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ABSTRACT This paper introduces a novel speed-oriented architecture of point multiplication in elliptic
curve cryptography. A balanced full-precision multiplier is proposed to shorten latency, and a new modular
inversion architecture is integrated to reduce the total number of clock cycles in point multiplication.
AmodifiedMontgomery Ladder algorithm that takes three clock cycles to calculate one input bit is proposed
to best utilize hardware resources. A mixed-pipeline technique is used to balance the delay of different paths
and increase frequency. The proposed architecture is implemented on GF(2163) and GF(2571), based on
Xilinx Virtex-5 and Virtex-7 FPGA. For GF(2163), the design reaches 211 MHz, with 29309 LUTs, and
547 clock cycles or 2.6 µs latency on Virtex-5; 320.5 MHz, with 28911 LUTs and 1.7 µs latency on Virtex-
7. For GF(2571), the design reaches 186MHz, with 286400 LUTs, and 1813 clock cycles or 9.6µs latency on
Virtex-5; 267 MHz, 290001 LUTs and 6.79 µs latency on Virtex-7. The proposed design achieves the lowest
latency among all existing works, and its performance is also among the top. Furthermore, it is demonstrated
that the proposed architecture maintains a high speed for larger binary fields, making it more suitable to be
implemented in large-bit-length platforms with a higher security level. Since the multiplier and its segments
work in different bit-length and refer to different fields, the proposed architecture can also be upgraded to a
reconfigurable design to support multiple-field point multiplication in the future.

INDEX TERMS ECC (elliptic curve cryptography), point multiplication, ITA (Itoh Tsujii algorithm),
Montgomery Ladder, FPGA implementation.

I. INTRODUCTION
The Elliptic Curve Cryptography (ECC) was proposed
in 1985 by Koblitz [1] and Miller [2], respectively. Since
then, a massive amount of scientific researches on ECC
implementation have been carried out in succession, focus-
ing on lower area consumption and higher efficiency. Com-
pared to the presently prevalent public-key encryption system
RSA, ECC achieves higher processing speed with shorter key
length and less complex key certificates, while maintaining
the same security level. Either prime field or binary field
can be chosen as the implementation field of cryptographic
mechanisms based on elliptic curves [3]. The prime field is
more suitable for software implementation whereas binary
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field is more friendly to hardware implementation with its
‘‘carry-free’’ property.

With the explosive growth of Internet-based applications
like peer-to-peer networks, ecommerce and distributed gam-
ing, the demand for security in such systems has also grown
markedly [4]. However, among these applications, some of
the time-critical applications such as network servers where
millions of heterogeneous client devices need to be con-
nected, the processing speed of identity authentication needs
to be further improved. In recent years, several ECC pro-
cessor designs over binary field Koblitz curve have been
proposed to increase encryption speed [5]–[9]. Since point
multiplication (PM) is the main and the most time-consuming
iterative operation during the whole encryption process,
most researches focus on exploiting novel hardware architec-
tures to speed up the operation process. Among these novel
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high-speed architectures, the main strategies are to reduce the
number of operating clock cycles by implementing parallel
structures at the algorithm level, and to increase clock fre-
quency by making proper use of pipeline stages to optimize
critical path.

A. RELATED WORK
To increase the speed of point multiplication, the structure
of modular multiplier is well-studied for its high logic com-
plexity that dominates critical path. Two types of multipliers
are usually implemented in high-speed/performance architec-
tures, bit-parallel and digit-serial [10], [11].

Karatsuba-Ofman multiplier (KOM), as the representative
of bit-parallel multipliers, can save resources by reducing the
multiplicative complexity of two n-digit numbers fromO(n2)
to O(nlog23) [12]–[14]. In a KOM, area reduction is traded
with extra logic levels. Integrating a KOM in a PM system
usually means to insert many pipelines to raise the operating
frequency to an adequate number. This will result in larger
multiplication latency as a sacrifice.

Full-precision multipliers, as the representative of digit-
serial multipliers, can trade higher frequency with more
area [15]–[20]. In these designs, although the multiplicative
complexity remains O(n2), the number of critical logic levels
is fewer than a KOM.

