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ABSTRACT Automatically matching corresponding regions of interest (ROIs) on two-view images is
valuable in breast cancer diagnosis, benefiting of saving time and cutting the workload.We propose a method
for matching the corresponding ROIs by integrating the geometric model and image similarity searching. The
geometricmodel is implemented by restoring a free breast in the 3D space from two-view preprocessed breast
contours. Then, the possible position of the ROI center on cranio-caudal (CC)/medio-lateral oblique (MLO)
view image is represented by three feature points in the 3D space. As the view changes, these points can be
mapped onto theMLO/CC view image. Amatching strip is created later according to the confidence interval,
within which the specific position of the ROI can be located by image similarity searching. The experiments
were conducted on 273 pairs of mammograms with 400 calcifications and 284 pairs with 300 masses to
verify the accuracy of the geometric model and similarity searching. The mean absolute error between the
curves and the ROI centers was 3.36 ± 2.90 mm. For 95% detection sensitivity, the confidence interval was
±8.77 mm. For calcifications, the mean distance between the centers of the matched ROIs and the reference
was 3.92 ± 4.61 mm. About 93.46% cases had overlap greater than 50%, and 92.46% cases had overlap
greater than 75%. For masses, the mean distance was 6.15 ± 7.08 mm. About 88.46% cases had overlap
greater than 50%, and 85.58% cases had overlap greater than 75%.

INDEX TERMS Mammogram, geometric model, matching ROIs, similarity measure.

I. INTRODUCTION
Some lesions cannot be easily observed in single mam-
mogram for some cases due to superimposition of breast
parenchymal patterns/tissues [1], [2].When readingmammo-
grams, breast radiologists are often confused by some regions
of interest (ROIs), doubting they are real lesions or false
positives [3]. To solve this problem, modern mammography
routinely acquire two-view images (cranio-caudal (CC) and
medio-lateral oblique (MLO)) [4], [5] for more information
from different perspectives. It requires radiologists to observe
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the two-view images and compare the image information to
ensure that what they observe are the same ROIs, despite high
accuracy but poor efficiency. Automatically matching the
same ROIs on two-view images is valuable for radiologists in
breast cancer diagnosis, benefiting of saving time and cutting
the workload. This is a very important issue with which breast
radiologists deal every day.

To our knowledge, there have been a few techniques aimed
to match corresponding positions between CC and MLO
view images [6]–[19]. Such techniques have been mainly
classified as geometry-based method [20]–[23], similarity
measurement method [9], [24], [25], and classifier-based
method [3], [4], [15], [26]–[28]. Geometry-based method can
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be further divided into plane-based and space-based method.
Plane-based method mainly establishes the correspondence
through distances between ROI centers and nipples. The
distances from ROI centers to nipples on CC images are
approximately equal to the distances on MLO images from
the corresponding ROI centers to the nipples. Thus, an arc
is acquired, indicating the corresponding position relation-
ship on two-view images (hereafter termed Arc method)
[6], [7], [17]. Another method utilizes inclined lines as regis-
trations that are paralleling to chests. The inclined distances
from the ROI centers to nipples on MLO images can be
approximately regarded as the horizontal distances from the
corresponding ROI centers to the nipples on CC images
(hereafter termed Linemethod) [8], [9], [11]. Unexpected and
unsatisfactory results may be produced sometimes because
only distance constraint is applied. For space-based method,
Kita et al. [21] proposed a geometric model that simu-
lated deformation and calculated an epipolar curve on sec-
ond view images. This method could predict the location
with mean absolute error (MAE) of 6.78mm for 37 lesions.
Yam et al. [22] used geometric constraint and matching
criterion to developed a method, with MAE of 6.5mm for
35 lesions. In terms of similarity measurement method,
a principle widely adopted is that high similarity is shown
between same lesions on CC and MLO images compared
with mismatched lesions. Yang et al. [27] utilized three fea-
tures (gradient code, energy code, and local entropy code)
to match the specific region position by a binary decision
tree (BDT). For classifier-basedmethod, it is usually based on
a cascade of classifiers that aim to eliminate an increasingly
larger number of false positives while keeping a large propor-
tion of the true positives [4]. Van and Timp [29] proposed a
method to link candidate regions determined by single-view
CAD scheme in MLO and CC projections by using linear
discriminate analysis (LDA). The effectiveness of the method
was tested and verified by 412 cancer cases, and accuracy
of 82% was obtained. However, each approach has its own
limitations. First, geometry-based method mainly obtains
registering lines or curves rather than specific positions of
ROIs, which is usually used as auxiliary to finalize spe-
cific locations. Furthermore, set-up errors in mammography
make the registering results oscillate near the real positions.
Second, despite relatively high similarity between CC and
MLO images for most lesions, using similarity measurements
in large search area can easily increase the false positive
proportion. Third, most of current classifier-based method
is only sensitive to one specific lesion, either the calcifica-
tion or mass. However, there are usually multiple types of
ROIs on an image at the same time which radiologists want
to identify to ensure they are real lesions or false positives.

