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ABSTRACT Wireless sensor networks (WSNs) and mobile crowdsensing (MCS) are two important
paradigms in urban dynamic sensing. In both sensing paradigms, task allocation is a significant problem,
which may affect the completion quality of sensing tasks. In this paper, we give a survey of task allocation
in WSNs and MCS from the contrastive perspectives in terms of data quality and sensing cost, which help
to better understand related objectives and strategies. We first analyze the different characteristics of two
sensing paradigms, whichmay lead to difference in task allocation issues or strategies. Then, we present some
common issues in task allocation with objectives in data quality and sensing cost. Furthermore, we provide
reviews of unique task allocation issues in MCS according to its new characteristics. Finally, we identify
some potential opportunities for the future research.

INDEX TERMS Mobile crowdsensing (MCS), task allocation, wireless sensor networks (WSNs).

I. INTRODUCTION
The rapid development of the city highlights the sens-
ing needs for urban environment, target movements and
human activities. Urban sensing tasks are characterized by
large scape and heavy burden. Therefore, collecting sens-
ing data effectively becomes focused issue. Wireless sensor
networks (WSNs) and mobile crowdsensing (MCS) are two
popular sensing paradigms and play important role in urban
dynamic sensing.

WSNs are the specialized infrastructures that constituted
by a large number of spatially distributed sensor nodes,
which can communicate with each other through several
hops of wireless link and collaboratively accomplish mon-
itor tasks and collect corresponding data [1]. Due to the
capacity of sensing, processing and communication, WSNs
technology has found broad applications prospects, such as
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air quality monitoring [2], traffic control [3], [4], agricultural
irrigation [5], etc.

In addition, with the development of wireless communica-
tion and sensor technology, some mobile devices (e.g., smart
phone, iPads and wearable devices) have already equipped
with various types of sensors (e.g., GPS, accelerometers,
camera, gyroscopes, etc.) and show high capability in sensing
and communication. A new sensing paradigm called MCS
[6], in which mobile users leverages senors embedded in their
mobile devices to collect and transmit sensing data, plays an
important role in large-scale sensing and information sharing,
and becomes a research issue in both academia and industry.

The realization ofMCSmainly benefits from two concepts:
crowdsouring [7] and mobile sensing. Concretely, large-scale
sensing tasks that traditionally accomplished by specialized
sensing infrastructures are outsourced to a group of ordi-
nary mobile users. Compared to WSNs, MCS is a kind of
grassroots sensing paradigm and has a number of advantages
[8]: (1). MCS leverages mobile devices to sense or generate
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data instead of deploying specialized infrastructures, thus the
sensing cost is quite low. (2). Different from static wireless
sensor networks, or the sensor nodes move along a intended
route, the inherent mobile users provide sufficient temporal-
spatial coverage. Due to the advantages mentioned above,
a broad range of MCS applications have been studied such as
intelligent transportation [9], [10], environment monitoring
[11], target identification [12], and so on.

Task allocation is a common concern both in WSNs and
MCS. WSNs are composed by a set of sensing nodes with
limited energy. Furthermore, it is infeasible to change or
recharge to the battery because of the specific applications.
So it is an important issue for WSNs to schedule nodes to
accomplish sensing tasks and prolong the lifetime of whole
network while guaranteeing the quality of information (QoI)
in the target area. For MCS system, platform recruits mobile
users to participate in sensing tasks and upload high quality
data. From the perspective of mobile users, collecting and
uploading sensing data devote their time and consume energy
of mobile devices, even require them to change their original
trajectory. Without any incentive to compensate for their
effort, users may be unwilling to participate in sensing tasks.
Besides, users vary in some specific knowledge and expertise,
which causes diversity in data quality. From the perspective
of platform, it expects to get high quality data, but reluctant
to sacrifices much cost. Thus, to get high quality of sensing
data under budget constraint, a advisable way is allocating
the tasks to proper users, while accounting for the various
initial locations of different users, sensing data reliability and
sensing cost. Therefore, task allocation is an important issue
both in WSNs and MCS.

Due to its importance, several studies have been conducted.
These works discussed the task allocation problem in WSNs
or MCS from different aspects, such as quality of sensing
data, sensing cost, etc. For example,Wang et al. [13] analysed
the unique features of MCS compared to general crowdsour-
ing and present an overview of task allocation from different
type of problem formulation. However, few work summa-
rized the common research problems both in WSNs and
MCS, or some emerging problems in MCS. In fact, there are
some similarities and differences in objectives and strategies
for two types of sensing paradigm. Firstly, for some common
issues (e.g., fault tolerant), the strategies of task allocation
in WSNs are almost suitable in MCS. MCS applications can
directly adopt these strategies. Secondly, some issues such
as energy consumption, though the constraints in these two
sensing paradigmsmay be different, the strategies in theMCS
can learn from WSNs according to its new characteristics.
Thirdly, some new issues (e.g., incentivemechanism, location
privacy), which are not necessary discussed in WSNs, should
be explored to meet the increasing requirements of MCS.
To better understand the task allocation in these two sens-
ing paradigms, a comprehensive overview of task allocation
problem in both WSNs and MCS is desirable. In this paper,
we focus on the comparison of task allocation problem in

WSNs and MCS. We firstly analyze the common issues in
these two sensing paradigms. Then, we present some distinct
task allocation issues in MCS due to its new characteristics.
In particular, the contribution of this paper can be concluded
as follows:

• Analyzing the characteristics of WSNs andMCS, which
indicates that the similarity and difference of task allo-
cation problem in two sensing paradigms.

• Discussing some common issues of task allocation in
two types of sensing paradigm, including data quality
and sensing cost. We analyze the different strategies
that adopt in two sensing paradigms, which can help
researchers take good understanding of the problem of
task allocation and corresponding methods.

• Reviewing some unique issues of task allocation in
MCS that WSNs does not consider, such as incentive
mechanism, travel distance of users and location privacy,
which present distinct characteristics of task allocation
in MCS.

• Investigating the some potential research directions in
MCS task allocation, which may be more promising and
meaningful in practical MCS applications.

Our main contribution can be concluded in Fig.1.
The remainder of this paper is organized as follows: in
Section 2, the characteristic of WSNs and MCS are analyzed.
In Section 3, the common issues of task allocation in two
types of sensing paradigm are discussed. Then, some distinct
issues of task allocation in MCS are introduced in Section 4.
Following that, we discuss research opportunities of task
allocation in MCS in Section 5. Finally, conclusions drawn
from this study are presented in Section 6.

