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ABSTRACT In practical applications, the signal measured from a complex mechanical system is usually
disturbed by various noises due to the compounded effect of interferences of other machine elements and
background noises, especially under varying speed conditions. Resonance-based approaches have been
proven to be effective methods to address this problem. However, even if the optimal resonance band is
accurately determined, the in-band noise with frequency content in the range covered by the band-pass
filter is not eliminated. To avoid missed diagnosis and misdiagnosis of faults in bearings, an iterated SVD
(ISVD)-based in-band noise reduction method combined with envelope order spectrum analysis is proposed
in this paper. First, the optimal frequency band of a vibrational signal is determined with the help of an
enhanced wavelet packet transform kurtogram, in which the kurtosis of each node is calculated based on
the envelope spectrum of a signal be reconstructed using the wavelet packet coefficients. The node with the
maximum kurtosis value is used to reconstruct the signal. Second, the envelope of a reconstructed signal is
calculated by Hilbert transform and the ISVD method is applied to it to reduce the in-band noise. To avoid
the destruction of useful information caused by excessive iteration, a threshold is set to determine the number
of iterations. After iterative processing, a de-noised signal is reconstructed based on the relationship between
the singular value and a frequency component. Finally, the reconstructed signal is resampled and transformed
into the fault characteristic order domain where the bearing fault type can be identified from the envelope
order spectra. The simulations and experiments were used to validate the efficacy of the proposed method.
Compared with the spectral subtraction method, the ISVD method can suppress in-band noise efficiently
and beneficial to extract the fault characteristic order under variable speed conditions.

INDEX TERMS Rolling bearing, wavelet package transform kurtogram, iterated SVD, FCO, variable speed.

I. INTRODUCTION
Rolling bearings are one of the most commonly used support
elements in rotation machinery, and their failure may lead to
fatal equipment breakdown and significant economic losses.
Once a local bearing defect is developed, contact of such
defects with mating surfaces generates a series of impulses,
which usually carry rich information about their health
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condition [1]–[2]. Thus, it is crucial to effectively extract
these features from the vibration signals for successful rolling
bearing fault diagnosis. However, rolling bearings often work
under variable speed conditions in practice, which will causes
frequency spectrum smearing, and the fault feature compo-
nents will no longer be observable and detected as discrete
frequency lines. In addition, background noise and vibration
interferences from other components can severely obscure
the fault impulses, especially when the vibration sensor can-
not be mounted in the near vicinity of the bearing being
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monitored [3]. Therefore, how to effectively extract fault fea-
tures from background noise under varying speed conditions
has attracted much attention.

During the past few years, many techniques have been pro-
posed to solve this problem [4]–[6]. Among these methods,
the resonance demodulation technique (RDT) is regarded as
an effective tool [7]–[8]. Considering that the fault impulse
has a wide frequency band and usually excites resonances
in the system at a much higher frequency, the signal-to-
noise ratio (SNR) is higher and the vibration features can
be demodulated in a suitable frequency band [9]–[10]. The
major challenge in the application of the RDT lies in how
to determine the optimal frequency band for demodulation.
To accurately determine the high frequency resonance band,
spectral kurtosis (SK) was proposed by Zhao et al. [11],
which has been indicated to be an effective index for the
identification of the response of the system. Inspired by
this development, Antoni proposed the fast kurtogram (FK)
based on the short-time Fourier transform (STFT) [12]. Many
methods have been proposed to further enhance the accuracy
of the FK for discovering the sensitive frequency band [13].
In [14], Lei et al. found that a wavelet packet trans-
form (WPT) can generate more precise filters than a STFT-
based method. Therefore, they suggested a WPT to be used
to construct a kurtogram (WPTK), and the transients hidden
in a noisy signal can be filtered by this method. To extract
transient impulsive signals under a low SNR condition,
an enhanced WPTK is constructed by replacing the kurtosis
of the temporal signals extracted from wavelet packet nodes
with the power spectrum kurtosis in [8]. Although the optimal
frequency band is extracted effectively, only the noise outside
the selected frequency band is removed, the in-band noise
with frequency content in the band is not eliminated. If the
strength of such a noise is high, it still remains a challenging
task to extract fault features from the filtered non-stationary
vibration signals. Therefore, the filtered signal needs to be
further processed.

Many in-band de-noising methods have been proposed in
recent decades. In [15], Bozchalooi et al. use a spectral sub-
traction to trim down the in-band noise. It is assumed that the
energy of the background noise is uniformly distributed over
a narrow band, and based on this assumption, they applied
the smoothness minimization criterion to find the proper
subtraction value to enhance the hidden impulses. In [16],
an impulse reconstruction scheme based on an improved
harmonic product spectrum and sideband product spectrum
is proposed to reduce the in-band noise. In [17], an energy
kurtosis demodulation (EKD) technique is introduced by
Wang et al. and the SNR is enhanced by the use of a max-
imum kurtosis deconvolution filter. As a data-driven signal
processing method, the SVD based de-noising approach is
essentially energy-based, and tends to highlight the high-
energy regular components in the measured signal [18], and
compared with other signal processing methods, it is faster

