn.. x,,)
the velocity is initialized as v; = (vil’vig, Videouunn. vi,,)t and
divide the particles into numeration sub-swarms, the global
optimal value is gbest and the individual optimal value is
pbest. Then, Calculate the fitness value of each individual
using equation (13), find the best fitness value and the worst
fitness value using equations (14,15) and record the best
position gbest, gravitational constant and resultant forces
between them are calculated using equations (6), (7) and
(8), respectively. After that, the accelerations of particles
are defined as in equation (12). At each iteration, the best
solution obtained so far should be updated. After calculating
the accelerations and updating the best solution, by adopting
the global search ability of DMS PSO algorithm, velocities
of all agents can be calculated using equation (16). Finally,
the positions of agents are updated as equation (17). The
process terminates by satisfying an end criterion. The general
steps of the proposed method are represented in Fig. 1.

In this proposed method, because of dynamic multi-swarm
behavior each agent can observe the best solution and masses
are provided with a sort of neighborhood intelligence.

The proposed method has a potential to provide a superior
results compared to the other GSA variants. In the following
section various static, dynamic and real time problems are
employed to explore the efficiency of the proposed algorithm.

IV. EXPERIMENTAL STUDY

To weigh the performance of the proposed algorithm,
12 benchmark functions are introduced in experiments. These
functions are listed in Table 1, where D symbolizes the
dimension of the function, Global minima is the optimum
value of the function and range denotes the search space.
F1 to F6 are unimodal functions. F7 to F12 are multimodal
functions. To assess the performance of the proposed algo-
rithm, seven CEC,13 test problems have been implemented
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Step 1
Create N objects, set iteration t
Initialize n-dimensional position

v

Step 2
Evaluate the fitness for each agent using equation (13) and update best
and worst using equations (14),(15)

Step 3
calculate force, G and K with the following equations (6),(7),(8)

A

Step 4
The acceleration of populations can be calculated using the following
equation (19)

A

Step 5
Update velocities and positions by using the following equations
(20),(21)

ermination criteria
satisfied =Max.
iterations

Yes

Best solution

FIGURE 1. The flow chart of a GSADMSPSO.

in this manuscript. Table 2 delivers a detailed narrative of the
CEC,13 test suit.

Dynamic test problems also use for test the efficiency
of the algorithms. Table 3 provides a detailed description
of the MPB test problems. Parameters for the algorithms
GSA ,FVGGSA, GGSA, ARGSA and BPSOGSA are consid-
ered from the corresponding resources.

For GSADMSPSO, we use these settings: population
size=30, c; = 0.5, co = 1.5, w is decreased linearly from
091002, Go = 1, a = 20, maximum iteration=20000,
R=5 and stopping criteria=maximum iteration.

A. STATIC TEST FUNCTIONS

To examine the performance of the optimization algorithms
12 test functions have been adopted in this study, which has
been shown in Table 1.

B. CEC,13 TEST SUIT

To evaluate the performance of the proposed algorithm, seven
CEC, 13 test problems have been adopted in this manuscript.
Table 2 provide a detailed description of the CEC,13 test
suit.
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TABLE 1. Benchmark optimization problems.

Function Formula

Range D Fim

Unimodal benchmark optimization functions

fi(x) = 1i1=1xi2

f2(0) = Xl + [T x|

f(0) = ST, %)

falx) = ?21(100(xi2 - xi+1)2 + (x; — 1)2)

fs(x) = X, ([x; + 0.5])2
fo(x) = X, ix*; + random[0,1]

Multimodal benchmark optimization functions

f2(x) = ity — xisin(y/ |x;]0

fo(x) = ¥, [x? — 10 cos(2mx;) + 10]

fo(x) = —20.exp <—0.2 /%Z?xf) + 20 —exp (%Z? COS 27X; ) +e

1 X
fio(x) = 2000 [ xiz +1- ?:1 COS(\/_%)

fun(x) = Z{10sin(my,) + T — D[ + 10in® (myip0)] +

(O — 1?3} + X' u(xy,10,100,4)
k(x;—1D)™x; > a
0—a<x;<a

yi=l+ x"4—+1u(xi, a,k,m)=
k(=x; —a)™x; < —a

fi2(x) = 0.1{sin?(Bmx,) + X, (x; — D?[1 + sin?(Bmx; + 1)] +

(x, — D?[1 + sin?2rx,)]} + X, u(x;, 5,100,4)