II. CHARACTERISTICS OF TWO SENSING PARADIGMS
In this section, we briefly summarize the framework and
present the characteristics of WSNs and MCS, which may
lead to difference in objectives and constraints of task alloca-
tion problem.

The framework of WSNs is shown as Fig. 2, which con-
sists of sensor nodes, sink nodes, Internet and task manage
system. Typically, sensor nodes are embedded with a sen-
sor unit, a processor, wireless communication module and
power supply module, thus having processing, storage and
communication capabilities. Sensor nodes not only collect
and process the sensing data from their monitored area,
but also store and manage the data transferred from other
nodes. The sink nodes can be either a intensified sensor node,
which equipped with enough energy to provide morememory
resources and computing power, or a special gateway device
only with wireless communication interface but no monitor-
ing function. They usually has stronger processing, storage
and communication capabilities. They mainly play the role
in communicating between sensor nodes and wireless sensor
networks, transmitting collected data information to external
networks. Generally, sensor nodes collect and transmit the
required information to the sink nodes by a hop or multi
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FIGURE 1. The main contribution of this work.

FIGURE 2. The framework of WSNs.

FIGURE 3. The framework of MCS.

hop wireless communication link. Then, the sink nodes send
processed data to the task management system via satellite,
Internet or mobile communication.

Different from WSNs, a MCS system consists of three
components: service requestor, MCS platform and users.
We show the framework of MCS in Fig. 3. The service
requestors create sensing tasks and upload task requirements
(e.g., the task context, the location and time, the number
of users, etc.) to the MCS platform. MCS platform usually

consists of a set of servers, which can store, analyze and
integrate crowd data. After receiving the requirements from
service requestors, MCS platform publishes the tasks and
recruits well-suited users to perform tasks. Users leverage
mobile devices sensing and upload the up-to-date local data
to the MCS platform. MCS platform analyzes and aggregates
the sensing data, then transmits to service requestor accord-
ing to the requirements. To compensate for the users, MCS
platform leverages incentive mechanism to pay some reward
to users for their contribution.

According to the framework of WSNs and MCS, the par-
ticipation of users is the chief difference between WSNs and
MCS. The success of MCS benefits from the concept of
‘‘crowdsourcing’’, which is defined as outsouring a burden-
some task to a large group of people [14]. In other words,
a large-scale sensing task that traditionally completed by a
specific infrastructure can be allocated to ordinary users who
use their carry-on devices to collect sensing data. Mobile
users collaborate consciously or unconsciously to complete
the sensing tasks that is impossible completed by individuals
alone. From the following perspectives, we analyze the differ-
ences of two sensing paradigms, which may cause different
strategies or some unique issues in task allocation due to the
new characteristics of MCS.

A. MOBILITY
Traditional WSNs deploy static or intended moving sensor
nodes, which collect sensing data in a specific area and trans-
mit the collected sensing data to their neighbor sink nodes
by one hop or multi hops. Thus, coverage and communica-
tion distance of WSNs are limited. By contrast, the inher-
ent mobility of users provides high spatiotemporal coverage
compared to the WSNs [8]. According to whether users
should change their regular routine to participate in sensing
tasks, MCS can be classified into participatory sensing and
opportunistic sensing. Participatory sensing indicates that
users should change their routine to participate in sensing
tasks. In this case, the travel distance is the main concern
for users to determine whether participate in sensing tasks.
In opportunistic sensing, users do not need to change their
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TABLE 1. Characteristics of WSNs and MCS.

routine and participate in sensing tasks unconsciously. How-
ever, to recruit proper users, an efficient trajectory predic-
tion is important in this case. Furthermore, sensing tasks
are usually location-based. Collecting related data for these
tasks may exposure the location of users. Thus, some new
techniques should be adopt to protect users’ privacy.

B. UNIVERSALITY
Traditional WSNs deploy application-specific infrastructures
to collect sensing data. Consequently, it costs much money to
deploy and maintain sensor nodes. To reduce the cost, a com-
mon practice is deploying much sensor nodes in the areas
that are urgent need and few nodes in desolate areas. Thus,
the collected data is not spatial-uniformly. Furthermore, sen-
sor nodes consume battery energy during data collection and
transmission. When the energy is exhausted, sensor nodes
cannot be recharged or replaced due to the practical applica-
tion [15]. Thus, it is difficult for WSNs to perform the large-
scale sensing and data transmission tasks for long time.

MCS is a pervasive sensing paradigm. Instead of deploying
application-specific infrastructures, MCS applications recruit
original citizens to participate in sensing task. Even if some
users may drop out collecting data during the required time,
the platform will recruit new users to complete the task. With
the development of city, MCS plays an important role in
data collecting. However, some factors of users should be
considered. Firstly, users may be unwilling to participate in
sensing tasks due to the inherent selfishness. To motivate
the mobile users’ participation, incentive mechanisms should
be considered in the process of task allocation. Secondly,
with the development of MCS, sensing tasks become more
and more complex and may require the users’ expertise in
some special field or carry the mobile devices embedded
with required sensors to accomplish sensing tasks. Thus,
the capability heterogeneity of users should be considered.

C. SENSING DEVICE
Sensor nodes in WSNs are elaborated to collect specific type
of data (e.g., the air monitor only collect the air-quality data
in a specific area). Due to the specificity, the quality of
sensing data from WSNs is usually high. However, specific
sensor nodes are hard to apply to collecting other type of
data (e.g., traffic information video). Thus, the reusability of
WSNs is low.

With the development of sensor technology, mobile
devices such as mobile phone, wearable devices are embed-
ded with various types of sensors, which can accomplish
different types of tasks. The related departments do not need

to deploy specific network infrastructures. However, different
sensing devices vary in sensor type and performance, the col-
lected data suffer from the issues of quality because of sensor
performance. Due to the advantages of MCS, more and more
applications leverage MCS to collect sensing data. From the
perspective of individual user, how to cooperate sensors to
maximize his benefit under limited sensing capability is also
an important issue in MCS.