and easier to implement. As mentioned in [19], the effect
of signal SVD-based de-noising is mainly affected by two
aspects: (1) the structure of the matrix to be analysed. In prac-
tice, the measured signals are always expressed as time series
rather than matrices. Therefore, many methods have been
proposed for reshaping the time series into a matrix as a
preparation for SVD. Unfortunately, there is no single indi-
cator of how to construct a matrix properly, and studies often
adopt different matrix types to solve different problems [20],
including the Toeplitz matrix [21], cycle matrix [22] and
Hankel matrix [23]; (2) the identification of valid singular
values. The core of SVD-based de-noising is how to choose
the effective singular value to reconstruct the signal [19].
To solve this problem, a difference spectrum algorithm and a
correlation coefficient-based selection algorithm were intro-
duced to select the effective singular values [24]. In summary,
the available SVD-based de-noising methods are based on
constructing the signal matrix properly and selecting the
singular values effectively. However, the frequency spectrum
of the filtered signal is smeared due to the varying speed
conditions, which increases the difficulty of extracting effec-
tive singular values [25]. To extract the fault characteristics
exactly, the order tracking (OT)method has been successfully
used to eliminate the influence of varying speed by resam-
pling the non-stationary time signal into the stationary signal
in the angular domain [26]. The fault impulses are rearranged
to be equal in the angular domain, and the fault style can be
identified strictly because the fault features are arranged into
discrete order lines in the Fourier transform.

Considering the above, an iterated SVD (ISVD)-based in-
band noise reduction method combined with an enhanced
WPTK and OT is proposed in this paper to extract fault infor-
mation accurately. Firstly, the optimal frequency band of a
vibrational signal is determined with the help of an enhanced
wavelet packet transform kurtogram (WPTK), in which the
kurtosis of each node is calculated based on the envelope
spectrum of a signal be reconstructed using the wavelet
packet coefficient. The node with the maximum kurtosis
value is used to reconstruct the signal. Secondly, the ISVD is
applied to the envelope of the reconstructed signal to reduce
the in-band noise, the transient fault impulse components
in the signal is enhanced based on the relationship between
the singular value and a frequency component. Finally, the
reconstructed signal is resampled and transformed into the
fault characteristic order (FCO) domain where the bear-
ing fault type can be identified from the envelope order
spectra.

The remainder of this paper is arranged as follows.
Section 2 introduces an analytical model to describe the col-
lected vibration signal and analyzes the distribution character
of a different component. Based on the theoretical analysis,
the theory of ISVD is proposed in Section 3. Simulation
and experiment studies are discussed in Sections 4 and 5,
respectively. Conclusions are drawn in Section 6.
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II. THE DISTRUCTION CHARACTER OF THE
MULTI-COMPONENT SIGNAL ENVELOPE
A. ANALYTICAL MODEL FOR DIFFERENT COMPONENTS
Considering a real situation from industry, the collected
vibration signal is usually composed of many components
when faults occur in a rotating machinery system, and it is
not accessible or is difficult to inspect directly, especially
in the early stages of failure. This paper mainly focus on
early fault diagnosis of rolling bearing in varying speed con-
ditions, the collected vibration signal contains deterministic
and random components, the former caused by factors such
as misalignment of the rotor or gear meshing, and the latter
induced by the bearing faults. The signal of a system can be
written as:

X (t) = D(t)+ R(t)+ n(t) (1)

where X (t) is the collected vibration signal, D(t) represents
the deterministic component, R(t) denotes the random com-
ponent, and n(t) is Gaussian noise.

The deterministic component D(t) is given by

D(t) =
B∑
b=1

Ab,D cos(2π fb,Dfr (t)t + φb,D) (2)

The model of cycle impulse responses representing the faulty
bearing part R(t) is given by

R(t) =
M∑
m=1

Am,R

× exp(−β(t − Tm,R)) cos(2π fb,R(t − Tm,R)+ φm,R)

(3)

The noise n(t) can be written as:

n(t) = awgn(X (t),P) (4)

where A is the amplitude, fb is the corresponding base fre-
quency, fr is the time-varying speed, φm is the initial phase,
β represents the structural damping coefficient, and Tm is the
occurrence time of the m th impulse. It is worth noting that
{Tm,m = 1, 2, 3, . . . ,M} is an independent increment pro-
cess due to the varying rotating speed; the randomicity of the
process is increased as the rolling elements experience some
random slippages, which are caused by the changing of loads
and can be described as {ξ |ξm = µ(Tm−Tm−1), µ = 0.01 ∼
0.02,m = 2, 3, 4, . . .}. awgn is a function of MATLAB that
is used to generate white Gaussian noise. P specifies SNR.

B. THE RULE OF THE MULTI-COMPONENT
SIGNAL ENVELOPE
To obtain the energy change caused by the bearing fault,
the envelope signal of the collected signal is calculated here.
As mentioned in [27], the energy of white noise is uniformly
distributed along the frequency. Therefore, to reduce the dif-
ficulty of analysis, the noise can be neglected here. Then,
the analytical form of the signal can be written as:

Y (t) = X (t)+ jX̂ (t) (5)

where X̂ (t) is the Hilbert transform of X (t). Then, the squared
envelope of the signal is given by

|Y (t)|2=X (t)2 + X̂ (t)2

= [D(t)+ R(t)]2 + [D̂(t)+ R̂(t)]2

=D(t)2+R(t)2+2D(t)R(t)+D̂(t)2+R̂(t)2+2D̂(t )̂R(t)