Apart from multipliers, various parallel structures have
been exploited recently to reduce latency. In the pro-
posed point multiplication designs [12]–[20], data flow was
arranged ingeniously to satisfy complex data dependency
while implementing parallel structures. In these designs,
additional registers must be implemented across parallel mul-
tipliers to store intermediate values and break critical paths.

Recently, a fast point multiplication design based on a two-
stage-pipeline KOM is proposed by [21]. When implemented
onXilinxVirtex-5, it takes 9470 LUTs and 4.6µs (1363 clock
cycles) to finish one operation, at the highest clock frequency
of 294 MHz. Besides, two point multiplication architectures
are proposed in [22] with quadratic full-precision multipliers.
The first structure is called high-performance architecture,
which is implemented with only one multiplier and takes
14202 LUTs and 1119 clock cycles at the clock frequency
of 352 MHz on Xilinx Virtex-7. The other one, called low-
latency architecture, is implemented with three multipliers
and takes 41090 LUTs and 450 clock cycles at the clock
frequency of 159 MHz on Xilinx Virtex-7. Due to the par-
allelization, the low-latency architecture is able to process
one PM operation in 2.83 µs, which outperforms all pre-
vious works. But this architecture has much optimization
space specifically in that the operating frequency drops more
than 50% when the chosen finite filed gets larger. Moreover,
the modular inversion operation which is only executed once
in a PM operation takes nearly 1/4 of the total clock cycles.
Since parallel multipliers can only reduce the clock cycles of
Montgomery Ladder process [see Sec II.C], the clock cycles
to do modular inversion (or final coordinate transformation)
have become the dominating factor. Consequently, to meet

the growing demand for speed in ECC applications, a well
designed architecture with both high speed and robustness is
urgently needed.

The proposed design is implemented on Field-
Programmable Gate Array (FPGA) platform to evaluate its
speed and performance. The reasons are as follows. First,
FPGA is flexible and new designs can be instantly upgraded
through download. Second, the previous results over binary
field Koblitz curve are mostly FPGA results. More data can
be added to comparison. Last, former FPGA results mainly
fall into two series of devices, Xilinx Virtex-5 and Virtex-7.
The comparison can therefore be done fairly, regardless of
the difference in manufacture procedure and PVT (process,
voltage and temperature).

B. MAIN CONTRIBUTION
In this paper, we aim at designing a high-speed point
multiplication architecture with among-the-top performance.
An architecture with two novel balanced full-precisionmodu-
lar multipliers which have quadratic multiplicative complex-
ity is proposed. The Montgomery Ladder unit shares one
of the multipliers with the modular inversion unit to reduce
area. A modified modular inversion architecture is proposed
to optimize critical path and shorten latency. As a result,
the whole design achieves the processing speed of 1.7 µs per
PM operation at the frequency of 320.5 MHz based on Xilinx
Virtex-7 over GF(2163). Implementation result shows that
the processing speed and performance of our speed-oriented
point multiplication architecture are higher than all previous
works. Thus, our design is of great significance for high-
speed ECC applications.

The main contributions of this paper are as follows:
1) A novel balanced full-precision multiplier that com-

bines bit-parallel and digit-serial multipliers is pro-
posed. It maintains high operating frequency over both
GF(2163) and GF(2571).

2) Amodified three-clock-cycle (3CC)Montgomery Lad-
der Algorithm is proposed. The number of operation
clock cycles is reduced to the minimum. The design is
able to process at the speed of three clock cycles per bit
and the total latency is the shortest among all existing
works.

3) A corresponding mixed-pipeline architecture with two
multipliers working in parallel is proposed to achieve
high speed. Integrating different-stages pipelines to
balance delay of different datapaths has efficiently
increased system frequency.

4) A high-speed modular inversion unit is designed
to work with our point multiplication architecture.
By sharing the multiplier of Montgomery Ladder pro-
cess, we manage to reduce the additional area brought
by modular inversion to the minimum. The critical
path of inversion unit is also optimized to fit the clock
frequency of the point multiplication architecture. The
number of operation clock cycles is reduced to the
minimum.
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5) To reduce complexity and area of modular inversion
unit, the modular powering units are simplified into
one-level logic and high powering units are eliminated.
As a result, the operating frequency is improved by
23% with similar amount of LUTs.