D. SENSING MODE
WSNs are physical sensing paradigm that composed of a
set of sensor nodes with the ability of sensing, storage, and
communication. These nodes cover the target area and col-
laboratively collect the sensing data. Once the system sets
the sensing requirements of a task, WSNs can execute the
sensing program according to the requirements without the
involvement of users. For example, if the sensing cycle is set
to one hour, the system will automatically collect the sensing
data once a hour.

With the development of social network, platforms such as
Twitter, Foursquare provide users’ information. These infor-
mation include location-based information and user content
information [16]. Except for collect data from physical space,
the information from social network play an important role
in MCS to collect crowd sensing data. Because of the par-
ticipation of users, the sensing data may integrate human
intelligence and machine intelligence, which provides more
intelligent information than WSNs. Take the task that sens-
ing traffic information of a street as an example, except for
the uploaded pictures, some comments from users can also
provide important information to service requestor.

The summarization of the difference of characteristic
between WSNs and MCS are shown in Table 1.

According to analysis above, in terms of task allocation,
there are some difference in objects and constraints. On the
one hand, there are some similar common issues that two
paradigms concerned. However, due to the different con-
straints, the strategies may be different. On the other hand,
with the participate of mobile users and other new character-
istics ofMCS, there are some new issues should be concerned
in the task allocation. In the following two sections, we will
present a systemic reviews of common issue of two sensing
paradigms and new issues in MCS, respectively.

III. COMPARATIVE STUDY ON COMMON ISSUES
Data quality and sensing cost are two important concerns
in task allocation. There are some common objects of task
allocation in WSNs and MCS from these two perspectives.
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However, Due to the differences in framework characteris-
tics and application scenarios, the strategies adopted in the
two sensing paradigms may be different. In this section,
we present reviews of strategies that two sensing paradigms
adopt to tackle the problem of data quality and sensing cost.

A. DATA QUALITY
Data quality is one of most important concern of two sens-
ing paradigms in the process of task allocation. However,
it difficult to give a common definition of data quality. Most
researchers investigate the data quality problem from the two
aspects: coverage and fault tolerant.

1) COVERAGE
Coverage is a key indicator for a sensing platform. It indicates
how well the target areas can be observed. According to
[17], the coverage can be described as monitor-quality of
a network in the target area. The definition of coverage is
closely related to applications but usually can be categorized
into three types: point coverage, region coverage and barriers
coverage [18]. Point coverage reflects the condition that a
set of target points can be covered. In the region coverage,
the objective is to cover a two-dimensional region. Barrier
coverage indicates that sensor nodes detect a moving object
which invade the deployment area [19]. Generally speaking,
the definition of coverage in two sensing paradigms are not
differ too much. However, there are some difference between
strategies of getting high coverage.

a: COVERAGE IN WSNs
In the last few years, researchers are actively exploring the
coverage problem in WSNs. In the process of sensor deploy-
ment, Yoon and Kim [20] studied the sensor deployment
problem that aims to maximize the Boolean disk coverage
under the giving type and number of sensor constraint. Then
they devised a novel genetic algorithms to tackle this prob-
lem. Cao et al. [21] transferred the deployment problem to
anmulti objective problem, which simultaneously considered
three objectives: extensive coverage, long network lifetime
and high reliability. Then, they proposed a distributed parallel
multi objective evolutionary algorithm to solve this problem.

After deployed, sensor nodes in the network collect and
transmit the sensing data to the sink nodes. Since the energy
of sensor node is limited, the performance of network may
degrades with the time. In fact, the sensor nodes in WSNs
share the same sensing task. It is not necessary to keep all
node working during the whole lifetime. In addition, some
applications like temperature monitoring may not require
100% coverage for whole target area. To reduce the energy
consumption and prolong the lifetime of network, a practical
strategy is selecting sensor nodes work alternatively, while
meeting the coverage requirement. Danratchadakorn and Por-
navalai [22] proposed a decentralized sleep scheduling pro-
tocol to maximize the coverage of network. In this protocol,
every sensor create a neighbor table and cell value table,
then exchange the coverage information with their neighbor

sensor to decide which mode it should be on. Movassagh and
Aghdasi [23] proposed a distribute method that exploiting
game theory to select active sensor node to cover the target
area. Sensor nodes compete to be active or inactive accord-
ing to their coverage redundancy, activation cost, number of
neighbors and uncovered regions. Similarly, Wang et al. [24]
considered the coverage control in the underwater acoustic
sensor networks (UASNs) and proposed a memetic algorithm
to minimize the number of active nodes while guaranteeing
coverage.

b: COVERAGE IN MCS
Different from WSNs, MCS does not need to deploy ded-
icated infrastructures. Alternatively, the platform in MCS
directly selects suitable mobile users to meet the required
spatial-temporal coverage. Typically, the platform divides the
sensing duration into several cycles and specifies the target
area into a set of subareas. It is assumed that if mobile users
reach a subarea in a specific cycle, then he covers the subarea-
cycle tuple. Due to the mobility of users, the application
usually predicts the mobility of users before allocating the
tasks. For example, Reddy et al. [25] considered the loca-
tion, time constraints and transportation mode of users to
model the mobility profile of users. Then, they proposed
a coverage-based framework to select well-suited users to
maximize spatial coverage. Zhang et al. [26] predicted the
mobility of users using a Poisson model and then selected
minimum number of users to meet the predefined temporal-
spatial coverage. Xiong et al. [27] defined a temporal-spatial
coverage called k-depth coverage, then they predicted the
mobility of users and discussed task allocation problem with
different incentive and coverage objectives/constraints in the
Piggyback Crowdsensing (PCS) task model. Another work
[28] defined a novel coverage metric called ‘‘t-sweep k-
coverage’’, and proposed two methods to select smallest set
of candidate users based on their check-in data to satisfy pre-
defined coverage requirements. Zhang et al. [29] investigated
coverage quality and proposed a approximation algorithm to
select a subset of mobile users to maximize coverage quality
under constrained budget. In [30], a greedy based multi tasks
allocation framework for participatory sensing is proposed,
which aims to maximize the overall coverage under shared
budget. Wang et al. [31] firstly leveraged a strategy to discov-
ery the mobility patterns of users from history trace and then
devised different greedy-based task matching algorithm with
the objectives of minimizing the cost and maximizing the
coverage.