In this paper, we propose a method for matching any corre-
sponding ROIs by integrating geometric model and similarity
searching (GM-SS). The geometric model is implemented by
restoring a free breast in 3D space from two-view prepro-
cessed breast contours. Then the possible position of the ROI
center onCC/MLOview image is represented by three feature

points in 3D space. As the view changing, these points can
be mapped onto MLO/CC view image. A matching strip is
created later according to confidence interval, within which
the specific position of the ROI can be located via image
similarity searching. Compared with the existing methods,
GM-SS has some great advantages. Specifically, GM-SS can
obtain specific positions on second images. More impor-
tantly, GM-SS is capable of matching any kinds of ROIs
because it can always obtain correspondingmatching strips of
ROIs via the geometric model. In addition, this technique has
high practicability and flexibility. The only thing radiologists
need to do is click on one ROI in CC/MLO image. This
method will prompt the location of the same ROI in the other
image. The whole process takes only 2-3 seconds.

The remainder of the paper is organized as follows.
Section II describes the workflow of GM-SS and explains its
specific implementation. The end of the section introduces
data sets and evaluation methods. Section III presents the
experimental results. Section IV discusses few related issues.
Section V provides the conclusions.

II. MATERIALS AND METHODS
A. WORKFLOW
For simple instructions, we assume that the knownROI center
is located on the CC image and match its corresponding ROI
on the MLO image. Fig. 1 illustrates the workflow of the
proposed method, which includes eight steps. In step 1, a free
breast with no compression can be restored in 3D space from
breast contours extracted from two-view images. In step 2, for
simplification, three feature points will be selected to present
the position of the ROI center in 3D space when the breast is
free. In step 3, the 3D breast is rotated to simulate the direc-
tion change from CC to MLO. In step 4, compression will
be implemented upon the rotated breast in MLO considering
that the breast is imaged under pressure in practice. In step 5,
the three featured points are mapped onto the MLO image
based on X-ray projection principle. In step 6, the feature
points can be continued by quadratic interpolation to obtain
a continuous curve. In step 7, a matching strip is created
according to confidence interval, and it is centered with the
curve. In step 8, the corresponding ROI can be located on the
MLO image through searching in strips by image similarity
measure. The involved steps are presented in detail in the
following sections.

B. IMPLEMENTATION OF THE METHOD
1) RESTORATION OF 3D BREAST
Preprocessing operations for restoration consist of contour
extraction, chest line detection [30]–[32], and MLO contour
rotation and extension, as shown in Fig. 2. In general, 3D
objects can be easily recovered from two orthogonal projec-
tions based on stereo vision. However, the angle difference
between CC and MLO views is about 40◦-60◦ in practice.
In this study, the MLO contour can be regarded as the medio-
lateral (ML) contour after rotation and extension operations.
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FIGURE 1. Workflow of GM-SS method.

FIGURE 2. Preprocessing operations for breast restoration. (a) Contour
extraction and chest line detection. (b) MLO contour rotation and
extension.

The nipple on the MLO image is regarded as the center
of rotation. In addition, the contour near the chest wall is
replaced by the extension of the tangent of inflection points to
acquire the standardized ML contour. As shown in Fig. 2(b),
A and C are the upper and lower inflection points of the
MLO contour, and B andD are the corresponding intersection
points between the chest wall and tangent lines. In this way,
we can obtain the projections of the breast contour in two
orthogonal directions (CC in vertical and ML in horizontal
direction). The preprocessing operations can be automatically
accomplished in this study.

Before restoration, a unified 3D coordinate system
in Fig. 3(a) is introduced for convenient description. The
coordinate origin is defined to be the foot of the perpen-
dicular line from the chest to the nipple. The perpendicular
line is regarded as x-axis, and z-axis lies along the chest
wall with contrary direction to gravity. Then, y-axis could
be determined based on the right-handed coordinate frame.

FIGURE 3. Diagram of 3D breast restoration from CC and ML contours.
(a) Coordinate system for a free breast in 3D space. (b) Intersection points
m and n between perpendicular x = xc and CC contour. (c) Intersection
points p and q between perpendicular x = xc and ML contour.
(d) Cross-section x = xc consists of the upper semi-ellipse mpn and the
lower semi-ellipse mqn.

For each perpendicular x = xc in Fig. 3 (b) and (c), two
intersection points, namely,m and n, with the CC contour and
two intersection points, namely, p and q, withML contour can
be obtained. In this method, for each cross-section x = xc,
four vertex positions are acquired, as shown in Fig. 3 (d). The
contour of the cross-section can be simplified with the upper
semi-ellipse determined by the points of m, p, and n, and that
of the lower semi-ellipse with the points of m, q, and n.