(6)

where D̂(t) and R̂(t) are the Hilbert transforms of D(t) and
R(t), respectively. It is clear that the squared envelope of the
useful signal also includes the cross-terms of these two kinds
of signals and their Hilbert transforms. Generally, the unit
impulse response function is the product of a high-frequency
oscillation component and a single side exponential damping
function [28]. When the unit impulse response function sat-
isfies the Bedrosian theorem, the Hilbert transforms of D(t)
and R(t) can be written as:

D̂(t) = H{D(t)} = D(t) ∗ 1
π t =

B∑
b=1

Ab sin(2π fbfr (t)t + ϕl)

R̂(t) = H (R(t)) = R(t) ∗ 1
π t

= −

M∑
m=1

Abear,m

exp(−β(t − Tm)) sin(2π fbear (t − Tm)+ φm)
(7)

where H{•} denotes the Hilbert transform operator and ∗
denotes the convolution operator. In practice, the number of
deterministic components is always smaller than that of the
fault impulses, i.e. B � M . Thus, the squared envelope of
the signal can be developed as: Thanks to the slow time-
variability of the amplitude of the deterministic component,
the first part of Eq. (8), as shown at the top of the next
page, can be seen as the trend term of the envelope signal.
The second part carries the main fault information that con-
tains the energies and moments of the impulse occurrence,
which are crucial for the bearing fault diagnosis. In contrast
to the part mentioned above, the next parts combined with
the deterministic component and random impulse responses
together, and the latter is modulated by the former. What
is worse, the carrier frequencies of these impulse responses
change with the varying frequency of the deterministic com-
ponent, which leads to spectrum complexity. In addition,
the latter two parts contain impulse responses that have awide
frequency band, and some resonant frequencies of the system
can also be excited. Therefore, the fault featuresmodulated by
the resonant frequencies are still complex unlike those of the
constant speed condition, and the fault features are no longer
discrete frequency lines in their envelope spectrum.

III. THE PROPOSED BEARING FAULT
DIAGNOSIS METHOD
A. WAVELET PACKET TRANSFORM KURTOGRAM
Rolling bearing local defects always result in a series of
impulses, thus exciting resonances and leading to mod-
ulations on resonances. Therefore, much valuable fault
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|Y (t)|2 = D(t)2 + R(t)2 + 2D(t)R(t)+ D̂(t)2 + R̂(t)2 + 2D̂(t )̂R(t)

= (
B∑
b=1

Ab cos(2π fbfr (t)t + ϕl))2 + (−
M∑
m=1

Abear,m exp(−β(t − Tm)) cos(2π fbear (t − Tm)+ φm))2

+ 2
B∑
b=1

Ab cos(2π fbfr (t)t + ϕl)
M∑
m=1

Abear,m exp(−β(t − Tm)) cos(2π fbear (t − Tm)+ φm)

+ (
B∑
b=1

Ab sin(2π fbfr (t)t + ϕl))2 + (
M∑
m=1

Abear,m exp(−β(t − Tm)) sin(2π fbear (t − Tm)+ φm))2

− 2
B∑
b=1

Ab sin(2π fbfr (t)t + ϕl)
M∑
m=1

Abear,m exp(−β(t − Tm)) sin(2π fbear (t − Tm)+ φm)

=

B∑
b=1

A2b +
M∑
m=1

A2bear,m exp(−2β(t − Tm))

+ 2
B∑

b,m=1

AbAbear,m exp(−β(t − Tm)) cos(2π(fbfr (t)t + fbear (t − Tm)+ ϕl + φm)

+ 2{
B∑
b=1

Ab cos(2π fbfr (t)t + ϕl)
M∑

m=B+1

Abear,m exp(−β(t − Tm)) cos(2π fbear (t − Tm)+ φm)

−

B∑
b=1

Ab sin(2π fbfr (t)t + ϕl)
M∑

m=B+1

Abear,m exp(−β(t − Tm)) sin(2π fbear (t − Tm)+ φm)} (8)

information is contained in the resonance frequency band.
Lots of methods have been proposed to select the frequency
band, among which, the kurtosis based method is one of the
most powerful techniques [29]. The wavelet packet transform
kurtogram (WPTK) is used in this paper due to its filters
precisely and match the fault characteristics of noisy signals
exactly.

A wavelet packet transform (WPT) is a generalized case of
an orthogonal wavelet transform (WT) [30]. Different from
a WT, a WPT not only decomposes the low-frequency band
into a lower resolution space but also processes the high-
frequency band further by using wavelet bases. Thus, a more
precise frequency band over the whole analysed frequency
band can be obtained. As a multi-resolution analysis method,
a WPT can be implemented based on wavelet filters and the
decomposition signal at different depths can be calculated as
follows [8], [14]:

x ij =
√
2

K∑
n=0

h(n)x i−1j+n

x ij+1 =
√
2

K∑
n=0

g(n)x i−1j+n

(9)

where i is the number of decomposition levels; j denotes the
number of decomposed frequency band signals, where j =
1, 2, · · · , 2i−1, 2i; x ij is the j th decomposed frequency band
signal at level i; h(n) and g(n) are a pair of conjugate mirror
filters based on wavelets.