The rest of the paper is organized as follows. Section II
introduces the basic point multiplication algorithms over
GF(2m). Section III presents the proposed modular multi-
plier, and the proposed architecture of point multiplication
is introduced in Section IV. Section V compares the results
between the proposed architecture and other work. Section VI
concludes the paper.

II. POINT MULTIPLICATION ALGORITHM OVER
EXTENDED BINARY FIELDS
A. BASIC OPERATIONS OVER EXTENDED BINARY FIELDS
Three common elliptic curves defined over binary field were
given extensive attention over these years: Binary Edwards
curve(BEC), Binary Huff curve(BHC) and Binary Koblitz
curve(BKC). BEC and BHC are recent-proposed curves with
algorithm-level preventive of Side Channel Attacks (SCAs)
brought by unified addition laws [23]–[25]. BKC is a stan-
dard curve that requires less computational cost than BEC
and BHC. With the help of Montgomery Ladder, encryption
over BKC can reach the same level of resistance over SCAs.
Hence ECC implementation based on this curve is expected
to be efficient and secure.

The five basic operations on GF(2m) are modular addition,
modular reduction, modular powering, modular multiplica-
tion and modular inversion. The operations of ECC over
GF(2m) are based on the BKC known as E : y2 + xy =
x3 + ax + b. The carry-free property on GF(2m) makes all
basic operations simple for hardware implementation. Mod-
ular addition together with modular subtraction is merely bit-
wise Exclusive OR (XOR) operation of two inputs. Modu-
lar reduction requires an irreducible polynomial to reduce
(2m − 1)-bit results of modular multiplication and modular
squaring back to an m-bit value. For example, in GF(2163),
the polynomial recommended by National Institute of Stan-
dards and Technology, f (x) = x163 + x7 + x6 + x3 + 1
is used to ensure the result is within the same binary field.
Modular powering and multiplication follow the same rule of
operation. By replacing binary addition in normal squaring
and multiplication with modular addition, and reducing the
results with an irreducible polynomial, modular squaring and
multiplication are derived. Modular inversion is the inverse
operation of modular multiplication.

The hardware implementation of modular inversion is
based on Fermat’s Little Theorem which can transform a
modular inversion operation into several modular multiplica-
tion operations and modular powering operations in the given
extended binary field.

On extended binary field GF(2m), Fermat’s Little Theo-
rem can be described by

x−1 = x2
m
−2
= x2(2

m−1
−1)

= x2(2
m−2
+...+21+20) (mod 2m). (1)

Considering the powering term 2m−2 + . . .+ 21 + 20, if m is
odd, it can be simplified as

2m−2 + . . .+ 20 = (2
m−1
2 −1 + . . .+ 20)(2

m−1
2 + 1) (2)

And if m is even, it will be

2m−2+. . .+ 20= 2(2m−3 + . . .+ 20)+ 1

= 2(2
m−2
2 −1 + . . .+ 20)(2

m−2
2 + 1)+ 1 (3)

In this manner, modular inversion over GF(2163) can be trans-
formed to

x−1= x2
163
−2
= x2(2

162
−1)

= x2(2
81
+1){2(240+1)(220+1)(210+1)(25+1)[2(22+1)(2+1)+1]+1} (4)

This technique shown by Eqn.(2)-(4) is called Itoh Tsujii
algorithm (ITA). In the algorithm, inversion operation over
GF(2m) can be simplified into two basic operations. The first
operation is to calculate x(2

n
+1)a when the input is xa, and

the second operation is to calculate x2a+1 when the input is xa

and x. The complex modular inversion operation can be done
by scheduling these two basic operations, which are different
combinations of two field operations modular multiplication
and modular powering. Therefore the performance of modu-
lar inversion unit mainly depends on modular multipliers and
modular powering units.

