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ABSTRACT The unstable nature of radio frequency signals and the need for external infrastructure inside
buildings have limited the use of positioning techniques, such as Wi-Fi and Bluetooth fingerprinting.
Compared to these techniques, the geomagnetic field exhibits stable signal strength in the time domain.
However, existing magnetic positioning methods cannot perform well in a wide space because the magnetic
signal is not always discernible. In this paper, we introduce deep recurrent neural networks (DRNNs) to
build a model that is capable of capturing long-range dependencies in variable-length input sequences. The
use of DRNNs is brought from the idea that the spatial/temporal sequence of magnetic field values around a
given area will create a unique pattern over time, despite multiple locations having the same magnetic field
value. Therefore, we can divide the indoor space into landmarks with magnetic field values and find the
position of the user in a particular area inside the building. We present long short-term memory DRNNs
for spatial/temporal sequence learning of magnetic patterns and evaluate their positioning performance
on our testbed datasets. The experimental results show that our proposed models outperform other traditional
positioning approaches with machine learning methods, such as support vector machine and k-nearest
neighbors.

INDEX TERMS Deep recurrent neural network (DRNN), fingerprinting, geomagnetic field, long short-term
memory (LSTM).

I. INTRODUCTION
The demand for indoor location-based service (LBS) is
fueling the decade-long research into indoor positioning tech-
nology. In an outdoor environment, the global navigation
satellite system (GNSS) uses line-of-sight (LOS) transmis-
sion to position the user [1]. However, it cannot be applied in
an indoor environment due to multipath effect, signal fading,
shadowing, and delay distortion in a radio propagation envi-
ronment [2]. With the proliferation of smartphones and other
mobile devices, an array of embedded sensors can be used for
indoor localization. Many studies have been performed on
Wi-Fi or Bluetooth-based fingerprinting indoor localization
using received signal strength (RSS) and channel state infor-
mation (CSI) [3]–[9]. Although these methods can achieve
the desired accuracy at an acceptable cost, they cannot work
effectively when a RF signal is weak. Also, these methods
need expensive external devices, such as wireless access
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points (WAP) or Bluetooth beacons all over the building to
transmit the RF signal.

In contrast, the geomagnetic field is ubiquitous and does
not need any additional infrastructure. The magnetic field
strength (MFS) is non-uniform inside a building due to build-
ing materials, such as steel, iron, and reinforced concrete
[10], [11]. Due to these anomalies in the MFS, it can be
used by an indoor positioning system. Magnetic signatures
have previously been used for robot tracking and naviga-
tion [12], [13]. Specifically, the fingerprint-based approach
is widely accepted for magnetic signature recognition due to
low complexity and a real-time testing process [14]. This
fingerprinting positioning method is usually divided into two
phases: training and testing. In the training phase, the dataset
is prepared by collecting the MFS at all reference points and
stored in the positioning server. In the testing phase, the real-
time MFS data are collected and given to the positioning
server to find out the current location. The performance can
be evaluated by performance metrics, such as accuracy, pre-
cision, recall, and F1 score.
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We utilize the unique signal features of the magnetic field
gathered from a smartphone for fingerprinting-based classi-
fication. Although many other magnetic-based positioning
methods have been proposed, the ambiguity of magnetic
data in a wide space may converge a positioning result in
the wrong direction in some cases. Here, we adopt a deep
learning model, which can perform effectively to classify
landmarks based on themagnetic signal variations. In the area
of deep learning, there is growing interest in the recurrent
neural network (RNN), which has been used in many techni-
cal applications, such as speech recognition, language mod-
eling, video processing, and many other sequence labeling
tasks [15]–[18]. The reason behind its promising performance
is its ability to exploit contextual information and learn the
temporal dependencies in variable-length data.

In this paper, we use long short-term memory (LSTM)-
based deep RNNs (DRNNs) to classify the location mapped
from variable-length input sequences of MFS, and we
develop a positioning estimation architecture based on deep
layers of unidirectional and bidirectional RNNs, as well as a
cascaded architecture advancing to unidirectional from bidi-
rectional RNNs [19]. Moreover, we test these deep learning
models with different testbeds to validate their performance
at classifying various landmarks. The major contributions of
our work are as follows:

1. We experimentally validate the feasibility of using
MFS for landmark classification. In addition, we show
that the MFS data is stable over a period of time.