In a WPT, the recursive splitting of a signal can be repre-
sented in a binary tree, which is named the wavelet packet
tree. Each node of such a tree corresponds to a frequency
band signal that has the same length as the original signal.
However, the order of the frequency bands in the tree is
disordered [31]. In order to analyze conveniently, these nodes
need to be rearranged in accordance with the frequency from
low to high. The kurtosis of the temporal signal extracted
from wavelet packet nodes is used to locate the optimal
frequency band [14]. However, it will fails under strong noise
disturbance, especially with an impulsive noise. To reduce
the impact of impulse noise, the kurtosis of each node is
calculated based on the envelope spectrum of a signal be
reconstructed using the wavelet packet coefficients. Replac-
ing it with the original kurtosis, an enhanced WPTK is
constructed.

The envelope spectrum kurtosis is calculated for each
reconstructed signal and can be expressed as follows:

K i
j =

N∑
n=1

(X ij (n)− X̄
i
j )
4

(N − 1)σ 4
X ij

(10)

where i represents the i th layer of wavelet packet decompo-
sition; j is the j th node in the i th layer; x ij is the original
signal; X ij is the envelope spectrum; X̄ ij , σX ij and N are the
mean value, the standard deviation and the length of the signal
corresponding to the reconstructed signal, respectively, and
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K i
j is the envelope spectrum kurtosis.

[i, j] = argmax(K i
j ) (11)

Similar to the original kurtogram, the nodewith themaximum
envelope spectrum kurtosis is selected by equation (11) and
the corresponding frequency band is the optimal frequency
band.

B. ISVD-BASED IN-BAND DE-NOISING METHOD
1) THE RULE OF SINGULAR VALUES DISTRIBUTION
Singular value decomposition (SVD) is an effective nonlinear
and non-stationary signal processing method, and its appli-
cation in de-noising has been proven to be efficient [32].
In [20], only two consecutive non-zero singular values are
always generated for one frequency component signal. For an
array Y (t) that contains only one frequency component and
has length N , the SVD of it can be denoted as:

SVD(H (Y (t))) = SVD



Yt1 Yt2 · · · Ytn
Yt2 Yt3 · · · Ytn+1
...

... · · ·
...

Ytm Ytm+1 · · · YtN




= UH (σ1, σ2,O)V T
H (12)

where O represents a zero matrix, UH = (u1, u2, · · · , um)
and VH = (v1, v2, · · · , vm). Thus, H (Y (t)) = u1σ1vT1 +
u2σ2vT2 . Therefore,

|H (Y (t))|2 =
∣∣∣u1σ1vT1 + u2σ2vT2 ∣∣∣2

= σ 2
1

∞/2∑
i=1

u21,i

∞/2∑
i=1

v21,i + σ
2
2

∞/2∑
i=1

u22,i

∞/2∑
i=1

v22,i

+ 2σ1σ2

∞/2∑
i=1

u1,iu2,i

∞/2∑
i=1

v1,iv2,i

= σ 2
1 + σ

2
2 (13)

As a result, the sum of the square of the singular values is
proportional to the energy of the corresponding instantaneous
frequency signal. After the different components of the signal
are arranged in descending order of energy, the singular
values of each component can be determined by analysing
the energy of that component, e.g., the singular values of the
i th energy component are σ2i−1 and σ2i. From the above
mentioned results, it can be concluded that the signal to
be analysed should satisfy the following three conditions to
separate the effective component:
1) the signal contains a finite frequency component:

1 ≤ fnumb � +∞;
2) the energy of each frequency component is different

from that of each other: Efnumb,i 6= Efnumb,j ;
3) the signal to be analysed is long enough: N ≥ 4 ×

fnumb ± (0, 2)− 1 (see Appendix).
However, in the case of a continuous increase in speed, the
frequency of the signal is time-varying; in other words, the

number of instantaneous frequency components contained in
the signal increaseswith the length of the signal, so conditions
a) and c) cannot be satisfied at the same time. In addition,
from the view of statistical analysis, the amplitude of white
noise satisfies the normal distribution, and the frequency
energy is evenly distributed, while in practice, the length of
the signal to be analysed is limited, the white noise may not
always have statistical properties, and there is no guarantee
that condition b) will be established at any time. Therefore,
the SVD of the signal matrix in the time domain cannot
accurately extract the useful information of the signal under
varying speed conditions.

2) ISVD METHOD
It can be seen from the previous analysis that under variable
speed conditions, the signal frequency components are time-
varying. The analysis of the signal with the same resolu-
tion cannot obtain effective analysis results. To solve this
problem, S.Mallat proposed the concept of multi-resolution
analysis in the construction of orthogonal wavelets in 1988.
Zhao et al. [20] proposed a new Hankel matrix construction
method combined with iterative analysis to introduce the idea
of multi-resolution into SVD, which has been successfully
applied under constant speed conditions. However, for non-
stationary signals, especially if the effective low-frequency
components of the signal are modulated into high frequency,
the fault information of the signal is lost by the discarding of
detailed components. To solve this problem, an iterated SVD
is proposed here.
A new Hankel matrix is constructed by using a raw signal

Xi = [x1, x2, x3, · · · , xn−2, xn−1, xn], n ∈ N+, and given as:

H(Xi) =
[
x1, x2, x3, · · · , xn−3, xn−2, xn−1
x2, x3, x4, · · · , xn−2, xn−1, xn

]
.