2) CALCULATION OF FEATURE POINTS
This step aims to calculate three feature points to present the
3D position of the ROI center when the breast is free. Fig. 4(a)
depicts a ROI center PCl on the CC image. Fig. 4(b) displays
a breast under compression. PCu , P

C
c , and P

C
l are intersection
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FIGURE 4. Calculation of three feature points. (a) CC image with a ROI
center PC

l . (b) Three intersection points of PC
u , PC

c , and PC
l when X-ray

successively passes through the compression plate, the mid-plane
between the compression plate and detector, and the detector.
(c) Conversion process from PC

u into Pu.

points when X-ray successively passes through the compres-
sion plate, the mid-plane between the compression plate and
the detector, and the detector. According to X-ray projection
principle, both of PCu and PCc are imaged at PCl . Fig. 4 (c)
shows the conversion process from the compression state to
free. Pu, Pc, and Pl present the corresponding points of PCu ,
PCc and PCl when the breast is free. Black curve represents
the free contour of the cross-section y = yPCu . According
to experiment results in [20], cross-section deforms only
in its plane approximately, and points on the middle plane
approximately remain in fixed positions during compression.
Thus, the upper free contour can be simplified by the polyline
of PC1 P

C
2 P

C
3 P

C
4 after compression.PC1 is the intersection point

between the free contour and z-axis, PC2 is the intersection
point between the compression plate and z-axis, and P2 is
its corresponding point on free contour, PC3 is the point on
the compression plate with equal x-coordinate to the nipple,
and PC4 is the point of nipple, which keeps same coordinate
during compression based on previous approximation. HC

is the breast thickness under CC compression. In this study,
the length of the polyline of PC2 P

C
3 P

C
4 is supposed to be a

constant during compression. In other words, the curve of
PC1 P2 will be stretched to be the line of P

C
1 P

C
2 after compres-

sion. Pu could be calculated following an equivalent relation
between the curve of PuPC4 and the polyline of PCu P

C
3 P

C
4 . Pl

can be calculated in the same way but using the lower free
contour. The position of Pc is the same as that of PCc because
it is located on the middle plane. Thus, three feature points
are acquired to present the position of the ROI center in 3D
space when the breast is free. This step can be termed as
decompression.

3) BREAST ROTATION AND COMPRESSION
In mammography, the X-ray source will rotate by 40◦–60◦

from the CC view to the MLO view. The same effects can
be accomplished by rotating the 3D breast by −40◦– −60◦

around the x-axis. Such rotation can be written as: x ′

y′

z′

 =
 x
y
z

  1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (1)

where (x, y, z) denotes the breast coordinate before rotation,
and (x ′, y′, z′) is the result after rotation. θ represents the angle
change between CC andMLO views. P′u, P

′
c, and P

′
l represent

the points of Pu, Pc, and Pl after rotation, respectively.

FIGURE 5. (a) Four different position relations between P′
c and its

cross-section. (b) Transformation from P′
c to PM

c . HM is the breast
thickness under compression in MLO view.

According to the real situation, the compressed positions in
MLO should be acquired before mapping three feature points
onto the MLO image. Considering that deformation only
occurs in its own cross-section, the point after compression
can be calculated through its free cross-section. For points of
P′u and P

′
l , which are located on the surface of the breast skin,

their corresponding points of PMu and PMl under compression
in MLO can be calculated inversely by using the method
described in II.B.2). For the point of P′c inside the breast,
its corresponding point PMc under compression is calculated
using another method. Fig. 5 (a) shows four different position
relations between P′c and its cross-section of y = yP′c . The
black dot represents the point of P′c. ML denotes the mid-
line of the cross-section, which passes through the point
of the maximum x-coordinate of the contour. zP′c and zML

are the z-coordinate of P′c and ML . Breast contour in red are
the parts involved in calculation for PMc . Fig. 5 (b) describes
the specific transformation process from P′c to PMc , which
takes the first kind of position relation as an example. If we
make a straight line parallel to the z-axis through P′c, then
the straight line will intersect the ML at P′c1 and intersect
the upper contour at P′c2. P

′′

c2 is the compressed point of
P′c2 and it can be calculated inversely by using the method
described in II.B.2). P′c1 will remain at the same position
after compression. The curve of P′c1P

′′

c2 can be represented
approximately by a quadratic curve. Then the point ofPMc will
be determined based on the approximation that a curve within
the breast tissue stretches uniformly during compression. The
three other cases of different relative position relations could
be solved using the same method. In such way, PMu , PMl ,
and PMc can be obtained.