2. We show the success of using unidirectional and bidi-
rectional DRNNs for landmark classification without
any additional data preprocessing and validate its per-
formance in two typical indoor environments.

3. We introduce the implementation of bidirectional
DRNNs for magnetic landmark classification. To the
best of our knowledge, this is the first work to do so.

The rest of the paper is organized as follows: Section II
provides a brief review of previous works using the magnetic
field for indoor positioning. Section III and IV present a
preliminary analysis of magnetic field data and a background
overview of RNNs, respectively. Then, the proposed archi-
tecture and experimental setup are explained in Section V
and VI, respectively. Additionally, experimental results and
analysis are presented in Section VII. Finally, Section VIII
contains a conclusion of our work.

II. RELATED WORK
Many approaches have been used to obtain the desired accu-
racy in indoor positioning. Most studies use Wi-Fi signal
strength or radio frequency identification (RFID) to mea-
sure the user position [20]. Recent literature has reported
that the MFS can be used instead of RF signal. Some
studies have shown a navigation system for robots using a
magnetic field. [21] and [22] showed simultaneous local-
ization and mapping (SLAM) for geomagnetic field-based
robot positioning. They used a particle filter, which utilizes

odometers, to achieve a maximum positioning error of 10 cm.
The odometer gave accurate distance and rotation informa-
tion, and thus, re-sampling particles depending upon moving
distance and rotation was accurate.

Haverinen and Kemppainen [23] implemented the same
SLAMwith a human by replacing the odometers with pedes-
trian dead-reckoning (PDR). However, due to lack of proper
odometric information, the performance was not as good as
when using odometers.

In another work, Navarro and Benet [24] used a two-
dimensional magnetic map to determine the local heading of
the robot. They considered the magnetic field as a continuous
function and used bilinear interpolation to determine theMFS
at un-sampled points. In [25] mobile phones were used
to measure MFS and interpreted it as magnetic signatures
for identifying rooms. Since this system depends heavily on
pillars in the building, it only achieved room-level accuracy.

Gozick et al. [26] attempted magnetic landmark localiza-
tion with the MFS created from pillars of a building. They
measured the sequence of peak values and matched these
values to pre-obtained landmarks’ MFS. However, in their
research, the magnetic landmarks are defined with a prior
knowledge that columns are ferromagnetic objects.

Recently, the use of deep neural networks (DNNs) is mak-
ing a big impact in various research fields. In [27], the five-
layer DNN classifier has been used with dynamic acous-
tic features. They proposed a scoring method using human
log-likelihoods (HLLs) along with mathematical verification
suggesting that their method can overcome other classical
log-likelihood ratio (LLR) scoring methods. Also, the use of
a LSTM neural network has been found to be more efficient
in natural language processing. In [28], it has been used for
speech recognition based on short utterance.

In our work, we advance the work of [25] and [26] by
using DRNNs in a two-dimensional space. In terms of use
of DRNNs, we used an LSTM network, which is a popular
RNN for dealing with long-range dependencies [29], to train
our magnetic field data. This LSTM network model is more
flexible for classifying variable-length windows, in opposi-
tion to the fixed-length windows used by convolutional neural
networks (CNNs).

III. MAGNETIC FIELD PRELIMINARIES
The geomagnetic field is present on the surface of the earth
with a magnitude from 0.22 to 0.65 Gauss (22 to 65 µT).
By using a magnetometer, a smartphone can measure the
magnetic field in the form of a vector with three components
(mx ,my,mz). The geomagnetic field is found to be stable in
the absence of any interference from other external magnetic
elements. We conducted an experiment to find the stability
of the magnetic field in a corridor located on the eighth floor
of an IT department building, Chosun university. Magnetic
field data were collected along the corridor of length 100 m
at different times for a day, a week, and a month, as shown
in Fig. 1. Later, the data were analyzed to see the statistical
significance of the magnetic field over a period of time.
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FIGURE 1. Stability of magnetic field value over time. (a) Variation over a day. (b) Variation over a week. (c) Variation over
a month.