then,

SVD(H (Xi)) = SVD
([

x1, x2, x3, · · · , xn−3, xn−2, xn−1
x2, x3, x4, · · · , xn−2, xn−1, xn

])
= Ui(σi1, σi2)V T

i (14)

where, Ui = (ui1, ui2), Ui ∈ R2×2, Vi = (vi1, vi2, · · · ,
vi(n−2), vi(n−1)), Vi ∈ R(n−1)×2, σi is the matrix singular value
and σi1 ≥ σi2 ≥ 0; then, the Hankel matrix H (Xi) =
Ai+Di = ui1σi1vTi1+ui2σi2v

T
i2. Taking Ai as an example, and

the corresponding reconstructed signal can be denoted as:

Ai = [ui1,1σi1vi1,1,(ui1,1σi1vi1,2 + ui1,2σi1vi1,1)/2 · · · ,

(ui1,1σi1vi1,n−1 + ui1,2σi1vi1,n−2)/2, ui1,2σi1vi1,n−1].

The same can be performed for Di, and the corresponding
reconstructed signal is denoted as:

Di = [ui2,1σi2vi2,1,(ui2,1σi2vi2,2+ui2,2σi2vi2,1)/2, · · · ,

(ui2,1σi2vi2,n−1+ui2,2σi2vi2,n−2)/2, ui2,2σi2vi2,n−1].

It is worth noting that the envelope of the impulse response
is concentrated at the low frequency band and has better
aggregation [28]. Firstly, the signal envelope is calculated
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with the Hilbert transform, and the trend term of the enve-
lope signal is eliminated by a high-pass filter whose cutoff
frequency is slightly higher than the minimum of the rotating
frequency. Secondly, the 2-D Hankel matrix is constructed
with the filtering signal, and after this matrix is decomposed
by SVD, only two singular values can be got, the first one will
be larger than the second one, each singular value and cor-
responding singular vector are used to reconstruct the signal,
thus only two component signals can be got since each singu-
lar value is associated with a component signal. Calculate the
root mean square error (RMSE) between the reconstructed
signal corresponding to the larger singular value and the
original signal, if the RMSE is below a preset threshold, then
replace the original signal with the reconstructed signal and
repeat the above steps until the RMSE is below the threshold.
To improve the analysis efficiency, the correlation of different
reconstructed components is calculated, and the components
whose cross-correlation coefficient (CCO) is above a preset
threshold are put together. When the RMSE between the
adjacent envelopes satisfies the condition, calculate the SK of
each reconstructed signal in the last layer and the one with the
maximum SK value is used to replace the original signal. The
SK is calculated as mentioned in [8]. The proposed procedure
is shown in Fig. 1.

FIGURE 1. Flow chart of the proposed ISVD method.

C. SUMMARY OF THE PROPOSED METHOD
With the main steps described above, the schematic of the
proposed method is shown in Fig. 2 and can be summarized
as follows:

1) Extract the sensitive frequency band from the original
signal X with the help of an enhanced WPTK and
reconstruct the signal with the wavelet packet coeffi-
cient corresponding to the maximum envelope spec-
trum kurtosis;

2) Calculate the envelope of the reconstructed signal by
the Hilbert transform;

3) Eliminate the trend term of the envelope signal by a
low pass filter whose cutoff frequency is lower than the
minimum of the rotating frequency.

FIGURE 2. Schematic diagram of the proposed method.

4) Construct the 2-D Hankel matrix with the filtered enve-
lope signal;

5) Reconstruct each part of the signal with different sin-
gular values and calculate the CCO; if CCO > λ c add
these parts together;

6) Calculate the RMSE between the adjacent layers with
the first envelope signal; if RMSE > λ m, turn back to
step (2). Otherwise, continue with the steps below;

7) Calculate the SK of each component in the last layer
and the signal corresponding to the maximum SK is
used to replace the original signal;

8) The order analysis: resample the reconstructed sig-
nal into the angle domain and transform it into the
fault characteristic order (FCO) domain. The relative
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envelope order spectra can be calculated by the follow-
ing formula:

Ar,i =
Ai

sum(
N∑
i=1

Ai)

(15)

where Ai is the amplitude of the order spectrum and N is the
length of the spectrum.

IV. SIMULATION ANALYSIS
As mentioned in Section 2, a synthetic signal X (t) is
constructed to simulate the rotor-bearing-gear system, and
the simulation signal parameters in the model are given
in Table 1.

TABLE 1. Parameters of the simulation model.

FIGURE 3. The simulation signal: (a) deterministic component, (b)
random fault component (the red line is the fault pulse signal, and the
black line is the frequency modulated signal), (c) mixed signal without
noise, (d) noise-added mixed signal with SNR = -10dB, (e)-(h) FFT of
different components, and the middle column is images locally enlarged
in a range between the two green dotted lines.