4) DETERMINATION OF MATCHING STRIP
FROM FEATURE POINTS
This section describes the procedure from three feature points
under compression in MLO view to the matching strip. PMu ,
PMl , and PMc can be mapped onto the MLO image according
to the X-ray projection principle. However, a possible path
on the MLO image should be a continuous curve, which
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indicates the possible position of the ROI center. In this
study, the curve is obtained through interpolation by quadratic
equations among the three feature points.

Through the preceding steps, we obtain the possible posi-
tions of the ROI centers; nevertheless, in the actual applica-
tion, radiologists prefer to obtain specificROI positions rather
than a curve. Therefore, finding the specific location based
on the curve is meaningful. In this study, a matching strip is
created for matching specific ROI positions according to the
confidence interval of 95% detection sensitivity. Additional
details could be found in the Results section.

5) RECOGNITION OF SPECIFIC POSITION OF ROIS
This step aims to find the specific position of ROIs in match-
ing strips by maximizing similarity measures. This paper
proposes an integrated similarity measure called ISM, which
can locate specific locations suitably. ISM is defined as:

ISM = e(−α·
(µCC−µMLO)2

2 +β·s) (2)

where µCC and µMLO are the normalized gray mean of ROIs
on the CC and MLO images, respectively. s denotes the
coefficient of the normalized mutual information (NMI) [33],
which is utilized to represent the similarity between two
variables. The definition of s is, (3) as shown at the bottom of
this page, where p(·) denotes probability, and p(·, ·) denotes
joint probability. ICC (i, j) and IMLO(i, j) are the gray values of
(i, j) in ROIs on the CC andMLO images, respectively. Larger
s means higher similarity between two variables. α and β
are tunable parameters that represent the weight of the two
weighted terms. In this work, α and β were fixed based
on the accuracy of similarity searching. Specifically, we try
to optimize these parameters to obtain the minimum mean
distance between the centers of the matched ROIs and the
reference, which can be expressed as the following equation:

(α, β) = argmin


Q∑
i=1

P∑
j=1

(uij − uij)2 + (vij − vij)2

 (4)

where uij and vij denote the row and column coordinates of
the centers of the matched ROIs, and uij and vij represent the
row and column coordinates of the reference centers, which
have been identified by radiologists. P is the number of cases
on per pair of images, and Q represents the total number of
image pairs. This is a nonlinear minimization problem, which
can be solved with the Levenberg-Marquardt Algorithm as
implemented inMinpack [34]. On account of large difference
between the mass and calcification on the image, we divided
this optimization process into mass task and calcification
task, independently. The optimization results in our work

showed that for calcifications when α and β are 2 and 0.6,
the mean distance is smallest. For masses, when α and β are
0.8 and 1, the mean distance is smallest.

FIGURE 6. (a) 3D surface map of ISM, (b)-(d) corresponding top, front,
and side views of the surface map, respectively.

Fig. 6 (a) displays the 3D surface map of ISM, which
integrates µCC and µMLO into a variable for visualization.
µCC -µMLO changes from −2 to 2, and s changes from
0 to 1 because µCC , µMLO, and s are all normalized values.
(b) - (d) are the corresponding top, front, and side views of (a).
ISM will be large only when µCC is approximately equal to
µMLO. On this basis, ISM further enlarges with s increasing.
In addition, when µCC -µMLO belongs to (−0.5, 0.5), ISM is
large as long as s is close to 1. In summary, ISM can firstly
select candidate areas with similar normalized gray of ROIs in
matching strips. The image information correlations between
these areas and ROIs are compared thereafter to finalize the
optimal matching.

TABLE 1. Distribution of data sets used in experiments.

C. DATA SETS AND EVALUATION METHODS
Table 1 displays the distribution of data sets used in the
experiment, including the number of patients (No. patients),
the number of total cases (No. cases), the number of benign

s =

∑
ICC (i,j)

p(ICC (i, j)) log(p(ICC (i, j)))+
∑

IMLO(i,j)
p(IMLO(i, j)) log(p(IMLO(i, j)))∑

ICC (i,j),IMLO(i,j)
p(ICC (i, j), IMLO(i, j))· log(p(ICC (i, j), IMLO(i, j)))

(3)
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cases (NO. benign), and the average size. Note that all cal-
cifications selected are benign because most of the malig-
nant calcifications are widely distributed clusters. In general,
these clusters are very easy to match during the diagnosis
process. Therefore, in our work, benign calcification is the
matched object. Mass data were randomly selected so that
no homogeneous characteristics were constructed. Among
the 300 masses, 186 were benign and 114 were malignant.
In addition, the sizes of calcifications, the sizes and density
ratings of the masses were given by radiologists, as shown
in Fig. 7. The size was defined as the longest dimension. The
average sizes of the calcifications and masses were 1.51mm
and 15.23mm, respectively.