Besides, with the development of MCS, more and more
applications leverage MCS framework to recruit mobile
users. However, different tasks are heterogeneous in spatial-
temporal requirements. For example, a spatial-temporal gran-
ularity of collecting noise data is different from collecting
air quality, because noise changes more sharply with the
time and space. Therefore, tasks allocation for heterogeneous
tasks the should be considered. For example, Li et al. [32]
estimated the probability of a participant to make a phone
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at target location and proposed a greedy-based participant
selection algorithm for heterogeneous tasks to minimize the
number of users while guaranteeing a certain level of cover-
age. Wang et al. [33] studied the heterogeneous multi tasks
allocation problem, in which the involved tasks are different
in spatial-temporal granularity but share the same partici-
pant resource. They constructed spatial-temporal correlation
representation between multiple tasks and then proposed a
decomposition and combination framework to tackle this
problem. Song et al. [34] invested multi tasks allocation
problem and proposed a metric called quality of informa-
tion (QoI), which can be expressed as the ratio of the num-
ber of measurements of collected and needed for each task.
The problem can be transformed to a knapsack problem and
a greedy-based selection strategy is designed to solve the
problem.

c: SUMMARY OF COVERAGE
According to analysis above, we conclude that there are
two differences in coverage problem. Firstly, compared to
the intended deploying sensor nodes in WSNs, MCS selects
suitable users to participate in sensing tasks according to
their trajectories. Probabilistic models are usually adopted in
opportunity sensing to estimate the mobility of users. Thus,
the coverage metrics in the MCS are usually probabilistic-
based. Secondly, due to the coexist of multiple heterogenous
tasks, the definition of coverage in MCS may be also het-
erogenous in term of spatial-temporal granularity.

2) FAULT TOLERANT
Fault tolerant is another important metric of quality of service
of sensing network. It reflects the ability that the network
works correctly even some unexpected circumstances occur.
Thus, fault tolerant is also an important issue that should be
considered.

a: FAULT TOLERANT IN WSNs
WSNs consist of a lot of sensor nodes that with lim-
ited energy. When the left energy blows a certain value,
the sensor node may not work correctly. In addition, sensor
nodes are usually deployed in hostile environment and easily
be destroyed by malicious behavior of human, villainous
weather, etc. Thus, fault tolerance mechanisms are necessary
in task allocation to deal with serious consequences caused
by sudden failure of nodes, and ensure the tasks successfully
completed before the specified deadline.

The primary/backup (P/B) copy is the most popular tech-
nique for fault-tolerant in WSNs. It allows copy of tasks
run on different sensor nodes. There are two modes of copy
for a task, which named primary copy and backup copy.
According to the execution time of backup copy, The pri-
mary/backup technique can be classified into three modes:
active backup copy mode, passive backup copy mode and
overlapping backup copy mode.

In the active backup copy mode, primary and backup copy
are executed in different sensor nodes. The backup copy can

execute normally even the primary copy failed to guarantee
the correct results of the tasks. There is no requirement for the
running time of these two copies of task, i.e., the two copies
need not be synchronized. However, it will consume twice
resource compare to the nonfault situation. Study in [35] con-
sidered the task allocation in industrial systemwhere periodic
and aperiodic tasks are coexist. Due to the unpredictability of
aperiodic tasks, authors leveraged active backup copy mode
to schedule primary and backup copies of aperiodic tasks by
using the reserved processor time of periodic tasks.

Different from active backup copy mode, the passive
backup copy mode runs the backup copy under the situation
that primary copy fails. It does not run the backup copy if
there is no fault in primary copy. But the disadvantage is that
it encounter more time requirement. Pathan and Jonsson [36]
proposed a fault tolerant global multiprocessor scheduling
algorithm (FTGS), which leveraged the passive backup copy
scheme to tolerate both task errors and processor failures
that occur at any time even during the execution of recovery
operation.

The overlapping backup copy mode combines the advan-
tage of above modes. In this mode, primary and backup copy
overlap in their running time and improve the performance
of tasks. Guo et al. [37] proposed soft real-time task fault-
tolerant allocation algorithm, which based on particle swarm
optimization (PSO) in WSNs to minimize tasks execution
time, save node energy cost, and balance network load. The
proposed algorithm employs P/B technology and backup
copy overlapping technology to achieve fault-tolerant mech-
anism. Zhu et al. [38] considered the quality of service and
heterogeneous features of clusters, then proposed a fault-
tolerant scheduling algorithm called QAFT, which employed
the backup-copy overlapping technology striving to advance
the start time of primary copies and delay the start time of
backup copies under the time constraints.

b: FAULT TOLERANT IN MCS
For MCS, fault tolerant is also necessary. Users leverage the
mobile devices to sense and upload sensing data, there are
some circumstances that may affect the completion quality
of sensing tasks. Firstly, similar to the sensing nodes in
WSNs, mobile sensors may be blocked. Secondly, due to the
heterogeneity of sensing devices, the quality of sensing data
from different users vary greatly. Thirdly, users may exhibit
some malicious behaviors and contribute sensing incorrect
data intensionally. Finally, users in MCS may leave the target
area before they complete the tasks, causing the sensing data
can not be successfully sensed or uploaded.

In response to the above situations, MCS applications usu-
ally adopt strategies similar to the active backup copy mode
in WSNs. That is, recruiting multiple users at one time to
complete one task. For example, studies in [27] and [39],
authors defined a spatial-temporal coverage and discussed
how to select multiple users to maximize the coverage quality
under budget constraint. To guarantee the validity of sensing
data, recently, some mechanisms are proposed to quantify
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the trustworthiness of sensing data. For example, Pouryazdan
et al. [40] proposed a new metric called collaborative reputa-
tion score to quantify the trustworthiness of sensing data. This
metric is based on statistical reputation and social reputation.
It is a weighted sum of previous and current reputation.
The experiment results showed that the new metric can get
better performance compared to solely vote-based or anchor-
assisted scheme.

c: SUMMARY OF FAULT TOLERANT
Fault tolerant mechanisms in two sensing paradigms are sim-
ilar. That is, they allocate the tasks to multiple sensor nodes.
WSNs allocate tasks to multiple sensor nodes in case of tasks
are unable to be completed on time due to the sensor nodes
break down. For MCS, it recruits multiply users to guarantee
data quality in case of mobile device failure or low-quality
sensing data uploaded bymalicious users. Furthermore, some
trustworthiness mechanisms are introduced to measure the
trustworthiness of users.