In order to determine the type of fault exactly, the fault
components should be extracted from the signal as accurately
as possible. Therefore, the effectiveness of the deterministic
components and noise interference need to be eliminated.
In Figs. 3 (e) to (h), the Fast Fourier Transform (FFT) analysis
of each component produces false frequency information
due to the variable speed, but it still can observed that the
difference in energy distribution between each component
of the signal. The analysis results are illustrated in Fig. 4.
Based on the speed information, the original simulation signal

envelope is resampled into the angle domain directly to elimi-
nate the influence from varying speed and the envelope order
analysis result are shown in Figs. 4 (a) to (d), respectively.
In Fig. 4 (d), only the second FCO can be observed. To reduce
the influence of interferences, the WPTK of the signal is
calculated as shown in Fig. 4 (e), in which the node with
the maximum envelope spectrum kurtosis is selected and
the corresponding frequency band is the optimal frequency
band. In Fig. 4 (e), the maximum kurtosis is calculated at
the 4th decomposition level, and its corresponding frequency
band is [5625, 6250] Hz. The signal is reconstructed with the
wavelet coefficient in this node, which is shown in Fig. 4 (f).
Then, the envelope of the reconstructed signal is calculated
by Hilbert transform as shown in Fig. 4 (g). The envelope
is resampled into the angle domain. The angle domain sig-
nal and relative envelope order spectra analysis result are
shown in Figs. 4 (h) and (i), respectively. It is clear that
only first two FCOs can be found in Fig. 4 (i). However,
it is often desirable to detect up to the third harmonic of
the bearing defect frequency in the envelope spectrum [33],
which means the reconstructed signal needs to be further
processed. To further improve the SNR, the reconstructed
signal is decomposed by ISVD, in which the prior threshold
of the RMSE between the adjacent envelopes is set to 0.1,
i.e., λm = 0.1, and the cross-correlation coefficient is set
to 0.99, i.e., λc = 0.99. The cutoff frequency of the high-
pass filter used for trend term elimination is set to 20 Hz,
which is the minimum speed value. The reconstructed signal
is de-noised, as shown in Fig. 4 (j). Its angle domain signal
and the relative envelope order spectra analysis result are
shown in Figs. 4 (k) and (l), respectively. The FCO and its
first four fault orders can be easily identified in Fig. 4 (l).
To show the effectiveness of the proposed method intuitively,
time domain signal envelope at different time periods are
shown in Fig. 5. Compared with Figs. 5 (b) and (c), although
the amplitude of the signal decreases, the relative amplitude
of shock signal component is more obvious in Fig. 5(d).
Therefore, the proposed ISVD method may also reduce
the intensity of frequency components other than the white
noise, it helps the hidden impulses to manifest in the final
de-noised signal, which is the main goal of this algorithm.
To be more persuasive, the spectral subtraction method pro-
posed by Bozchalooi et al. [15] is applied to these simula-
tions, and the analysis results are shown in Fig. 6. Compared
Fig. 4 (k) with Fig. 6 (a), the amplitude of shock signal
component contained in the resampling signal obtained by
ISVD is more obvious. Although the first three fault orders
can be found in Fig. 6 (b), the relative envelope order spectra
amplitudes corresponding to the first two FCO spectrum are
smaller. In order to show the advantages of the proposed
method intuitively, the amplitudes of the first four fault orders
obtained by different ways are compared in Table 2.

From Table 2, it is clear that the method proposed in
this paper can improve the SNR effectively. To further
demonstrate the advantages of the proposed method, several
experiments are designed in the next section.
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FIGURE 4. Simulated signal analysis result.

FIGURE 5. Signal envelope: (a) original signal without noise, (b) noise
added signal, (c) reconstructed signal after WPTK, and (d) de-noising
signal after ISVD.

FIGURE 6. (a) The signal envelope obtained by the spectral subtraction
method, (b) the relative envelope order spectra.

V. EXPERIMENTAL TESTS
To further examine the effectiveness of the proposed algo-
rithm, an experiment is carried out on a Spectra Quest

TABLE 2. The relative amplitudes of different components.

FIGURE 7. Experimental setup. (a) The bearing fault simulation bench, (b)
the outer race fault, (c) the inner race fault, (d) the ball fault, and (e) the
normal bearing.

Machinery Fault Simulator. The experimental setup is shown
in Fig. 7 and contains a variable speedmotor that is controlled
by a frequency converter, a flexible coupling to connect the
shaft to the motor, a tachometer mounted on the motor, a rotor
disk mounted on the shaft, the outboard bearing housing, and
two rolling element bearings. One of the bearings without
defects is located in the bearing housing closer to the motor,
and the other one is located farther from the motor. ICP accel-
eration sensors are fixed on the bearing housing to collect
vibration signals at a sampling frequency of 20 kHz.

In this experiment, a normal bearing is installed in the
inboard bearing housing, and a series of bearings are located
in the outboard bearing housing to simulate the health con-
ditions: (1) normal, (2) bearing with an inner race fault,
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(3) bearing with an outer race fault, and (4) bearing with a
ball fault. The bearing parameters are listed in Table 3.

TABLE 3. Parameters of the bearings.

The fault characteristic orders (FCOs) are applied to mon-
itor the health status of the bearing at time-varying speed
conditions. The outer race fault characteristic order FCO o,
the inner race fault characteristic order FCO i and the rolling
element fault characteristic order FCO b are formulated as
follows:

FCOo =
Z
2

(
1−

d
D

cosα
)

(16)

FCOi =
Z
2

(
1+

d
D

cosα
)

(17)

FCOb =
Z
2d

(
1− (

d
D
)2 cos2 α

)
(18)

where Z is the number of rolling elements, α is the contact
angle, and d and D are the diameter of the rolling element
and pitch diameter, respectively.

A. OUTER RACE FAULT CASE
In this experiment, the vibration signal is obtained when the
shaft rotates in [22, 25] Hz. The signal and its frequency
spectrum are shown in Fig. 8 (a) and (b), respectively. The
speed information is shown in Fig. 8 (c).