FIGURE 7. (a) Distribution of the size of calcifications. (b) Distribution of
the size of benign and malignant masses. (c) Distribution of masses
density ratings.

Density ratings were classified according to the Breast
Imaging Reporting and Data System [35] (BI-RADS, edition
2013): D1 for entirely fatty breast, D2 for scattered fibroglan-
dular tissue, D3 for heterogeneously dense breast, and D4 for
extremely dense breast. The centers of the calcifications and
masses were identified and marked on two-view images by
radiologists, expressed by PCl on the CC image and PMl on
the MLO image, respectively.

Data acquisition was performed in 2D digital mammog-
raphy mode by using a digital breast tomosynthesis sys-
tem of commercial Hologic Selenia Dimensions (Hologic
Inc, USA). The tube voltage ranged from 25 kV to 32 kV.
All mammograms were acquired in modern automatic expo-
sure control (AEC) mode at 40–60 mAs. These images were
processed with Hologic Selenia conventional and C-View
software to improve resolution and contrast to noise ratio. The
detector was readout in 1× 1 binning mode with a pixel size
of 70µm× 70µm and image size of 3328×2560. Parameters
such as distance from the X-ray source to the detector, thick-
ness under compression in CC and MLO and angle change
from CC to MLO view could be acquired from the DICOM
(Digital Imaging and Communications in Medicine) files for
each pair of images.

Experiments included evaluation of the accuracy of geo-
metric model result, the accuracy of geometric model, simi-
larity searching, and result comparisons with related works.
In evaluation of geometric model, calcification images were
utilized to verify the accuracy of corresponding curves.
Both calcification and mass images were presented to verify
the matching accuracy of similarity searching. Although in
actual diagnosis, ROIs may be architectural distortions or

asymmetries (asymmetry, global asymmetry, focal asymme-
try, and developing asymmetry) [36]. The characteristics of
them are not significant on images and the morphological
characteristics considerably vary. In this context, matching
strips can be directly regarded as the matching results of these
ROIs without similarity searching.

Different indices were applied to quantitatively evaluate
the matching accuracy of the registered curves and the spe-
cific position of ROIs. For the curves, the first measure simply
counted the number of cases that the curves exactly passed
through the ROI centers (abbreviated as NPL). In this paper,
the cases were considered to be NPL as long as the absolute
error (AE) was less than 0.35mm between the curves and the
ROI centers. The second measure was MAE, which was a
widely accepted standard for measuring matching accuracy
as described in the Introduction section. All the distance
mentioned in this paper referred to the Euclidean distance.
We also calculated confidence intervals for different detection
sensitivities to determine the appropriate size of the matching
strips. Detection sensitivity is regarded as the probability that
all ROIs can be detected on second image. A high detection
sensitivity corresponded to a large search area around the
curves. The area was considered to be the confidence interval
in this paper, which indicated the possible location of the ROI
centers.

FIGURE 8. (a) CC image with a ROI. (b) Matched results of the ROI on
MLO image. (c) Magnification of the overlap between the matched and
the reference.

For the accuracy of specific positions, the mean distance
between the true ROI centers and matched ROI centers was
applied. In addition, the percentages of cases that overlap
is greater than 50% and greater than 75% were evaluated.
Overlap was defined as the overlapped area between the
reference and matched ROI on the MLO images [37], [38],
as shown in Fig. 8 (b) and (c).

III. RESULTS
A. RESULTS OF GEOMETRIC MODEL
The three following methods were compared to demonstrate
the accuracy of the curves by GM-SS. GM is the geometric
model method proposed by Kita et al. [20]. The second and
the third are Arc and Linemethod, which have been described
in Introduction section. Fig. 9 (a) shows the ROI center of PCl
on the CC image, l1 and l2 represent the radial and horizon-
tal lengths between the center and the nipple, respectively.
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FIGURE 9. Registration results of four different methods. (a) A ROI center
PC

l on the CC image. (b) - (e) Registration results of GM-SS, GM, Arc, and
Line, respectively.

Fig. 9 (b) - (e) displays the registration results of GM-SS,
GM, Arc, and Line, respectively.

TABLE 2. Registration results of four different methods.

Results of NPL and MAE for 400 calcifications are listed
in the left column of TABLE 2. GM-SS method has the
maximum of NPL and the minimum of MAE compared
with GM, Arc, and Line. In addition, the smallest standard
deviation of ±2.90mm indicates that the curves calculated
by GM-SS method are closer to the center of true ROIs in a
steady manner. The confidence intervals for different detec-
tion sensitivities are listed in the right column of TABLE 2.
For detection sensitivities of 80%, 90%, and 95%, the confi-
dence intervals of GM-SS are always smaller than the other
methods. For detection sensitivity of 95%, the confidence
interval of GM-SS is ±8.77mm, which is considered the
size of matching strips for similarity searching. In clinical
application, the size can be enlarged suitably to obtain a high
recall rate.