There were no statistically significant differences between
magnetic field data from different times of day (F =

0.29,P = 0.74), week (F = 0.90,P = 0.41), and month
(F = 0.96,P = 0.39) as determined by a one-way analysis
of variance (ANOVA) [30]. Here, F is the ratio of variation
between MFS sample means to variation within the samples
and P is the probability to determine how common or rare
an F-value is under the assumption that the null hypothesis
is true. The null hypothesis is usually rejected if P < 0.05.
Therefore, we used the magnetic field, which is stable over a
period of time, for the indoor landmark classification.

A. MAGNETIC DATA ACQUISITION
The magnetic data for a landmark or reference loca-
tion is obtained from the magnetic sensor of a smart-
phone. The data structure can be formed as D =

[mx ,my,mz,MA,mxrot ,myrot ,mzrot ], where mx ,my, and mz
represent magnetic field intensity from the three-axis mag-
netic sensor of a smartphone in space relative to the orienta-
tion of the phone,MA represents averagemagnetic field inten-
sity, and mxrot ,myrot , and mzrot represent the magnetic field
intensity after it has been converted to a global frame system.
Since the orientation of the smartphone plays an important
role in positioning, we have also gathered magnetic field

data with a quaternion-derived rotation matrix. Thus, we had
to obtain the 3 × 3 rotation matrix R, which is the change
from the device coordinate system to the global coordinate
system. Given any vector m in the device coordinate system,
the corresponding vectormrot in the global coordinate system
can be obtained by multiplying m with R.

MA =

√
m2
x + m2

y + m2
z (1)[

mxrot ,myrot ,mzrot
]
= R×

[
mx ,my,mz

]T
. (2)

The first feature, mxrot , in (2) is a very small value close
to zero, thusmyrot and mzrot usually retain the variation of the
magnetic field at different location points.

IV. BACKGROUND: RECURRENT NEURAL NETWORK
A. RECURRENT NEURAL NETWORK
A recurrent neural network (RNN) is a class of deep neural
network that contains cyclic connections that allow it to
learn the temporal dynamics of sequential data. Unlike tradi-
tional feed-forward neural networks (FNNs), a RNN has the
characteristics of memorizing the previous information and
applying it to the current input. RNNs have been successfully
applied to sequential nature datasets, such as natural language
processing, due to their capability to model highly non-linear
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FIGURE 2. Schematic diagram of an RNN node.

features. As shown in Fig. 2, each RNN node generates the
output yt and current hidden state ht by using the current
input xt and previous hidden stateht−1 based on the following
equations:

ht = σH (WHHht−1 +WIHxt + bh) (3)

yt = σO
(
WHOht + by

)
, (4)

where σH and σO are the hidden layer and output layer
activation functions, respectively. WHH , WIH , and WHO are
the weights for the hidden-to-hidden recurrent connection,
input-to-hidden connection, and hidden-to-output connec-
tion, respectively. bh and by are the bias terms for the hid-
den and output states, respectively. The activation functions
are element-wise and non-linear and are commonly selected
from various existing functions, such as sigmoid, hyperbolic
tangent, or rectified linear unit (ReLU).

B. LONG SHORT-TERM MEMORY (LSTM)
The traditional RNN is unable to handle long sequences of
data. In addition, training RNNs can be challenging due to
vanishing and exploding gradients, which create a problem
when backpropagating through long-range temporal inter-
vals [31]. In order to handle the long-range dependencies
of learning data, a new class of network architecture with
learnable gates has been used which is known as LSTM.
LSTM contains memory blocks with memory cells called
gates in the recurrent hidden layer, as shown in Fig. 3.

These learnable gatesmodulate the flow of information and
control when to forget previous hidden states. Also, the gates
update states with new information. The function of each
memory block is as follows:

• Input gateit controls input activation into the memory
cell.

• Output gate ot controls memory cell outflow of activa-
tion to output.

• Forget gate ft determines when to forget content regard-
ing the internal state.

• Input modulation gate gt provides the input to the mem-
ory cell.

• Internal state It controls cell internal recurrence.