FIGURE 8. (a) The time-domain signal, (b) the frequency spectrum, and
(c) the rotating speed.

The optimal frequency band of the WPT kurtogram is
[8750, 9375] Hz, as shown in Fig. 9 within the green rectangle
at level 4, and the corresponding coefficient of the WPT is
used to reconstruct the signal. The envelope of the extracted
signal is calculated by the Hilbert transform, which is shown
in Fig. 10 (a). Then, a band-pass filter, whose pass band
cutoff frequency is lower than the minimum of the rotating
frequency and stop band cutoff frequency is larger than the
carrier frequency of the envelope of the impulse response,
is used to eliminate the interference of the trend terms and
the noise beyond the filtered band. The filtered signal is

FIGURE 9. The WPT kurtogram.

FIGURE 10. (a) The reconstructed signal envelope, (b) the filtered signal
of the envelope, (c) the resampling signal of the filtered signal, and
(d) the relative envelope order spectra.

shown in Fig. 10 (b). The filtered signal is resampled into the
angular domain to eliminate the influence of varying speed,
and an angular signal is obtained, as shown in Fig. 10 (c).
The FCO domain information is obtained by using the FFT
of the angular signal. For the sake of comparison, the relative
amplitude of the spectrum is calculated by Eq. (14), and the
spectrum is shown in Fig. 10 (d). In Fig. 10 (d), although
the first two orders of the outer race fault order are clear,
the third order is too small to be found due to the in-band
noise influence. According to the literature [31], this method
is not good for the fault type identified.

To further enhance the SNR, the envelope in Fig. 10 (a)
is processed by ISVD. The prior threshold of the RMSE
between the adjacent envelopes is set to 0.03, i.e., λm =
0.03., and the cross-correlation coefficient is set to 0.99, i.e.,
λc = 0.99. A high-pass filter, whose cutoff frequency is
lower than the minimum speed value, is used to eliminate the
trend terms of the envelopes in the program iteratively. When
λm < 0.03, the iteration ends, and the signal corresponding to
the maximum SK value is extracted, as shown in Fig. 11 (a).
The corresponding resampling signal is shown in Fig. 11 (b).
Compared with Fig. 10 (d), the amplitude of the first three
orders is larger and the 4th is clearer in the relative order
spectra, which is shown in Fig. 11 (c). Similar to the simu-
lation, the spectral subtraction method is also applied to the
experimental signal to validate the efficacy of the proposed
method. In Fig. 12, only the first two orders of the outer race
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FIGURE 11. (a) The in-band de-noised envelope signal, (b) the resampling
envelope signal, and (c) the relative envelope order spectra.

FIGURE 12. Spectral subtraction method: (a) the in-band de-noised
envelope signal, (b) the resampling envelope signal, and (c) the relative
order spectra.

TABLE 4. The relative amplitudes of different components.

FIGURE 13. (a) The time-domain signal, (b) the frequency spectrum, and
(c) the rotating speed.

fault order can be found. For convenience of comparison, the
amplitudes of different components are shown in Table 4.

B. INNER RACE FAULT CASE
In this experiment, the vibration signal is collected during
the shaft rotation from 20 Hz to 23 Hz, and its frequency
spectrum information is shown in Fig. 13.

In Fig. 14, the optimal frequency band of the WPT
kurtogram is [8125, 8750] Hz. The envelope of the
extracted signal and its relative order spectrum are shown in
Fig. 15 (a-d). This spectrum contains strong components
related to shaft rotation harmonics, and FCOi is 4.95,
which is nearly an integer multiple of the shaft rotation

FIGURE 14. The WPT kurtogram.

FIGURE 15. (a) The reconstructed signal envelope, (b) the filtered signal
of the envelope, (c) the resampling signal of the filtered signal, and
(d) the relative envelope order spectra.

order (SRO), so it is difficult to distinguish between them.
In other words, although the first two orders of the inner race
fault order are clear, it is not easy in recognize the defect
related order information directly from the spectral map
in Fig. 15(d).

FIGURE 16. (a) The in-band de-noised envelope signal, (b) the resampling
envelope signal, and (c) the relative order spectra.

The signal is processed by ISVD. In the ISVD program,
the threshold of the RMSE λm = 0.01, the cross-correlation
coefficient λc = 0.99, and the cutoff frequency of the high-
pass filter for trend term elimination is set to 20 Hz. The
analysis result is shown in Fig. 16. The relative amplitude near
FCO i is significantly larger than that of the sidebands on both
sides. Moreover, the third fault characteristic order is clear.
The spectral subtraction is also applied to the experimental
signal. As shown in Fig. 17, the spectral subtraction method
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FIGURE 17. Spectral subtraction method: (a) the in-band de-noised
envelope signal, (b) the resampling envelope signal, and (c) the relative
order spectra.

TABLE 5. The relative amplitudes of different components.

successfully extracts the inner race fault feature. Neverthe-
less, only the first two orders of the inner race fault order
protrude in the relative order spectra, and they are difficult
to distinguish from the interference of the orders of the shaft
rotation order. The amplitudes of different components are
compared in Table 5.

FIGURE 18. (a) The time-domain signal, (b) the frequency spectrum, and
(c) the rotating speed.