Distribution of AE for 400 calcifications is shown in box-
plot in Fig. 10. No obvious difference in the median is found
among the four methods with the value of 3-4mm. However,
the range of AE is from 0 to 15mm for GM-SS and from
0 to 25mm for other methods. There are many cases in GM,
Arc and Linemethodwith AE greater than 15mm. In contrast,
more than 75% calcifications with AE smaller than 5mm
using GM-SS.

The above results were based on the assumption that the
known ROI was located on CC image and its correspond-
ing curve was calculated on MLO image. To verify the

FIGURE 10. Box-plot of AE of four different registration methods.

FIGURE 11. AE distribution between the known ROI located on CC image
and MLO image, respectively.

TABLE 3. Mean distance (mm) of different ROI sizes for matching
calcifications.

reversibility of GM-SS, the curve on CC image was calcu-
lated simultaneously assuming the known ROI was located
on MLO image. Fig. 11 displays the AE distribution between
the knownROI located onCC image andMLO image, respec-
tively. The distribution of AE is demonstrated by detection
sensitivity and the number of cases. Results show that similar
AE distribution for detection sensitivity and the number of
cases, indicating that GM-SS exhibits reversibility well.

B. RESULTS OF SIMILARITY SEARCHING
1) RESULTS OF CALCIFICATION MATCHING
State-of-the-art similarity measures such as standard devia-
tion (SD), information entropy (IE) [39], Person’s correlation
(PC) [37], [38],MI [33], and Cosine measure (CO) [40] were
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compared to verify the effectiveness of the proposed simi-
larity measure. For randomization, 200 calcification centers
were selected as the known ROI centers from the CC images,
and the other 200 calcification centers were selected from
the MLO images. Seven experiments were performed for
comparison to study the effect of ROI sizes on the matching
accuracy of calcifications. Size selection was based on the
size distribution of calcifications in our datasets. The match-
ing results of the mean distance of the six similarity measures
are presented in TABLE 3.
ISM can achieve minimum distance of 3.92±4.61mm with

the ROI size of 1.40mm × 1.40mm. Furthermore, for all
similarity measures, the mean distances are relatively small
when the ROI sizes are approximately equal to the average
size of the calcifications.

FIGURE 12. Percentages of calcification cases with overlap greater than
(a) 50% and (b) 75%.

Similar conclusions can be derived from the percentages
of the calcification cases with overlap greater than 50%
and 75%, as shown in Fig. 12. ISM could realize 93.46%
cases with overlap greater than 50% when the ROI size is
1.40mm × 1.40mm. The percentages decrease slightly when
the overlap is greater than 75%. The best matching accuracy
is 92.46% in cases with overlap greater than 75% using ISM.
In addition, the matching accuracy is poor when the ROI size
is greater than 4.20mm for all similarity measures.

Fig. 13 demonstrates the detection sensitivity of calcifi-
cations for different number of candidate ROIs on second-
view images. For each similarity measure, the optimal size of
ROIs was applied. In this experiment, candidate ROIs were
sorted in descending order based on ISM value of each ROI.
Then detection sensitivities of different similarity measures
were evaluated when the number of candidate ROIs was i
(i = 1, 2, . . . , 7). Fig.13 shows that the detection sensitivity
of ISM is significantly higher than that of other similar-
ity measures, especially when the number of 1-4. Although
the detection sensitivities of other similarity measures are
increased when the number is 6 and 7, the detection sen-
sitivity of ISM is always the highest. In addition, detection
sensitivities of all similarity measures tend to be stable when
the number of candidate ROIs is 7. The maximum detection
sensitivity is no more than 95%, which is in correspondence
with the detection sensitivity of 95% for matching strips.

2) RESULTS OF MASS MATCHING
Experiments on different sizes of ROIs were also conducted
for masses. Sizes were selected from 11.27mm × 11.27mm

FIGURE 13. Detection sensitivity of calcifications for different numbers of
candidate ROIs on second-view images.

to 25.27mm × 25.27mm, based on the size distribution of
masses in our datasets. The matching results of the mean dis-
tance of the six similarity measures are presented in Table 4.
In general, the mean distance of ISM is smaller especially
when the size of ROIs is between 12.67 mm× 12.67mm and
18.97mm× 18.97mm. Theminimummean distance of ISM is
6.15±7.08mm, with the ROI size of 14.07mm × 14.07mm.
Except for SD, the mean distances of IE, CO, PC, and MI
are similar. The mean distances are relatively small when the
ROI sizes are approximately equal to the average size of the
masses for all similarity measures.