[-100,100] 30 0
[-10,10] 30 0
[-100,100] 30 0

[-30,30] 30 0
[-100,100] 30 0
[-1.28,1.28] 30 0

[-500,500] 30 -4.18.9892*5

[-5.12,5.12] 30 0

[32,32] 30 0

[-600,600] 30 0

[-50,50] 30 0

[-50,50] 30 0

C. MOVING PEAKS BENCHMARK

For evaluation of the extrema tracking, performance of the
proposed inertia weight dynamic tested functions was gen-
erated using the MPB. MPB is a widely used benchmark
problem proposed by Branke [30]. The parameters applied
to MPB are given in Table 3. The method which is con-
sidered for detecting environmental changes is re-evaluating
the global best particle before updating the global best parti-
cle. If its fitness changes, it indicates that an environmental
change has occurred.

V. RESULTS AND DISCUSSION

In this section, the proposed method (GSADMSPSO) is com-
pared with well-known GSA variants. In the first subsec-
tion, different strategies, including FVGGSA, GGSA, GSA,
ARGSA, BPSOGSA and GSADMSPSO have been analyzed
on the 12 static problems with symmetric and asymmetric
environments. In the next subsection, seven CEC,13 test
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problems have been adopted in this manuscript. Table pro-
vide a detailed description of the CEC,13 test suit com-
pared with other variants. And for dynamic problems, moving
peaks problems have been applied. And at the end, the real
time application tension and compression spring design are
employed for the better comparison.

A. COMPARISON WITH OTHER TECHNIQUES
All the algorithms involved in the comparison are
implemented 30 times independently for each func-
tion. Table 4 summarizes the results of the average
(mean) and standard deviation ‘Std’ performance among
30 runs FVGGSA, GGSA, GSA, ARGSA, BPSOGSA and
GSADMSPSO for all 12 static benchmark functions. The
bold values in the tables show the best results for the problems
according to t-test with a significance level of 5%.

For the exploitation of the algorithms unimodal test
functions are useful. According to table, the GSADMSPSO
algorithm shows the good results of these functions in terms
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TABLE 2. Unimodal, multimodal and composite CEC, 13 functions.

Name Function Formula Range f(X™)
Unimodal

Sphere(f1) noxfi z=x-o [-100,100]  -1400
Rotated Discus(f2) 10%z2 + X2, 22 f5 z = T,s,(My(x — 0) [-100,100] -1100
Rotated Bent Cigar(f3) 27+ 10830, 27 f5 2z =T (My(x — o) [-100,100] -1100
Rotated Different Powers(f4) [-100,100] -1000

Multimodal

Rotated Rosenbrock(f5)
2.048(x—0)
100

Z = Ml (
Rotated Ackley(f6)

i-1
izl fy, z=x-o0

Y1000z — ziy)2 + (i — DD fe
)+1

—20.exp (—0.2 /%2? zl?) +20—

[-100,100]  -900

[-100,100] -700

exp (1%2? cos 2mz; ) +efs
z= A10M2Tasy(M1(x —0)

Composite function
Composite function(f7)

n = 5,0 = [10,20,30,40,50],

[-100,100] 700

A=[11e — 6,1e — 26,1e — 6,0.1]
bias = [0,100,200,300,400],
g1: Rotated Rosenbrock

g»: Rotated Discus,

gs: sphere

Jga: Rotated Dif ferent Powers,
gs: Rotated Bent Cigar

TABLE 3. Parameters setting for MPB.