FIGURE 3. Schematic diagram of a LSTM cell structure with an internal
recurrence ct and outer recurrence ht.

• Hidden state ht contains information from previous sam-
ples within the context window.

it = σ (bi + Uixt +Wiht−1) (5)

ft = σ
(
bf + Uf xt +Wf ht−1

)
(6)

ot = σ (bo + Uoxt +Woht−1) (7)

gt = σ
(
bg + Ugxt +Wght−1

)
(8)

It = ft It−1 + gt it (9)

ht = tanh (It) ot , (10)

where σ is the activation function, the U and W terms rep-
resent weight matrices (e.g., Ui is the weight matrix for the
input data xt given to input gate itandWi is the weight matrix
for ht−1data given to input gate it ), and the b term denotes
the bias vector (e.g., bi is the input gate bias vector). The
training process of LSTM-RNNs is essentially focused on
learning when to let an activation into the internal states of its
cell and when to let an activation of the outputs. In addition,
the network needs to learn the parameters b,U , andW of the
cell gates, as shown in (5) – (10).

V. PROPOSED ARCHITECTURES
A. SYSTEM ARCHITECTURE
The architecture of the proposed DRNN-based landmark
classification system is shown in Fig. 4. It does not require
any additional infrastructure except a smartphone device with
a magnetic sensor to classify the landmark locations. The
system consists of two steps: an offline training phase and
an online testing phase. First, the raw magnetic data are
collected at various reference locations known as landmarks.
Then, in the preprocessing procedure, the data are divided
into different segments according to the length of our DRNN
input. Finally, the preprocessed data from the landmarks are
combined to generate a fingerprint database corresponding to
each location, which consists of training and testing sets.
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FIGURE 4. Architecture of the proposed LSTM-DRNN positioning system representing the training and testing
phases.

FIGURE 5. Proposed DRNN indoor positioning architecture. The inputs
are raw signals obtained from a magnetometer that are then segmented
with windows of length T given to the LSTM-based DRNN model. The
output is the class membership probability obtained from the output
prediction score for each timestamp, merged via late-fusion.

The training set is used to train our proposed
LSTM-DRNN, whereas the testing set is used to validate the
model. In the testing phase, the trained model uses the test
data to classify the estimated landmark. The accuracy of the

landmark’s classification can be dependent on the training
model of the proposed LSTM-DRNN.

B. DRNN ARCHITECTURE
Fig. 5 presents a schematic diagram of the proposed DRNN
indoor positioning system. It performs direct mapping from
magnetometer inputs to different landmarks. A specific time
window is used to classify the landmark’s position. The
input contains a discrete sequence of equally spaced samples
(x1, x2, . . . , xT ), where each data point xt is a vector of indi-
vidual MFS samples D observed by the magnetic sensor at
timet . These samples are passed to a LSTM-based DRNN
model after being segmented into windows of maximum
time index T . For the output, we get a sequence of scores
denoting the landmark label prediction for each time step
(yL1 , y

L
2 , . . . , y

L
T ),where y

L
t ∈R

k is a vector of prediction scores
for a given input sample xt , Lis the number of DRNN layers or
top layer, and k is the number of landmark positions. A score
is assigned at each time-step for the label of a landmark
occurring at timet . Later, the prediction for the entire window
T is obtained by adding the scores into a single prediction.
Equation (11) shows the ‘‘sum rule’’ that is used as the fusion
scheme for better results, which is theoretically superior to
other schemes used in [32]. We applied a softmax layer over
Y to convert predictions into probabilities:

Y =
1
T

∑T

t=1
yLt . (11)

1) UNIDIRECTIONAL LSTM-BASED DRNN MODEL
We used a unidirectional LSTM-based DRNN, as shown
in Fig. 6. A higher number of DRNN layers can help
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FIGURE 6. Unidirectional LSTM-based DRNN model.

FIGURE 7. Bidirectional LSTM-based DRNN model with forward LSTMfl

and backward LSTMbl tracks.

in transforming raw data into a more abstract representa-
tion, as well as for learning spatial dependencies [15]. The
input is the MFS, which is a discrete sequence of samples
(x1, x2, . . . , xT ) that are passed into the first layer at time
t (t = 1, 2, . . .,T ) .