FIGURE 14. Percentages of mass cases with overlap greater than (a) 50%
and (b) 75%.

Fig. 14 displays the percentages of cases with overlap
greater than 50% and 75%, respectively. Compared with
the calcifications, the percentages of the masses are slightly
lower because they may change greatly in shape under CC
and MLO view compression. ISM can realize 88.46% cases
with overlap greater than 50% and 85.58% cases with overlap
greater than 75%. The matching accuracy is very poor when
the ROI sizes are 11.27mm × 11.27mm and 25.27mm ×
25.27mm. One possible reason is that too small ROI size can
over-magnify a local feature within it, whereas too large ROI
size can weaken the features of suspicious lesions. A general
rule is that the matching accuracy is relatively high when the
size of ROI is approximately equal to the size of suspicious
lesions.

The detection sensitivity of masses for different number
of candidate ROIs is demonstrated in Fig. 15. For all of
the similarity measures, the detection sensitivity can reach
more than 85% with increasing number of candidate ROIs.
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TABLE 4. Mean distance (mm) of different ROI sizes for matching masses.

TABLE 5. Comparison of results with related works.

FIGURE 15. Detection sensitivity of masses for different numbers of
candidate ROIs on second-view images.

For ISM, the optimal detection sensitivity is more than 93%
when the number of candidate ROIs is up to seven.

C. RESULT COMPARISONS WITH RELATED WORKS
Results of above two parts show that GM-SS has higher
accuracy than commonly used methods in geometric model,
and similarity searching. However, to illustrate the effective-
ness of GM-SS, the ultimate correspondence results still need
to be compared with related works, as shown in Table 5.
Specifically, Wei et al. [10] proposed a method to link
mass correspondence between CC and MLO view images
by integrating geometric model (i.e. linear matching strip)
and cross correlation (GM-CC for short). In addition, BDT
and LDA, which have been already described in Section I,
were also compared. Results show that only LDA andGM-SS
can correlate both mass and calcification at the same time.

GM-CC and BDT can only perform one of the associat-
ing tasks, either of mass or of calcification. In addition,
this comparisons validate GM-SS has smaller mean distance
of 3.92mm for calcification and 6.15mm for mass, and higher
accuracy of 92.46% for calcification and 85.58% for mass.
Although the time consumption of GM-SS is not the lowest
among the four methods, 2-3s is also an acceptable time
clinically. Based on the above analysis, GM-SS is a quite
attractive correlation method, especially in terms of accuracy.

IV. DISCUSSION
In this work, we have presented an efficient method for
matching corresponding ROIs on two-view mammograms by
integrating geometric model and image similarity searching.
Specifically, by simulating the compression and decompres-
sion processes of breast imaging, we established a geometric
model to predict the possible location of the ROI center
in the second image. Compared with traditional geometric
methods, such as Line and Arc method, GM-SS pays more
attention to the constraint of 3D information of breast on
ROI position. At the same time, compared with the classi-
cal 3D methods (i.e. GM method mentioned in this paper),
GM-SS is more detailed in simulation process, such as some
preprocessing operations in 3D breast restoration, as well
as the different compression operations according to differ-
ent P′c positions. Modeling of decompression and compres-
sion is mainly based on previous experimental results [20].
Precise geometric model helps us to reduce the searching
area before matching ROIs without any image information.
Smaller searching areas have a significant impact on reducing
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false positives, especially for mammogram of dense breasts.
In addition, compared with mismatched ROIs, high similarity
is shown between same ROIs on CC and MLO images. The
experimental results show that ISM can work better than five
other similarity measures. The main reason is that ISM inte-
grates the gray mean and NMI of ROI. Gray mean constrains
the average of gray values of all pixels in ROI, and NMI
constrains the probability of gray values of individual pixel
in ROI. The experimental results show that the performance
of the combination of the two methods is better than that of
the conventional similarity measurement.

Our workmainly concentrated on three parts: (i) presenting
a curve accurately to register the possible position on second-
view mammogram, (ii) providing a method for establishing
matching strips, and (iii) proposing a novel integrated simi-
larity measure for matching specific positions of ROIs. The
first part is used to calculate curves by constructing a geo-
metric model. First, a free breast can be restored in 3D space
from breast contours. Preprocessing operations are applied
on MLO contour to acquire two orthogonal projections; such
operations include contour extraction, chest line detection,
and MLO contour rotation and extension. Three feature
points will be selected to present the position of the ROI
center in 3D space when the breast is free. This step can be
termed as decompression. For the geometric model, the view
transformation between CC and MLO can be achieved by
changing the coordinates of the breast. Considering that the
breast is imaged under pressure in practice, compression
will be implemented upon the rotated breast. Three points
are mapped onto the MLO image according to the X-ray
projection principle. However, the actual path should be a
continuous curve. In this context, a simple quadratic inter-
polation through the three feature points can be presented.
A matching strip will be created by confidence interval.
Finally, the corresponding ROI can be located on the MLO
image through searching in strips by ISM. It is worth noting
that the matching strips refer to the possible locations of the
ROI centers. The area near the matching strips may also be
the part of ROIs.