C. BALL FAULT CASE
Compared with the inner and outer race fault signals, the fault
impulses are not obvious in the ball fault vibration signal.
In this experiment, the signals are collected when the shaft
rotates from 14 Hz to 18 Hz. The time domain signal and
its frequency spectrum are shown in Fig. 18 (a) and (b),
respectively. The rotating speed is shown in Fig. 18 (c).

In the WPT kurtogram, the recommended frequency band
is located at the 4th level during the bands of [3125, 3750] Hz,
as shown in Fig. 19 within the green rectangle.

The filtered signal analysis results are shown in
Fig. 20 (a-d) and Fig. 21 (a-c). Similar to the experiments
mentioned above, the ISVD is used here. The prior thresh-
old of the RMSE between the adjacent envelopes λm is
set to 0.003 and the cross-correlation coefficient λc is set
to 0.99. The cutoff frequency of the high-pass filter is 14 Hz.
The first three orders of the ball fault order are visible
in the relative order spectrum by the proposed method,

FIGURE 19. The WPT kurtogram.

FIGURE 20. (a) The reconstructed signal envelope, (b) the filtered signal
of the envelope, (c) the resampling signal of the filtered signal, and (d)
the relative envelope order spectra.

FIGURE 21. (a) The in-band de-noised envelope signal, (b) the resampling
envelope signal, and (c) the relative envelope order spectra.

as shown in Fig. 21(c), while only the first order of the ball
fault order can be seen in the relative order spectra shown
in Fig. 20 (d).

Similar to the experiments above, the spectral subtraction
method is also applied to this signal, and the results are shown
in Fig. 22. However, the optimal frequency band in the WPT
kurtogram does not correspond to the carrier frequency, and
the envelope obtained by the spectral subtraction method
includes no fault information. For convenience of compari-
son, the amplitudes of the different components are compared
in Table 6.

D. NORMAL CASE
To demonstrate the effectiveness of the proposed method,
the faulty bearing is replaced with a normal bearing
using the same setup, and the analysis results are shown
in Figs. 23-25.
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FIGURE 22. Spectral subtraction method: (a) the WPT kurtogram, (b) the
in-band de-noised envelope signal, (c) the resampling envelope signal,
and (d) the relative envelope order spectra.

TABLE 6. The relative amplitudes of different components.

FIGURE 23. (a) The time-domain signal, (b) the frequency spectrum, and
(c) the rotating speed.

FIGURE 24. (a) The WPT kurtogram. The resampling envelope signal:
(b) before the ISVD process, and (c) after the ISVD process.

The recommended frequency band of the WPT kurtogram
is [5000, 5625] Hz, as shown in Fig. 24 (a). The resampling
envelope signals are shown in Fig. 24 (b) and (c). Compared
with Fig. 25(a), after the ISVD process, the relative amplitude
of the shaft rotation order and its octaves are higher than

FIGURE 25. The relative order spectrum: (a) before the ISVD process and
(b) after the ISVD process.

the previous one, which is shown in Fig. 25(b). This further
indicates that ISVD can improve the in-band SNR effectively.

VI. CONCLUSIONS
In this study, an iterated SVD-based in-band noise reduction
method combined with envelope order spectra is proposed
for bearing fault diagnosis under varying speed conditions.
To avoid the destruction of useful information caused by
excessive iteration, a threshold is set to determine the number
of iterations and correlation analysis is used to improve the
computational efficiency. A de-noised signal is reconstructed
based on the relationship between the singular value and
a frequency component. Compared with the spectral sub-
traction method, although this approach may also reduce
the intensity of frequency components other than the white
noise, it helps the hidden impulses to manifest in the final
de-noised signal, which is helpful to improve SNR. Finally,
the enhanced non-stationary signal envelope is resampled and
transformed into the fault characteristic order domain where
the bearing fault type can be identified from the envelope
order spectra. It is worth mentioning that the threshold of
iterations has great influence on the fault diagnosis results,
which is caused by the defects of SVD itself, and excessive
iterative decomposition will destroy the useful information of
the original signal. Besides, the envelope spectrum kurtosis
index will fail to locate the sensitive frequency band when
the noise components is strong enough. Therefore, our work
will focus on solving the above problems in the future.

APPENDIX
A Hankel matrix Hm×n, the rank of it is rank(Hm×n) ≤
min(m, n), while the number of non-zero singular values of
the matrix is equal to the rank, i.e. σnumb = rank(Hm×n).
Taking the case that n ≥ m as an example to explain
the relationship between the signal length and the number
of frequency components included that should be satisfied,
the same as m > n.


fnumb = σnumb

/
2

σnumb = 2k, k = 1, 2, · · · ,floor( m
/
2 )

fnumb = σnumb ± 1/
2

σnumb = 2k ± 1, k = 1, 2, · · · ,floor( m
/
2 )

(19)
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Therefore,

rank(Hm×n) = σnumb = (2× fnumb)± (0, 1) ≤ m.

So, 

N = m+ n− 1
m = N + 1− n
N + 1− n ≥ (2× fnumb)± (0, 1)
N ≥ (2× fnumb)± (0, 1)+ n− 1
≥ (2× fnumb)± (0, 1)+ m− 1
≥ 2× [(2× fnumb)± (0, 1)]− 1
= (4× fnumb)± (0, 2)− 1
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