Initially, the internal state I l0 and the hidden state hl0 are
both set to zero. The first layer output y1t is obtained using
the input sample xt at time t, previous internal hidden state
I1t−1 and previous hidden state h

1
t−1 given its parameter θ1 as

follows:

y1t , h
1
t , I

1
t = LSTM1

(
I1t−1, h

1
t−1, xt ;θ

1
)
. (12)

Any layer l in the upper layers uses the lower layers yl−1t
as its input. If θ l represents the parameter (b,U ,W ) of the
LSTM cells for layer l, then (12) can be written as:

ylt , h
l
t , I

l
t = LSTM l(I lt−1, h

l
t−1, y

l−1
t ; θ

l). (13)

The prediction at every time step in the window T is given
by the outputs (yL1 , y

L
2 , . . . , y

L
T ) from the top layer L.

2) BIDIRECTIONAL LSTM-BASED DRNN MODEL
This architecture uses a bidirectional LSTM-based DRNN,
as shown in Fig. 7. It includes two parallel LSTM tracks:
forward and backward loops to exploit context from past and
future to predict its label [19], [34]. In the first layer, the
forward track (LSTM f 1) and backward track (LSTMb1) read

FIGURE 8. Cascaded unidirectional and bidirectional LSTM-based DRNN
model. The upper unidirectional layer is concatenated with the
bidirectional first layer.

input window T from left-to-right and right-to-left, respec-
tively:

yf 1t , h
f 1
t , I

f 1
t = LSTM f 1(I f 1t−1, h

f 1
t−1, xt ;W

f 1) (14)

yb1t , h
b1
t , I

b1
t = LSTMb1(Ib1t−1, h

b1
t−1, xt ;W

b1). (15)

At each time step, the top layer L outputs a sequence of
scores from both forward LSTM (yfL1 , y

fL
2 , . . . , y

fL
T ) and back-

ward LSTM (ybL1 , . . . y
bL
2 , . . . , y

bL
T ). The combined scores

Y ∈ Rk represent landmark label prediction for the window
segment T . The late-fusion is the resulting outputs from both
forward and backward tracks, which are combined as follows:

Y =
1
T

∑T

t=1

(
yfLt + y

bL
t

)
. (16)

3) CASCADED BIDIRECTIONAL AND UNIDIRECTIONAL
LSTM-BASED DRNN MODEL
Themodel architecture, shown in Fig. 8, is inspired from [19]
and [32]. In this architecture, the first layer is designed with
a bidirectional RNN, whereas the upper layers are unidirec-
tional. The first layer has a forward LSTM track LSTM f 1

generating an output (yfL1 , y
fL
2 , . . . , y

fL
T ) and a backward track

LSTMb1 generating an output(ybL1 , y
bL
2 , . . . , y

bL
T ). The two

types of outputs are combined and fed into the second uni-
directional layer to form a new output (y11, y

1
2, . . . , y

1
T ):

y1t = yf 1t + y
b1
T−t+1. (17)

The operation of the upper layers is same as in the unidirec-
tional model described earlier.

VI. EXPERIMENTAL PRELIMINARIES
A. EXPERIMENT SETUP
The experiments were conducted in a corridor and a lab on the
eighth floor of an IT department building, Chosun University
in Korea, with dimensions of 100 m× 2.5 m and 7 m× 7 m,
respectively. The corridor contains magnetic elements like
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FIGURE 9. Magnetic field strength variation measured near various
external factors.

iron doors, bearing columns, and other building materials,
which create fluctuations to the MFS. On the other hand,
the lab has other factors, such as computers, microwaves, and
lab equipment, that cause further significant magnetic field
fluctuations. We studied the effect of these external factors
in MFS fluctuation by collecting a sample of MFS using a
smartphone. We found that the factors such as computers,
microwaves, doors and other equipment significantly distorts
magnetic field near them as shown in Fig. 9. This can be due
to the presence of a magnetic element or an electrical circuit
inside them. A pictorial representation of the test environment
is shown in Fig. 10.