273 pairs of mammograms, including 400 calcifications,
and 284 pairs of mammograms with 300 masses were set
up to verify the accuracy of curves and specific positions of
ROIs, respectively. In actual diagnosis, ROIs may be archi-
tectural distortion or asymmetries. However, for architectural
distortion and asymmetries, the characteristics on images are
not significant and the morphological characteristics con-
siderably vary. In this context, the matching strips can be
directly regarded as the matching results of these ROIs with-
out similarity searching. To verify the accuracy of curves,
400 calcifications were applied. The reason for using calci-
fications is that the edges of calcifications are sharp and the
center can be located precisely. In this way, the absolute dis-
tance from the ROI center to curves can be easily measured.
For GM-SS method, the curves of 45 cases exactly passed
through the corresponding centers of ROI (AE < 0.35mm).
The MAE was 3.36±2.90mm for GM-SS, which was much

smaller than GM, Arc and Line method. For detection sensi-
tivity of 95%, the confidence interval was ±8.77mm, which
was considered to be the size of matching strips for similarity
searching. In clinical application, the size of the matching
strips can be slightly enlarged to obtain a high recall rate.
In addition, GM-MS exhibits reversibility well as shown
in Fig. 11. Both of the mammograms with calcifications
and masses were evaluated to verify the matching accuracy
of the specific position of ROIs. For calcifications, GM-SS
can achieve the mean distance of 3.92±4.61 mm with the
ROI size of 1.40mm × 1.40mm. About 93.46% cases have
overlap greater than 50%, and 92.46% of cases have overlap
greater than 75%. Compared with calcifications, the match-
ing accuracy of the masses slightly decreases because some
of them may change greatly in shape under CC and MLO
view compression. Nevertheless, GM-MS can realize 88.46%
cases with overlap greater than 50% and 85.58% cases with
overlap greater than 75%. In addition, the matching accu-
racies for calcifications and masses were greatly influenced
by the selected size of ROIs. A general rule should be fol-
lowed when selecting ROIs that the matching accuracy is
relatively high when the size of ROI is approximately equal
to the size of suspicious lesions. Meanwhile, ISM works well
for the task of matching corresponding ROIs on two-view
images compared with other similarity features. Although
in the literature [37], PC can provide significantly higher
accuracy among 12 similarity characteristics. However, in our
experiments, the correlation effect of PC was unsatisfactory.
The main reason is that the matching tasks are different.
In [37], masses on temporal serial mammograms were
matched. These mammograms were acquired in the same
view but at different times. However, the ROIs of two-view
mammograms taken in different views were the targets in
our study. The detection task of the latter is more difficult
because the breast shape greatly varies in different views due
to compression.

V. CONCLUSION
Automatically matching the same ROIs on two-view images
is valuable for radiologists in breast cancer diagnosis. This
paper proposed GM-SS for matching corresponding ROIs on
two-view mammograms by integrating a geometric model
and image similarity searching. The main contribution of
this work can be summarized as follows: 1) compared with
some techniques only acquiring a possible path, GM-SS
can obtain specific positions of ROIs on second images.
Geometric model in our technique helps us to calculate the
possible path with a high accuracy. On this basis, GM-SS
further creates a matching strip according to confidence inter-
val, within which the specific position of the ROI can be
located via image similarity searching; 2) Results showed that
GM-SS can achieve a high accuracy. Geometric model helps
us to reduce the searching area before matching ROIs without
any image information. Smaller searching areas have a signif-
icant impact on reducing false positives; 3) GM-SS is capable
of matching any kinds of ROIs because it can always obtain
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corresponding matching strips of ROIs via the proposed geo-
metric model. Without any image gray or texture information
involved in this step, this technique has great advantages for
the task of matching the same ROIs on two-view mammo-
grams, especially for mammograms of dense breasts; 4) This
technique has high practicability and flexibility. The only
thing radiologists need to do is click on one ROI in CC/MLO
image. Thismethodwill prompt the location of the sameROIs
on the other image. The whole process takes only 2-3 seconds
(specific time depends on processor performance).

Recent digital breast tomosynthesis is expected to over-
come some inherent limitations of mammography clinical
performance caused by overlapping of normal and patho-
logical tissues during the standard 2D projections. However,
for most primary hospitals, full field digital mammogra-
phy (FFDM) is still the most commonly used diagnostic tool
for breast cancer. Therefore, the assistant diagnosis technol-
ogy proposed in this paper remains great significance.
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