Search space [~ 100, 100]
Number of peak, NP 1

Number of dimensions, D 10

Peak heights € [-100, — 90]
Peak widths €[1,20]
Height severity 7.0

Width severity 1.0

Shift severity 2.0

Evaluation between changes (1) 3000
Correlation coefficient 0

of the mean results. GSADMSPSO provide superior results
on the unimodal benchmark functions, followed by FVG-
GSA, GGSA, GSA, ARGSA, BPSOGSA with competitive
results. The proposed algorithm has high performance of
unimodal benchmark functions. The high performance of
GSADMSPSO on unimodal test functions are due to the
fact the algorithm has higher exploitation as compared to
FVGGSA, GGSA, GSA, ARGSA, BPSOGSA. The social
component of PSO consents GSADMSPSO to exploit cor-
rectly about the best mass.

High exploration of GSADMSPSO algorithm instigates
from the GSA algorithm, in which all search agents
have impact on each other at each iteration. The conver-
gence curves in Fig. 2 prove that GSADMSPSO has the
better convergence behavior in five functions. These results
make evident that the GSADMSPSO algorithm has the best
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exploitation ability and convergence rate. The results of the
multimodal benchmark functions are delivered in Table 3.
According to the results of Table 3, GSADMSPSO shows the
best results in four out of six functions. However, the GGSA,
ARGSA, FVGGSA and GSA algorithms provide a good
result on multimodal test functions. The convergence curves
in Fig. 2 prove that GSADMSPSO has the better conver-
gence behavior in four functions. These results show that
the GSADMSPSO algorithm is able to avoid local optima.
In addition, the results can also evidence high exploration of
the proposed algorithm.

Multimodal optimization functions are the most stimulat-
ing test functions and appropriate for benchmarking explo-
ration and exploitation combined. The results in Table has
been shown that the GSADMSPSO is clearly better than other
algorithms. The convergence of algorithms when solving
these optimization functions are illustrated in Fig.3. It shows
that GSADMSPSO has the fastest convergence rate. These
results prove that GSADMSPSO professionally balances
exploration and exploitation.

The high exploration ability motivated GSADMSPSO to
leave behind other algorithms on multimodal test functions.
The proposed algorithm accentuates exploration in initial
steps of iteration. However, exploitation is indorsed as iter-
ation increases.

B. COMPUTATIONAL COST OF DIFFERENT ALGORITHMS
Table 5 has been listed CPU times (in seconds) with
CPU specification (Intel(R) core(TM) i5-2410M @ 2.30GHz
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il f2
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@ " 0
o 40 9
§10 g
[0} [
> >
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wRe N e
10-30 L 10-20 |
0 500 1000 0 500 1000
Iteration number Iteration number
(a)
i /17}f4
108 T 10", ‘
—FVGGSA —FVGGSA
_..GGSA -"GGSA
GSA GSA L
..... ARPSO -+ ARGSA
% - -BPSOGSA o - -BPSOGSA
0 —GSADMSPSO o —GSADMSPSO
o m
[0} i [0}
2 2
) o |
< g
0L 1 il
10
1o0c 0 500 1000
Iteration number Iteration number
(c) @
f5 f6
10", 10° w ]
—FVGGSA —FVGGSA
--GGSA -~GGSA
GSA GSA L
100 ..... ARGSA 2 J T P o ARGSA :
- -BPSOGSA - -BPSOGSA
—GSADMSPSO —GSADMSPSOL

Average Best
3
=)
T

00
1 0-30 L
0 500 100C
Iteration number
fe)

Average Best

Iteration number

FIGURE 2. The mean of the best fitness for 30 independent runs of five algorithms on (a) (f1), (b) (f2), (c) (f3), (d) (f3). (e) (f5), and (f) (f6).

2.30GHz, 4 GB Ram) of six algorithms over 30 independent
runs. The bold numbers in each column indicates the best
average time or best computational cost of each method
according t test with a significance level of 5%. From the
table, we can conclude that our proposed algorithm increases
the computational time of an original PSO. It is worthy of

spending time to improve the accuracy of a proposed algo-
rithm.
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C. COMPARISON THROUGH CEC,13 TEST FUNCTIONS

In this section different strategies evaluated through
CEC, 13 test functions. So, for the compression we are using
seven CEC,13 test function which have been provided in the
table 2 and the Dimension=20 has been used. The mean
and standard deviation values attained by each algorithm
are listed in table 6. The bold values in the table shows
good solution for the problems according to t test with a
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TABLE 4. Computational results of functions f1 to f12 of the tested algorithms.