B. SENSING COST
The sensing cost is another concern in task allocation.
An effective way to lower the cost is reducing the energy
consumption and prolonging the lifetime of network. In addi-
tion, the workload of sensor nodes should also be considered.
Because a energy-exhausted sensor nodes may affect the
completion of tasks. Thus, we discuss the sensing cost from
the perspectives of energy consume and workload balancing.

1) ENERGY CONSUMPTION
Energy expenditure for a sensing node is inevitable. For
example, Verizon consumers 8.9TWh energy, that’s the
0.24% of the total energy consumption of the U.S. [41]. The
energy consumption grows exponentially with related appli-
cations. With the escalations of wireless network and mobile
devices, energy-efficient wireless network has attracted a
significant amount of research effort these years. The key
problem for this issue is to trade off the energy consumption
and quality of information. From the task allocation of view,
researchers focus on how to schedule sensing nodes to partic-
ipate in data collecting with low energy expenditure.

a: ENERGY CONSUMPTION IN WSNs
Sensor nodes in the WSNs are usually battery-constrained.
And it is impractical to recharge battery during the running
state of network [42]. Thus, deploying large number of sens-
ing nodes and keep all node works to collect related data is
infeasible and energy-consuming. An alternative approach is
scheduling a subset of sensors in the working mode while
others keep sleep mode to save energy and prolong the life-
time of network [43]. Zhao and Gurusamy [44] proposed an
approach to schedule the active sensors and maximize the
lifetime of WSNs, which can maintain a full coverage of
target areas and can be connected to sink nodes by direct links
or by multi hops route traversing. If the full coverage or the
predefined connectivity cannot be satisfied, Zhao assumed

that the deployed WSNs reached its lifetime. Chen et al. [45]
introduced Trap Cover Optimization (TCO) algorithm to
achieve the goal that scheduling the activation sensor nodes
while guarantee the uncovered hole is no greater than a given
threshold. Lu et al. [46] attempted to prolong the lifetime of
WSNs by switching on the sleep-mode sensor in target spots.
Yu et al. [47] considered the energy consumption of sensing,
computing communication and sleeping, they mapped the
workload distribution problem into graph partition problem
and formulate the energy consumption and the time constraint
of the nodes in WSNs.

Node clustering is an another way to reduce the energy
consume and prolong the life of network. Every cluster is
managed by the cluster head (CH). CH play an important
role in coordinating the nodes’ activities. Nodes in the cluster
transmit to the CH, then CH transmits the aggregated data to
other CH or sink nodes, thus it can reduce the energy con-
sumption [48]. Naranjo et al. [49] proposed a new technique,
named P-SEP, which attempt to select CH to save energy and
prolong the lifetime of network. P-SEP considers the number
of sensor nodes that associate with CH and minimizes the
distance between CH fog nodes. Simulations indicated that P-
SEP prolong the lifetime of network compared to the baseline
algorithm.

b: ENERGY CONSUMPTION IN MCS
Similarly, it is important for MCS system to minimize the
energy consumption of mobile users’ devices because high
energy consumption reduce the users’ participation willing-
ness [50]. An energy-efficient task allocation scheme aims to
select minimal number of users while ensuring a predefined
data quality. Sherchan et al. [51] proposed a framework,
Context-Aware Real-time Open Mobile Miner (CAROMM),
to reduce the amount of data sent and energy usage in the
process of data collection while providing comparable level
of accuracy to traditional sensing model. Lane et al. [52] pro-
posed PCS system, which collects mobile sensing data when
mobile users place phone calls or use applications to lower
the energy overhead of users. Zhang et al. [26] proposed a
user recruiting framework, CrowdRecruiter, which aims to
select minimal number of users while satisfying probability
coverage constraint. Liu et al. [53] modeled an energy-aware
recommended sampling behavior and computed the task
rejection probability. Then, they formulated a constraint opti-
mization problem and devised a suboptimal solution to tackle
the problem. The study in [54] proposed an energy-efficient
data collection framework, whose objective is tominimize the
energy consumption while maximize the utility of collected
data. Then, authors developed an Android application to mea-
sure the performance of proposed framework. Anjomshoa
and Kantarci [55] proposed a scheme called SOBER-MCS to
assign tasks to users, which considers sociability and mobile
battery level.

Another way of reducing the energy consumption is
to reduce the number of allocated tasks in view of
spatial-temporal correlations. For example, sparse mobile
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crowdsensing [56], which selecting small portion of subar-
eas for sensing and inferring data of remaining subareas
according to spatial-temporal correlation among subareas,
thus lowering the energy consumption and incentive. Based
on this conception, CCS-TA [57] was proposed to monitor
real-time temperature and air-quality in the city. It iteratively
selects salient cell to collect sensing data until the predefined
data quality are satisfied. Then, the missing data is deduced
by combining with Bayesian inference and active learning
mechanisms. Evaluation results on real-world datasets show
the applicability of CCS-TA.

c: SUMMARY OF ENERGY CONSUMPTION
Though both two sensing paradigms consider the energy
consumption, the strategies are different. WSNs alternately
select subset of sensor nodes keeping in active state and the
others in sleep state tomaximize the performance and prolong
the lifetime of network. Then, node clustering mechanism
is introduced to reduce the consumption of communication
energy. In MCS, researchers aim to minimize the number
of task allocation. For example, recruiting minimal number
of users, or selecting minimal number of subareas to collect
sensing data.