B. EXPERIMENT METHODOLOGY
The proposed model was evaluated through experiments. The
layouts of the testbeds are shown in Figs. 11 (c) and (d).
The magnetic field data were collected by using an Android
smartphone, which has a Yamaha MS-3E magnetometer
sensor. To make this process convenient, we developed an
Android application for the smartphone that sensed the geo-
magnetic field. In the corridor, we marked 25 landmarks and
measured magnetic signals by moving around the point in all
possible directions, as shown by the red eclipse dots in Fig. 11
(d). While recording the data in the corridor, the orientation
of the phone was held by a walking user, as shown in Fig. 11
(a) to avoid errors due to soft iron distortion.

However, in the lab, due to limited space, we used a
movable stand, as shown in Fig. 11 (b). Also, in the lab,
we marked 17 landmarks and gathered magnetic field data
at each point, denoted by a red circular dot in Fig. 11 (c).
Finally, our dataset consisted of 25 landmark positions in the
corridor and 17 landmark positions inside the lab. The size
of the training data in the corridor was about 71,300 MFS
samples for the 25 landmarks, and in the lab, it was about
19,500 MFS samples for 17 landmarks.

C. EXPERIMENT EVALUATION
We used Google TensorFlow as a deep learning framework
as it allowed us to design a more detailed neural network

TABLE 1. Server system configuration and framework for deep learning
network.

model. Also, NVIDIA cuDNN and CUDA Toolkit, which
provide parallel processing, were used to drastically improve
our training performance [33].

The proposed LSTM-DRNN positioning system uses the
configuration and framework shown in Table 1.

1) NETWORK TRAINING AND TESTING
We trained our DRNNmodel with the preprocessed geomag-
netic data stored in a fingerprinting database or dataset. The
dataset was divided such that 80% of the data is used for
training and the remaining 20% is for the testing process.
The hyperparameters, such as the number of hidden nodes,
mini-batch size, number of iterations, learning rate, etc., were
chosen for the optimized model. Also, the biases and weights
were initialized by using a standard normal distribution. The
cost function L in (18) was obtained by using the mean
cross-entropy between the ground truth landmark labels and
the predicted output labels. The ground truth labels indicate
the true landmark labels for the segmented windows and were
given in the dataset. They are provided as a one-hot vector
O ∈ Rk with a value oc associated with each landmark label
c.

The predicted classes Ô ∈ Rk include the probability of
every class ρc generated by our model:

L
(
O, Ô

)
= −

∑k

c=1
oc log ρc. (18)

The Adam optimization algorithm was used to minimize
the cost function L(O, Ô) by backpropagating its gradient
and updating the model parameters [34]. The weight and
other parameters were optimized with forward and backprop-
agation. In our work, we provided parameters for forward
propagation and Google TensorFlow calculated all required
back propagation steps. We used a dropout technique as
regularization to avoid overfitting in our model [35]. During
a training iteration, the node is dropped out based on the
dropout probability ℘, which represents the percentage of
units to drop. The output of the final layer’s hidden state is
passed as an input to a fully connected layer, which uses a
simplified hidden layer neural network to train the output data
using a softmax classifier. Also, the datasets were segmented
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FIGURE 10. Experiment environments. (a) First testbed in the corridor. (b) Second testbed in the lab.

with different window lengths, as shown in Table 2. The
optimal window length was selected based on their perfor-
mance results by a ‘‘trial-and-error’’ method. The fixed length
windows were used for training and testing, but during real-
time data acquisition scenarios, we were able to use variable-
length windows.

We used two separate sets of hyperparameters due to a
different number of data samples in the different testbeds,
i.e., the corridor and lab. Fig. 12 shows the accuracy and cost
of the training and testing processes for the unidirectional
DRNNmodel on our testbed. The training and testing accura-
cies increase with training epoch as the model generalizes to
new data. Similarly, the training and testing costs decrease
with each epoch as the model learns the data and reaches
an optimal value. In addition, the testing accuracy and cost
follow the training accuracy and cost graphs closely, which
indicates the effectiveness of the dropout technique in the
model for avoiding overfitting.