Algorithms Mean Std. Mean Std. Mean Std.
Functions f1 f2 3
FVGGSA 3.56E-18 4.67E-05 2.36E-08 3.81E-07 3.47E+02 3.70E+02
GGSA 2.24E-22 5.88E-06 4.19E-12 6.78E-04 2.58E+02 5.67E+01
GSA 1.88E-17 3.96E-16 2.24E-07 1.89E-07 1.05E+03 8.93E+02
ARGSA 3.28E-19 7.91E-18 1.67E-09 5.39E-08 4.02E+03 2.22E+02
BPSOGSA 3.46E-24 6.78E-22 2.37E-06 2.93E-12 4.75E+02 7.45E+01
GSADMSPSO 1.50E-26 5.73E-25 1.07E-13 6.94E-12 1.25E+02 9.56E+02
Functions 4 5 f6
FVGGSA 2.50E+01 3.00E+01 3.19E-19 3.93E-18 1.09E+00 5.15E+00
GGSA 2.60E+01 6.90E+01 2.62E-24 5.72E-22 2.01E-02 5.67E-01
GSA 2.53E+01 4.67E+02 8.17E-17 3.62E-15 1.73E-02 3.69E-01
ARGSA 2.57E+02 4.96E+02 2.83E-27 7.89E-26 2.13E-02 6.89E-01
BPSOGSA 2.45E+01 3.39E+01 3.40E-19 1.21E-18 1.05E-02 3.67E-01
GSADMSPSO 2.38E+01 3.56E+00 1.26E-27 5.17E-26 2.23E-02 3.99E-01
Functions f7 8 9
FVGGSA -2.76E+03 3.47E+03 1.10E+02 3.50E+02 3.43E-08 2.78E-06
GGSA -3.51E+03 4.67E+04 3.39E+01 5.00E+00 4.80E-12 5.65E-11
GSA -2.00E+03 2.78E+03 7.39E+01 5.23E+00 3.71E-09 6.71E-08
ARGSA -6.60E+03 8.96E+03 7.76E+01 5.78E+00 2.85E-10 3.67E-09
BPSOGSA -8.29E+03 9.67E+03 3.67E+01 4.78E+01 5.69E-07 4.61E-06
GSADMSPSO -9.11E+03 9.89E+03 8.19E+00 6.11E+00 1.84E-14 4.80E-13
Functions f10 f11 f12
FVGGSA 1.28E+00 6.71E+00 4.81E+00 8.15E+01 3.54E-14 6.31E-13
GGSA 3.31E-04 4.37E-03 2.79E+00 4.85E+01 5.52E-20 7.26E-18
GSA 1.36E+00 5.98E+00 1.51E+00 7.84E+01 3.27E-09 5.60E-08
ARGSA 4.91E-05 3.91E-04 1.07E+01 3.45E+00 2.57E-18 4.81E-17
BPSOGSA 2.99E-02 9.34E-01 2.35E+00 2.98E+01 5.90E-12 7.30E-11
GSADMSPSO 7.40E-03 2.31E-02 2.13E+00 4.45E+01 3.24E-19 6.83E-18
TABLE 5. Computational cost of the algorithms on static functions f1 to f12.

Algorithm Ave(CPU) Ave(CPU) Ave(CPU) Ave(CPU) Ave(CPU) Ave(CPU) Ave(CPU) Ave(CPU)