2) WORKLOAD BALANCING
Except for minimizing energy consumption, the workload
balancing should be considered. Because overload to some
specific sensor nodes may lead to premature death and affect
the performance of network. In this section, we will discuss
the workload balancing strategies in two sensing paradigms.

a: WORKLOAD BALANCING IN WSNs
Aswe know, the CH consumes more energy than other sensor
nodes in the cluster. That is, the workload is unbalance among
sensor nodes. To solve this problem, a popular way is reclus-
tering and rotating the CH among the sensor nodes. Neam-
atollahi et al. [58] proposed Round-Based Policy (RBP),
which splits network operations into several rounds and group
sensors into clusters at the beginning of every round to extend
the lifetime of network. However, RBP also consumes much
energy because of the unnecessary reclusterings. Authors
further proposed a Dynamic Hyper Round Policy (DHRP) to
mitigate this situation by clustering only in the dynamic hyper
round. DHRP is applicable to data collection and outperforms
than well-known clustering protocol. In [59], a hierarchical
clustering-task scheduling method is proposed, which includ-
ing local clustering and global clustering. During the local
clustering, only a part of nodes execute the clustering process
in each super round for the load balancing goal. Global
clustering is performed at the end of every end of global hyper
round to refresh the entire network structure.

b: WORKLOAD BALANCING IN MCS
With the development of MCS, more and more appli-
cations leverage the MCS platform to recruit users.
These applications compete with each other in a limited user

resource [60]. For individual user, due to the limit battery
and other computing resource, the maximum number of tasks
that each user can completed is limited. To avoid overloading
to individual user, a common way is assuming a maximum
workload for each user. Recently, several works consid-
ered this situation and proposed the multi tasks allocation
frameworks in MCS. In [60], a novel multi tasks allocation
framework named PSAllocator, which considers the max-
imum workload of each user, was proposed. PSAllocator
defined a system utility which considers the spatial-temporal
coverage. To get optimal system utility, PSAllocator predicts
the possibility of users to connect to cell towers according
to their historical mobility data. Then, an iterative greedy
algorithm is proposed to optimize the task allocation. In our
previous work [61], we investigated a multi tasks allocation
problem that considers the heterogeneity of users (including
the type of sensors and the maximum workload of users).
A greedy discrete particle swarm optimization with genetic
algorithm operation is proposed to maximize the number of
completed tasks.

c: SUMMARY OF WORKLOAD BALANCING
Both WSNs and MCS consider the workload balance. WSNs
adopt the active-sleep scheduling and the cluster head rotation
to prevent sensor nodes premature death and affecting the
data collecting in target area. However, MCS considers the
resource limitation of individual by and assuming amaximum
workload to every user. Since heavy burden will hurt the
enthusiasm of users to collect sensing data.

Table 2 lists the subset of related works about common
issues of task allocation in two sensing paradigms. We hope
that it can help readers quickly retrieve the related papers and
understand the related strategies.

IV. UNIQUE ISSUES FOR MCS
The involvement of mobile users in theMCS is the chief char-
acteristic compared to traditional WSNs. So some important
factors caused by mobile users should be considered in the
process of task allocation in MCS. These factors lead to some
new directions in MCS, In this section, we will talk about
some unique issues in the MCS.

A. INCENTIVE MECHANISMS
Incentive is important to motivate the users to participate
in MCS applications. Firstly, when users participate sens-
ing tasks, it is inevitable to consume resource of users’
devices, including computation, communication, and energy
[62]. Particularly, for some special applications, mobile users
should change their intended routine and move to the specific
location to complete sensing task. In addition, participat-
ing in sensing task may expose location of users. Without
an effective incentive mechanism, users may not willing to
keep active to participate in sensing tasks sharing their data.
Generally, the incentive mechanisms can be categorized into
monetary incentive and nonmonetary incentive from the per-
spective of incentive type.
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TABLE 2. A summary of common issues of WSNs and MCS and task allocation strategies.

1) MONETARY INCENTIVE
Monetary incentive encourages users by paying them rewards
and usually shows a better incentive effect [63]. Auction
mechanism is themost popularmethod inmonetary incentive,
which indicates that users bid for the sensing data, then plat-
form selects subset of users with lowest bidding to contribute
the sensing data.

Reverse auction incentive mechanism has attracted sub-
stantial attentions these years. In reverse auction, platform
publishes the tasks. Users compete with each other to accom-
plish these tasks by lowering their bids until the bids keep
unchanged. This mechanism selects the subset of users with
minimal cost to maximize the profit of platform. To avoid
the users who lost in the previous reverse auction drop-
ping out, Lee and Hoh [64] proposed a novel Reverse
Auction Dynamic Price with Virtual Participation Credit
(RADP-VPC) incentive mechanism, which grants them a
virtual credit and increases the chance that they can win in
the next auction. Compared to Random Selection with Fixed
Price (RSFP) incentive mechanism, RADP-VPC not only
reduces the incentive cost but also improves the fairness of
incentive distribution and social welfare. Jaimes et al. [65]
combined the RADP-VPC with location of users, coverage
and budget constraints, then proposed a greedy-based incen-
tive algorithm (GIA). Simulation results show that the GIA
increases the coverage with the similar budget compared
to RADP-VPC. Zhao et al. [66] investigated the task
allocation problem, whose objective is selecting subset of

users to maximize the total value of service under a constraint
budget. To motivate the mobile users’ participation, they
proposed two types of online incentive mechanism, called
OMZ and OMG. In [67], a combinatorial reverse auction
mechanism is proposed, in which users bid for the tasks
according to their location and service coverage. Platform’s
incentive mechanism consists two components. The first one
is the winning bids determining and the second one deter-
mines the critical payment to each winning bid. The study in
[68] proposed a Lyapunov-based VCG auction policy, which
consists of allocation rule, payment rule and updating rule.
Allocation rule selects the winner who maximize the social
welfare in each time slot. Payment rule pays one user biding
according to the total cost of other users. Updating rule adjust
the updating strategies according to the users’ truthfulness.
The results show that the proposed strategies not only reduce
the users’ dropping probability, but also increase the social
welfare. Recently, a data-enhanced reverse auction incentive
mechanism, TaskMe is proposed in [69]. In TaskMe, users
upload their collecting data and bid to the platform. Platform
dynamic selects the winner based the data quality and bid.

Stackelberg game is a game model with two roles called
leader and followers. The leader firstly takes action and the
followers can only adjust their actions according to the leader
to maximize their utility. This game is used to design incen-
tive mechanism due to the similar behavior. Duan et al. [70]
used the Stackelberg game to model the interaction between
platform and users. Specifically, the platform announces the

78414 VOLUME 7, 2019



W. Guo et al.: A Survey of Task Allocation: Contrastive Perspectives From WSNs and MCS

total reward and the predefined number of users. Each user
decides whether to participate in the task according to the
total reward and number of users. When it reaches the state of
Nash equilibrium (NE), the platform selects subset of users
with lowest cost to maximize its profit. Similarly, in [71],
a platform-centric incentive mechanism is proposed, in which
platform plays the role of leader and announces its reward,
each mobile user plays the role of follower and strategies its
sensing time to maximize the utility.