We divided our dataset into a mini-batch for efficient mem-
ory usage and to prevent the problem of gradient explosion
caused when the dataset is used as a single batch. When we
used the small batch size, the training time was generally
increased. This could be due to smaller step-sizes taken by
the smaller mini-batch to reduce the variances of gradient
updates. For example, a batch size of 128 or 256 can process
more data per mini-batch than that of 16 or 32. However,

TABLE 2. Summary of DRNN input data to evaluate the proposed deep
learning models. Training window length denotes the number of samples
in a window that we found to yield the best results for each testbed. Each
dataset was divided into 80% for training and 20% for testing.

TABLE 3. Summary of hyperparameters used in the two different
testbeds.

using a small mini-batch helped us to increase the accuracy.
The configuration of the proposed DRNN system that was
found to be best for our testbeds is listed in Table 3.
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FIGURE 11. Data gathering methods. (a) Orientation of the smartphone while collecting data in the corridor at
each grid. (b) Stand used in the lab to gather data at each landmark. (c) Layout of the lab containing working
desks surrounded with landmarks denoted by the red dots, where the data are gathered. (d) Layout of the
corridor with the landmarks denoted by red eclipse, where the data are gathered.

The trained DRNN models were evaluated with the test
dataset. We found that the testing accuracy was greatly
affected by the number of hidden nodes per layer and the
mini-batch size. It was observed that the accuracy increased
as the number of hidden nodes per layer increased. However,
if we increased the number of hidden layers, the performance
of the model was not necessarily good. This could be due
to the difficulty in gradient propagation when we increase
the number of layers. Fig. 13 shows the test accuracy when
we changed the number of hidden nodes in each layer using
a ‘‘trial-and-error’’ method. It can be seen that the best test
accuracies for the lab and corridor were obtained with hidden
units of 128 and 256, respectively.

2) PERFORMANCE METRICS
The performance of the proposed model was verified using
the following evaluation metrics [36]:

1. Precision: measuring the number of true samples out of
those classified as positive. The overall precision was
calculated by averaging the precision of each class:

Per − class Precisionc =
tpc

tpc + fpc
(19)

Overall Precision =
1
k

(∑k

c=1

tpc
tpc + fpc

)
,

(20)

where tpc is the true positive rate of landmark c, fpc is
the false positive rate, and k is the number of landmarks
in the dataset.

2. Recall (Sensitivity): measuring the number of samples
that are correctly classified out of the total samples in
a class. The overall recall is the average of the recalls
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FIGURE 12. The accuracy and cost of our DRNN model for the testbed dataset over mini-batch training iterations.
(a) Training and testing accuracies in the lab. (b) Cross-entropy cost between the ground truth labels and
predicted labels for both training and testing in the lab. (c) Training and testing accuracy in the corridor.
(d) Cross-entropy cost in the corridor.

FIGURE 13. Accuracy measurements with increasing number of hidden units per layer. (a) Test accuracy for a different number
of hidden units per layer in the lab. (b) Test accuracy for a different number of hidden units per layer in the corridor.

for each class:

Per − class Recallc =
tpc

tpc + fnc
(21)

Overall Recall =
1
k

(∑k

c=1

tpc
tpc + fnc

)
, (22)

where fnc is the false negative rate of a class c.

33952 VOLUME 7, 2019



B. Bhattarai et al.: Geomagnetic Field-Based Indoor Landmark Classification Using Deep Learning

FIGURE 14. Performance results for the proposed bidirectional DRNN model in the lab. (a) Confusion matrix for the landmark
classification in the lab with per-class precision and recall. (b) Accuracy comparison of the proposed model with other methods.
(c) F1-score comparison of the proposed model with other methods.

3. Accuracy: measuring the proportion of correctly pre-
dicted classes overall predictions:

Overall Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (23)

where TP =
∑k

c=1 tpc is the overall true positive for a
classifier of all classes, TN =

∑k
c=1 tnc is the overall

true negative rate, FP =
∑k

c=1 fpc is the overall false
positive rate, and FN =

∑k
c=1 fnc is the overall false

negative rate.
4. F1-score: the weighted harmonicmean of precision and

recall:

F1Score =
∑k

c=1

(
2
(nc
N

) precisionc ∗ recallc
precisionc + recallc

)
,

(24)

where nc is the number of samples in a class c and
N =

∑k
c=1 nc is the total number of samples in a set of

k classes. The F1-score provides a measure of a test’s
accuracy.