Function fl 2 3 4 5 f6 7 8

FVGGSA 5.89E+00 7.89E+00 3.84E+01 4.87E+00 1.98E+00 5.80E+00 4.86E+00 5.60E+00

GGSA 3.60E+00 1.73E+00 1.02E+01 1.03E+00 1.67E+00 1.31E+00 2.08E+00 4.23E+00

GSA 7.59E-01 4.1EE+00 1.58E+01 298E+00 2.22E+00 7.78E+00 3.61E+00 6.02E+00

ARGSA 4.67E+00 4.67+01 4.41E+01 3.45E+00 2.36E+00 2.85E+00 4.15E+00 6.34E+01

BPSOGSA 4.04E+00 9.90E+01 4.78E+01 2.67E+00 2.98E+00 6.76E+01 5.16E+00 5.01E+02

GSADMSPS  4.43E+01 9.51E+01 6.01E+01 4.20E+01 3.76E+00 6.99E+01 8.56E+00 5.21E+01

Function 9 f10 fl1 f12

FVGGSA 3.65E+00 8.98E+00 6.72E+00 7.81E+00

GGSA 221E+00 5.85E+00 2.61E+00 1.29E+00

GSA 3.37E+00 9.39E+00 4.78E+00 1.78E+01

ARGSA 341E+02 5.91E+01 3.96E+01 1.88E+01

BPSOGSA 4.56+02 4.94E+01 4.88E+01 2.51E+01

GSADMSPS  541E+02 5.30E+01 5.30E+01 2.63E+01
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TABLE 6. The mean and standard deviation of methods on CEC,13 test functions (D=20).

Algorithm Mean Std. Mean Std. Mean Std.
Function fl 2 3

FVGGSA -1.40E+03  6.78E+03 -4.58E+02  9.16E+02 1.99E+05 1.53E+06
GGSA -1.40E+03  4.87E+04 -6.60E+02  4.64E+03 1.03E+05  5.78E+06
GSA -1.40E+03  4.71E+03 -5.78E+04  5.68E+02 2.45E+06  9.45E+07
ARGSA -1.40E+03  3.29E+03 -7.89E+02  5.44E+03 7.69E+06  7.69E+06
BPSOGSA -1.40E+03  3.56E+03 -8.26E+02  6.14E+03 1.64E+05  4.65E+05
GSADMSPSO -1.40E+03  3.67E+03 -9.87E+02  3.45E+03 2.96E+05 6.98E+05
Function 4 5 6

FVGGSA -1.00E+03  0.00E+00 -491E+02  5.67E+03 -6.90E+02  0.00E+00
GGSA -1.00E+03  0.00E+00 -5.61E+02  3.32E+03 6.90E+02  0.00E+00
GSA -1.00E+03  0.00E+00 -2.67E+02  2.87E+02 -6.90E+02  0.00E+00
ARGSA -1.00E+03  0.00E+00 -6.67E+02  6.79E+02 -6.90E+02  0.00E+00
BPSOGSA -1.00E+03  0.00E+00 -7.32E+02  9.61E+02 -6.90E+02  0.00E+00
GSADMSPSO -1.00E+03  0.00E+00 -9.32E+02  3.38E+02 -6.90E+02  0.00E+00
Function 7

FVGGSA 2.08E+02 1.33E+02

GGSA 3.90E+02  5.78E+03

GSA 2.09E+02 3.66E-03

ARGSA 2.07E+02 1.39E+03

BPSOGSA 2.39E+02  3.78E+02

GSADMSPSO 1.96E+02  9.16E+03

significance level of 5%. The results of the CEC,13 bench-
mark functions are delivered in Table 6. According to
the results of table 6 proposed algorithm shows the best
results in six out of seven benchmark functions. FVGGSA
method suffers when particles are close to the optima,
a high convergence ability required, but success rate nearly
Zero

D. COMPARISON OF DIFFERENT METHODS THROUGH
MPB

In this section, different algorithms have been applied on
MPB test functions describes in section 4.3. The experimen-
tal result of proposed algorithm GSADMSPSO with other
methods for different environmental condition reported in
table 7 and it represents the mean and standard deviation of
the offline error found by different methods. The bold values
indicates the best possible results according to t-test with a
significance level of 5%.

As presented in table 7, the performance of GSADMSPSO
is superior to the other alternative methods. Thus after an
environment change, it maintains the diversity, which is help-
ful for tracking optima.