B. THE MONTGOMERY LADDER ALGORITHM
On a given elliptic curve, based on a base point P and an
integer k , the point multiplication process can be computed
by k times point additions, as Q = P+ P+ P++P = kP.
To enhance resistance to Side Channel Attacks (SCAs)

and be more friendly to hardware implementation, the Mont-
gomery Ladder, a commonly-applied point multiplication
algorithm for ECC is considered in this paper. Based on the
Montgomery Ladder, point multiplication can be transformed
into operations of point addition and point doubling. When
processing k , the Montgomery Ladder requires one point
addition and one point doubling whether ki is 0 or 1. This
unification against different patterns of k prevents the system
from the harm of Simple Power Attacks (SPAs), one form of
SCAs.

However, in affine coordinate system, point addition and
point doubling need one modular inversion operation each
time. Since modular inversion is the most time-consuming
operation among all basic operations, we transform the pro-
cess of point multiplication from affine coordinate system
to projective coordinate system. As a result, most modular
inversion operations are eliminated and there only leaves one
inversion at the end of the whole point multiplication process.
Meanwhile, during the Montgomery Ladder over projective
coordinate system, only calculation of X-coordinate (X and
Z) is a must and final value of Y-coordinate can be recov-
ered in the end. This special property makes the algorithm
more efficient to implement on hardware. Given two points
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TABLE 1. Complexity type and hardware resources of different multipliers over GF (2m).

Algorithm 1 6CC Montgomery Ladder Algorithm When
ki = 1
Require: P(X1,Z1),Q(X2,Z2), ki = 1 and ki+1
Ensure: Point Addition and Point Doubling

for i = t − 2 downto 0 do
if (ki+1 = 1) then
st1: Z1← X2Z1;A← Z2
st2: X1← X1Z2;Z2← A2;R2← A4;A← X2
else if (ki+1 = 0) then
st1: Z2← X1Z2;A← Z2
st2: X2← X2Z1;Z2← A2;R2← A4;A← X2
end if
st3: X2← bR2 + A4;R1← A2

st4: Z2← R1Z2;A← X1 + Z1
st5: X1← X1Z1;Z1← A2

st6: X1← xZ1 + X1
end for
conversion step for y

P1(X1,Y1,Z1) and P2(X2,Y2,Z2) on the elliptic curve, point
addition is P3 = P1 + P2. And value of P3 follows:X3 =
xP(X1Z2 + X2Z1)2 + X1X2Z1Z2 and Z3 = (X1Z2 + X2Z1)2.
Point doubling is P3 = 2P1, which follows X3 = X4

1 + bZ
4
1

and Z3 = X2
1Z

2
1 .

To better utilize hardware resources when implementing
the Montgomery Ladder, a hardware-based algorithm is pro-
posed by [22]. As is shown in Algorithm 1, it uses one
modular multiplier in six consecutive clock cycles to compute
one bit of k . Based on the relations shown above, we need
at least six multiplication operations to calculate P3. In this
algorithm, with one multiplier, six multiplication operations
are executed in six different clock cycles. Therefore, this
algorithm achieves the most efficient time utilization and the-
oretically the minimum number of computation clock cycles
for one multiplier. Moreover, from the Montgomery Ladder
Algorithm, operations for ki+1 = 0 and ki+1 = 1 are similar
in a way. Thus, some datapaths can be shared and others can
be built in the same way, which tremendously simplifies the
whole design.

III. DESIGN OF MODULAR MULTIPLIER
In the point multiplication architecture, more than 90%
hardware resources are consumed by modular multipliers.
In the meanwhile, modular multipliers also dominate the total
latency and processing speed. High-speed multipliers mostly
fall into the category of bit-parallel KOM and digit-serial full-
precision. On prime field, previous researches revealed KOM

is more balanced. One specific design [11] shows that the
modular reduction can be done along with the multiplication
in a KOM, to further reduce the resources. On binary field,
since modular reduction is simply XOR, there is no need
for sharing reduction with the design of multiplication. The
resource saving of KOM is not as efficient, so these two
multipliers each has appropriate applications. In this section,
we will first make comparison of the proposed multiplier and
the previous ones on binary field, and then present paralleliza-
tion of multipliers to implement a high-speed architecture.