VII. EXPERIMENTAL RESULTS AND ANALYSIS
Our proposed LSTM-DRNN-based positioning system was
compared with other previously introduced machine learning
methods tested on both testbeds. In the lab, a bidirectional
DRNN model with three-layers yielded the best performance
results with an overall classification accuracy of 97.20%.
The confusion matrix in Fig. 14 (a) gives an overview of
the classification results for the proposed model in the test
set, along with the per-class precision and recall results.
Figs. 14 (b) and (c) show a performance comparison of the
proposed system with other machine learning methods, such
as k-nearest neighbor (KNN) [37], support vector machine
(SVM), logistic regression, decision tree, and Gaussian Naïve
Bayes (GNB). However, in the corridor, we found that four
layers of a unidirectional DRNN yield the best performance
results in term of per-class precision and recall, as shown
by the confusion matrix in Fig. 15 (a). Here, the over-
all classification accuracy is 91.1%. Also, we compared
the performances with other machine learning algorithms.
A comparison of accuracy and F1-score between our model
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FIGURE 15. Performance results of the proposed unidirectional DRNN model in the corridor. (a) Confusion matrix for the test in the
corridor along with per-class precision and recall. (b) Accuracy comparison of the proposed model with other methods. (c) F1-score
comparison of the proposed model with other methods.

and these algorithms can be seen in Figs. 15 (b) and (c),
respectively.

The performance results of the proposed models clearly
show that all of the architectures performed very well with
a dataset on both testbeds. The corridor is a wide space
with MFS fluctuations mostly due to pillars and columns.
However, the lab is a small space with a cluttered environ-
ment that has MFS fluctuations due to equipment, such as
computers, microwave ovens, printers, etc. Also, we studied
the MFS at different landmarks from two testbed to find
the overall changes brought by the aforementioned external
factors. We found that the difference in fluctuations of MFS
observed at different landmark positions inside the lab ismore
significant compared to the corridor as shown in Fig. 16.
It allows our model to extract the reliable features of the
magnetic pattern inside the lab. Hence, the performance of
our model is found to be better in lab. Since the range of
fluctuation in MFS around landmarks in lab is greater,

we have included more landmarks in the lab in terms of
space density. It proves that our models can be effective for
a broad range of landmark classifications in various indoor
environments. Table 4 contains a performance summary of
our models in the two test environments.

As the sample size grew, the conventional shallow-
structured methods, like KNN, SVM, and logistic regression,
have limited modeling capability and cannot extract reliable
features from a large dataset of fluctuating MFS. To show the
efficiency of our model with more amount of data samples,
we trained the model with a total of 42 landmarks, obtained
from combining the data samples from both testbeds. The
result in Fig. 17 shows that our model outperform other
methods drastically when the amount of samples and number
of landmark increases. Including more layers in the DRNN
helped the model to extract the discriminative features. These
features were exploited for effective learning and distinguish-
ing more complex patterns formed by MFS at landmarks.
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TABLE 4. performance summary of our model with the datasets on the two testbeds.

FIGURE 16. Distribution of MFS fluctuation measured around different
landmarks in two testbeds.

FIGURE 17. Performance result of the proposed model in a combined
dataset from the lab and the corridor.

In addition, using DRNNs to capture sequential and temporal
dependencies provided a significant improvement in perfor-
mance.

VIII. CONCLUSION
This paper presented three novel LSTM-based DRNN archi-
tectures for indoor landmark classification usingMFS.More-
over, we first verified experimentally the feasibility of using
MFS for landmark classification and empirically evaluated
our models using experiments with datasets on two testbeds.
Although the training phase was computationally demanding,
the test phase was fast and suitable for real-time indoor
landmark classification. Experimental results showed that the
proposed models outperform other state-of-the-art methods.
The performance improvement was mainly due to the ability
of our models to extract more discriminative features by

using deep layers at various landmark positions. Furthermore,
by exploiting the functionality of DRNNs, our models were
able to capture temporal dependencies between input mag-
netic field data.
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