GGSA could not sufficiently maintain diversity and thus
produce a lower performance as compared to the proposed
method on MPB problems. BPSOGSA is not performing
well as compared to the proposed algorithm. ARGSA also
has not provided a good result as compare to the proposed
method because of diversity problem and slow convergence
rate. Results have been shown that proposed algorithm is
superior as compared to the other algorithms.
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E. TENSION AND COMPRESSION SPRING DESIGN

The objective of this problem is to reduce the weight of
a tension/compression spring [31]. This process is subject
to some restrictions such as shear stress, surge frequency
and minimum deflection. There are three variables in this
problem: wire diameter (d), mean coil diameter (D) and the
number of active coils (N). The mathematical formulation of
this problem is as follows:

x7 = [x1x2x3] = [d D N]
F @) = (63 +2) xxf,

3
X3X
_x_) =1—- 2 <
1) 71785xF
4x2 —
() = —2 T Lo,
12566(x2x} —xf 5108)51
~ 140.45x,
g = 1— o g
X5X3
G =12 o

1.5
variable range 0.05 < x1 < 2.00,

0.25 <x <1.30,2.00 < x3 <15.0,

This problem has been solved by mathematical and heuristic
approaches. Ha and Wang tried to solve this problem using
PSO [32]. GA [33], harmony search (HS) [34], FVGGSA,
GGSA, ARGSA, GSA, BPSOGSA and GSADMSPSO algo-
rithms have also been employed as heuristic optimizers for
this problem. The mathematical approaches that have been
adopted to solve this problem are the numerical optimization
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FIGURE 3. The mean of the best fitness for 30 independent runs of five algorithms on (a) (f7), (b) (f8), (c) (f9), (d) (f10), (e) (f11), and (f) (f12).

technique (constraints correction at constant cost) [30] and
mathematical optimization technique [35]. The comparison
of results of different techniques and the proposed method
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are provided in Table 8. As shown in Table, GSADMSPSO
consistently has the best results as compared to the other
algorithms.
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TABLE 7. The mean and standard deviation of offline error of different algorithms on MPB.

FVGGSA GGSA GSA ARGSA BPSOGSA GSADMSPSO

Mean offline 1.2745 1.3487 1.7987 1.9854 1.9861 0.7723

Error std. 0.6951 0.6745 0.9976 1.0876 0.2563 0.4264
TABLE 8. Comparison of results on real time problem.

algorithms optimal variables optimal weight

d D N

FVGGSA 0.050579 0.336526 12.451134 0.0127356

GGSA 0.051319 0.347901 11.825211 0.0126677

GSA 0.050276 0.323681 13.525471 0.0127022

ARGSA 0.505693 0.334584 12.643976 0.0126345

BPSOGSA 0.509844 0.347645 13.453218 0.0127452

GSADMSPS 0.051246 0.321145 11.167823 0.0126241

PSO 0.051728 0.357644 11.244543 0.0126747

GA 0.051486 0.351661 11.632201 0.0127048

Harmony search(HS) 0.051154 0.349871 12.076432 0.0126706
VI. CONCLUSIONS [4] H. Cao, X. Qian, Z. Chen, and H. Zhu, “Enhanced particle
In this manuscript, a hybrid GSADMSPSO has been pro- swarm optimization for size and shape optimization of truss

posed by utilizing the same concepts of the continuous ver-
sion for search behavior. In order to justify the performance
GSADMSPSO, 12 static, 7 CEC, 13 benchmark functions
and moving peaks problems have been employed, and the
results are compared with FVGGSA, GGSA, GSA, ARGSA
and BPSOGSA. The results proved that GSADMSPSO is
able to provide competitive results and has excellence among
optimization algorithms in the search spaces. According to
the findings, the GSADMSPSO algorithm fruitfully gets
the advantages of the PSOGSA. GSADMSPSO shows good
exploration since all search agents participate in updating
position of a search agent. The exploitation of GSADMSPSO
is very precise due to the social component of PSO integrated
that causes accelerated convergence. GSADMSPSO is capa-
ble to avoid local optima and provide a better convergence
in the search space. Tension/compression spring design real
time problem has been used for testing the efficiency of
proposed algorithm. The proposed method provides a better
result in this real time problem as compared to the other
algorithms. For future studies, it is recommended to apply
GSADMSPSO in real time optimization problems such as
power system, data clustering. Exploring the consequence
of different transfer functions on GSADMSPSO would be
interesting as well.
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