2) NONMONETARY INCENTIVES
The popular nonmonetary incentive includes gaming incen-
tive, social relation incentive and virtual credit incentive.
Gaming incentive incorporates game element into crowdsens-
ing and stimulates users to participate in sensing tasks. For
example, the study in [72] introduced a gaming incentive to
motivate users to participate in location-based services. The
incentive mechanism determines the game points and coupon
points according to the quality of service, which computed
by online machine learning. Then users determine whether
participate in collecting data.

Social relation incentive refers to make use of relation-
ship in social network and motivate users participate in
sensing tasks. Considering the intrinsic selfish of users,
Bigwood and Henderson [73] used preexisting social net-
work information to detect and discourage the selfish users.

In virtual credit incentive mechanism, users get virtual
credit, which can be directly or indirectly transferred into
real currency, as reward after participate in sensing tasks.
Chou et al. [74] and Lan et al. [75] introduced a incentive
mechanism based virtual credit tomotivate users to contribute
their bandwidth and data. The amount of credit that users earn
depends on their unity of data. For example, a participate who
upload a high resolution video clip earn more credits than
who upload low resolution video clip.

B. TRAVEL DISTANCE
For some special crowd sensing applications, platform
requires users to move from their current location to the
location of task. For example, taking photos for a building,
collecting traffic dynamics information for a specific street,
etc. In this case, the moving distance become primary con-
cern for users. Generally speaking, the reward is propor-
tional to moving distance. So researchers try to minimize the
moving distance of users and reduce the sensing cost. Guo
et al. [76] investigated the participant selection problem for
time-sensitive tasks. Due to the emergency of tasks, platform
should select users who are nearest to the location of tasks.
To address this problem, authors proposed greedy-enhanced
genetic algorithms, which firstly designed a greedy algorithm
to select task-worker tuple with least distance and assign
the task to corresponding worker. Then genetic algorithm is
elaborately designed to further improve the results of greedy
algorithm. In [77], to minimize the total distance of users,
authors divided the spatial task assignment problem in two
stages. In the first stage, platform solves the task assignment

problem using cloaked locations. In the second stage, users
individually fine-tuned their assignments using their own
exact locations. The proposed greedy algorithms at each stage
show the efficient and robustness. Liu et al. [78] considered
the FPMT (few users, more tasks) problem, and used Mini-
mum Cost Maximum Flow (MCMF) theory to maximize the
completed tasks and minimize the total distance of users. Liu
et al. [79] studied task allocation in food delivery network,
which select minimum number of taxis and travel distance to
reduce the cost. Then, they designed two-stage algorithm to
solve the problem.

C. TRUST
As a open data-collecting paradigm, there may be some
unreliable users who are intend to provide a wrong sensing
data [80]. Assessing and guaranteeing the data quality is a
nontrivial work in MCS [81]. Furthermore, trust mechanism
is an important measure of data quality and has been consid-
ered by researchers. For example, [82] proposed a reputation-
based scheme, called Trustworthy Sensing for Crowd
Management (TSCM) to assign task to mobile devices.
Amintoosi and Kanhere [83] proposed a application-
agnostic reputation framework for social participatory sens-
ing systems, which assess the both quality of contribution
and the trustworthiness level of users, then assigned
a reputation score to user using PageRank algorithm.
Pouryazdan et al. [84] adopted vote-based trustworthiness
with trusted entities to assess trustworthiness of a smart-
phone user. The trusted entities called trustworthy anchor,
who have 100% reputation and with the capable of voting for
trustworthiness of other users. Zhao et al. [85] defined a user
reputation model, which considered the history reputation
and users’ contribution for current task. Then, a reputation-
based user selection method is proposed to guarantee the data
quality. Because of the limited budget, the platform can only
select the users with higher reputation.

D. LOCATION PRIVACY
Different fromWSNs, in which sensor nodes are deployed in
target areas and it is nothing to expose the location of nodes.
In MCS, however, the platform should know the location of
mobile users so that the tasks can assigned to proper users,
who are near to the location of tasks. This indicates that users
risk their location privacy when they participate in sensing
tasks, which reduces the users’ participation [86]. Though the
selected users can be compensatedwith incentive, the remain-
ing users may get discouraged because their location privacy
sacrificed in vain. Therefore, location privacy should be care-
fully considered during the process of task allocation.

The popular location privacy-preserving mechanisms
include cloaking [87] and dummy points [88]. However, their
common drawback is that expected privacy will be impaired
if the adversary has prior knowledge about users and location
[89]. To address this problem, differential privacy has been
introduced to protect location. It works bymapping one actual
location to another according to a predefined probability
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matrix P, in which the probability of any two actual location
map to the same obfuscate location is similar. Typically,
more similar the probability is, more harder for adversary
to distinguish the actual location. Wang et al. [90] proposed
a location-preserving task allocation framework which uses
differential geo-obfuscation to protect users’ location during
the process of task allocation.

E. COMPOSITE TASK ALLOCATION
Typically, WSNs deploy specific sensor nodes to collect one
type of sensing data. However, there are some complex tasks
in real-world scenarios, which consist of several subtasks
and each subtask requires different types of sensor to sense
data. The final sensing data aggregated from these subtasks.
Such complex task can be called composite tasks [13]. For
example, air quality monitoring task is an composite task and
require multiple types of sensor (e.g., CO2 sensor, CO sen-
sor). To complete composite tasks, plenty of different types
of sensor nodes should be deployed in WSNs and one type of
senor nodes can only collect one type. Fortunately, a mobile
device of MCS can afford multiple and various types of
sensors embedded in it.

However, the users may not preassemble the required
sensor, or the remaining battery power cannot support for
the whole composite task, causing the task allocation for
composite tasks more complicated. There are two challenges
in task allocation for composite tasks. Firstly, the solution
space grows exponentially because the granularity elaborates
to the subtask rather than the whole composite task. Sec-
ondly, the optimal allocation of composite tasks should also
take some complex factors into consideration, such as the
trade off between the overall quality and total cost, users’
sensing capacity for different subtasks, the heterogeneous
spatiotemporal granularity of each subtask, etc. There are
already some works in composite task allocation. For exam-
ple, Cheng et al. [91] investigated the assignment for multi
skills oriented spatial tasks, the objective is to map the
required skills of tasks to skills of users and maximize the
users’ benefit under the budget constraint.