A. PREVIOUS ARCHITECTURES OF MODULAR MULTIPLIER
As is mentioned in Sec.II.A, modular multiplication is similar
with normal multiplication. There are only two differences:
1) carry-free addition and 2) modular reduction. Let f (x) be
anm-degree irreducible polynomial and two operandsA(x) =∑m−1

i=0 aix i and B(x) =
∑m−1

i=0 bix i. A modular multiplication
denotes C(x) = A(x)B(x) mod f (x). Main complexity of this
procedure lies in polynomial multiplication, which is directly
shown as:

D(x) = A(x)B(x) =
2m−2∑
k=0

dkxk

where

dk =
∑
i+j=k

aibj, 0 ≤ i, j ≤ m− 1

Though the complexity of polynomial multiplication is
O(n2) [8], it is rather costly to implement this part directly,
especially when n is a large number such as 163, 283 or 571.
Thus, many previous works focused on optimizing the poly-
nomial multiplication to speed up modular multiplication.
Basically, there are two ways to design modular multi-

pliers: Karatsuba-Ofman multipliers (KOM) and quadratic
digit-serial full-precision multipliers and the comparison
between them is shown in Tab. 1. The KOM is a sub-
quadratic design which reduces the multiplicative complexity
of two n-digit numbers from O(n2) to at most O(nlog23)
by optimizing the algorithm of polynomial multiplication.
In quadratic full-precision multipliers, the logic levels are
reduced but the complexity remains O(n2). Since the number
of pipeline stages inserted in the multiplier is determined by
the proposed structure, it is only fair to compare these two
types of multipliers with the same number of pipeline stages.
In this case, the KOM multiplier trades reduced area with
worse critical path, while the full precision multiplier results
in less critical delay and increased area. In the theoretical
analysis of quadratic and subquadratic multipliers [22], [26],
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Algorithm 2 Algorithm of Balanced Full-Precision Multi-
plier
Require: m-bit a, m-bit b
Ensure: a ∗ b
Given a = a12m−2 + a2, b = b12m−2 + b2
Thus,
a ∗ b = (a12m−2 + a2) ∗ (b12m−2 + b2)
= a1 ∗ b1 ∗ 2m + (a2b1 + a1b2) ∗ 2m/2 + a2 ∗ b2

though quadratic multipliers costs 2.56 times more hardware
resources than the subquadratic ones, the quadratic multipli-
ers are two times faster. Therefore, in a speed-oriented design,
quadratic full-precision multipliers are considered as a better
choice.

Khan and Benaissa [22] proposed a segmented full-
precision multiplier which has quadratic complexity. How-
ever, the point multiplication architecture only performs well
on GF(2163) with one segmented full-precision multiplier at
the operating frequency of 228 MHz. In other cases, such
as on GF(2571) or with three multipliers working in parallel,
the frequency decreases by nearly half. In our design, we opti-
mize the critical path and propose a balanced full-precision
multiplier, with which our point multiplication architecture
maintains high operating frequency on different extended
binary fields.

B. PROPOSED BALANCED FULL-PRECISION
MULTIPLIER (BMUL)
The proposed balanced full-precision multiplier (BMUL)
consists of four segmented full-precision sub-multipliers
which are half the designated size of field multiplication. The
multiplication of two m-bit inputs can be done by using four
multiplications with the input size of m/2 bits when they are
organized as Algorithm 2:

Fig. 1 shows the architecture of the proposed BMUL,
and Fig. 2 shows the architecture of the four segmented
full-precision sub-multipliers implemented in the proposed
BMUL. An m-bit multiplicand a and a multiplier b are
divided equally into two (m/2)-bit inputs a1, a2, and b1,
b2 respectively. Each two of the four partitioned inputs are
then strobed to four segmented full-precision sub-multipliers
and after one pipelined stage, four partitioned multiplication
results are obtained. The results are then shifted, XORed
(added in extended binary field) and reduced to get final
modular multiplication result.