Furthermore, tasks are usually belong to different domains.
Traditional WSNs is elaborated to collect high quality
data for special domain. As for MCS, users have dif-
ferent qualities on different domains. To get high qual-
ity of sensing data, it is important to select users who
with the skills that tasks involved. Zheng et al. [92] lever-
aged domain knowledge to model the users’ quality and
designed a online task assignment algorithm to assign k
tasks with the highest benefit to the users. In [93], a frame-
work for task assignment in knowledge-intensive crowd-
souring is proposed, which considered the users’ exper-
tise, wage requirements, and availability. Reference [94]
modeled the tasks and users using a skill taxonomy tree,
which allowing to reason about skill substitutions and assign
the task to suitable users in participatory crowdsouring.
Song et al. [95] proposed a specialty-aware task alloca-
tion problem, in which tasks are complex and require users

complete tasks collaboratively. They designed two heuristics
algorithms to maximize the completed tasks according to
tasks’ budget and users’ skills.

V. FUTURE RESEARCH OPPORTUNITIES
Although task allocation in the MCS has made great success.
There are still some limitation in current research. In this
section, we highlight some picture novel and exciting oppor-
tunities for the future research.

A. HYBRID DESIGN OF WSNS AND MCS
Existing work about task allocation is solely based on either
WSNs or MCS framework, and the interlinking of these two
forms of paradigm has little been explored. WSNs can get
high quality of sensing data but it costs much to deploy and
maintain the network. MCS is a novel sensing paradigm but
lose efficiency under the circumstance that there are few
users available. Based nature of these two sensing paradigms,
there may be a hybrid sensing paradigm, which integrates
the WSNs and MCS and can better coordinates the data
quality and the sensing cost. For example, a hybrid frame-
work that collaborates the cyber-physical-social space are
proposed in [16]. There are several advantages of hybrid
sensing paradigm. From the spatial-temporal perspective,
on one hand, there is more chance to recruit users in the
flourishing region and easily to get higher quality sensing
data. In some remote areas, the poor user resource hardly
support theMCS to get adequate sensing data. TheWSNs can
compensate for this situation. On the other hand, users can
accomplish most of sensing tasks during the daytime. Sensor
nodes in the WSNs can keep a sleep mode to reduce energy
consume. During the nighttime, there are few users available,
hybrid sensing paradigm can schedule the sensor nodes in
WSNs to collect related data. Thus, the hyper sensing system
can get almost full spatial-temporal coverage. From the data
quality perspective, the aggregated data from WSNs and
MCS can provide more intelligent service. However, in the
hybrid sensing framework, how to jointly schedule this two
paradigm to guarantee the data quality is a higher level task
allocation problem and remains a challenge issue.

B. LEARNING ASSISTED TASK ALLOCATION
Generally, users in MCS are heterogenous. Related assump-
tions for heterogeneous users are based on devices. For
example, different users carry different type of devices and
can complete different types of sensing task. Our previous
work [61] considered the type of sensors in mobile devices.
However, the human factor should be considered in practice.
Users are differ in participate willing, participation habits,
abilities and reputation. For participate willing, users may
reject the assigned sensing tasks due to lack of time. For
participation habits, users may prefer to complete sensing
tasks without changing their intended routine or update sens-
ing data without take mobile phone out of their packet.
Also, the level of skills to satisfy the required ability are
vary among users. These factors should be considered in
process of task allocation. To get information of these factors,
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a straightforward way is provided by users when they apply
for the sensing tasks. However, some malicious users may
lie about their related information to get more reward from
platform. Alternatively, we can learn these information from
their historical data. For example, logistic-regression is used
in [96] to learn users’ attributes such as proximity to target
area, payment and task context from historical data. Micholia
et al. [97] identified social media users expertise according
to their past media activities and encouraged them to perform
some task under limited budget. Unfortunately, due to the
reason of privacy, the historical data of users are not always
available [98]. A promising way to tackle this situation is
learn users’ behavioral pattern from some similar tasks and
get some valuable information before task assignment.

C. SPATIAL AND TEMPORAL CORRECTION
Existing MCS task allocation for multiple tasks assumed
that tasks do not run independently but compete with each
other for the shared participant resource. However, for some
specific situations, tasks can share same sensing data or the
sensing data of one task can be inferred from other task due
to the spatial and temporal correction. For example, there are
two sensing tasks that aim to collecting information of traffic
flow in the closer areas at same sensing cycles, respectively.
In this situation, platform just recruits users to collect one
task, and inferred the related information of the others to
reduce the number of users. To achieve this, two challenges
should be considered. Firstly, the relationship between two
task should be analyzed, including sensing context, spatial
and temporal correction. Secondly, how to design an efficient
task allocation scheme that not only collecting data for the
target task, but also inferring the data of other related task
with high accuracy.

D. CLUSTER-BASED TASK ALLOCATION
The existing task allocation operated with the ‘‘platform-
users’’ model, in which platform allocates the task to the
users and users upload the sensing data to the platform
directly. There are some shortcomings for this model. Firstly,
the data collecting lacks a supervision mechanism, users may
upload a low quality data deliberately. Secondly, uploading
sensing data from every user increases the communication
energy consumption. Inspired the clustering mechanism in
WSNs, a rational way is establishing a three level sensing
model, i.e., ‘‘platform-cluster-users’’. Platform firstly groups
users into cluster according to their location or other related
factors, and selects a user as cluster head. Then, platform
assigns the sensing tasks to cluster head. Cluster head fur-
ther assigns the sensing tasks to the users in his cluster.
Users transmit the sensing data to cluster head and cluster
head uploads the aggregated data to platform. However, there
may be some new shortcomings for this mechanism. For
example, users and cluster head may collude with each other
to upload low quality data together. Therefore, a effective
mechanism to make cluster head and users supervise each
other is urgent needed.

VI. CONCLUSION
Task allocation is an important issue both inWSNs andMCS.
In this paper, we present a survey of task allocation problem
in these two sensing paradigms from the contrastive perspec-
tive. Firstly, we analyze different characteristics of WSN and
MCS,whichmay cause some different issues and strategies in
task allocation. Then, we provide a review of common issues
in terms of data quality and sensing cost in these two sensing
paradigms. Further, we give a review of unique issues of task
allocation in MCS because of the involvement of human.
Finally, we outline some potential opportunities in the future
research.
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