The proposed BMUL is partitioned based on the same
idea with Karatsuba multiplier, but the partitioning is merely
on the top level. Increasing the number of partition levels
and sharing sub-multipliers can reduce area, however it will
also increase the total latency. Meanwhile, another differ-
ence lies in the number of partitioned multipliers on one
partition level. In a normal Karatsuba multiplier, a1 and a2,
b1 and b2 are XORed and then strobed to the partitioned
multiplier. Consequently, the output of this multiplier is

FIGURE 1. The proposed architecture of balanced full-precision
multiplier (BMUL) with 4 half-sized segmented full-precision multipliers.

FIGURE 2. The architecture of segmented full-precision multiplier.

(a1+ a2) ∗ (b1+ b2) = a1 ∗ b2+ a2 ∗ b1+ a1 ∗ b1+ a2 ∗ b2,
while the outputs of the other two multipliers are a1 ∗ b1 and
a2∗b2. Then, after a simple XOR operation, a1∗b2+a2∗b1 is
obtained. It will then go through the SHIFT-and-XORmodule
with a1 ∗ b1 and a2 ∗ b2 to get the final result. This technique
can potentially eliminate one of the partitioned multipliers
and reduce area. However, the two more levels of XOR on the
input and output of the partitioned multipliers will become
two more levels of LUT in FPGA implementation which
results in a drop of frequency.

Therefore, the BMUL takes up similar area with full-
precision multiplier, and achieves higher frequency. More-
over, a potential advantage of BMUL is that it can work
as a reconfigurable multiplier with modular reduction units
for different extended binary fields. Four partitioned sub-
multipliers can serve as multipliers for another binary field.
For instance, if the main multiplier works on GF(2571),
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the partitioned multipliers can work on GF(2283). In a recon-
figurable ECC design, the multipliers of different binary
fields can be shared in this way. Since multiplier usually takes
up more than half of the area, an reconfigurable multiplier
can potentially reduce area and increase frequency, solve the
conflict between area and speed in a reconfigurable ECC
design.

The proposed BMUL has one pipeline stage inside, and
the outputs of multipliers are strobed back to its inputs.
This loop ensures that the placing of the registers inside the
multiplier will not affect the length of critical path. Therefore,
we place them where the combination logic is most complex,
so that it can simplify routing logic and eliminate unnecessary
influence on clock frequency.

C. THE PARALLELIZATION OF MODULAR MULTIPLIERS
Based on the 6CC algorithm (which requires only one multi-
plication each clock cycle), various recent designs focused
on proposing new implementation with only one modu-
lar multiplier [21], [22]. Despite their high clock frequency,
these designs suffer from the problem of excessive compu-
tational clock cycles, as a result of the algorithm itself. For
instance, on GF(2163), the total computational clock cycles
of the Montgomery Ladder is at least 6 × 163 = 978 clock
cycles, which does not include the clock cycles to do the final
coordinate transformation. Such speed becomes increasingly
incompetent for today’s encryption speed requirement.

One common way to increase speed at the cost of area is
parallelization. Compared with increasing the number of the
whole point multiplication architecture, increasing the num-
ber of multipliers can reduce the area of design by sharing
other operation modules. Consequently, the area of the design
will not double, while the latency drops by half, which results
in a faster, and more balanced performance.

In our research, the ideal number of parallel multipliers is
experimented to bring out the best performance. In order to
fully utilize multiplication resources, the number of multipli-
ers has to be a factor of 6 (which refers to 6CC algorithm),
leaving the options of 1, 2, 3 and 6 multipliers. Actually, six
multipliers cannot work simultaneously because six multipli-
cations in the 6CC algorithm have crossover data dependency.
Our research covers the other three options. Designs with one
multiplier are well-studied in recent years and suffer from
latency problems. On the bright side, the data dependency
can support up to two stages pipelines to be inserted in the
loop, cutting the critical path into three parts. These designs
usually have higher frequency than the others. Design with
three multipliers can reduce latency to almost 1/3. However,
the frequency becomes the limit of its speed. With only
one stage of pipeline breaking the critical path into two,
complex data dependency means more cascaded multiplexers
making the critical delay even longer. Design based on two
multipliers gather both virtues of frequency and latency. The
parallelization halves the number of clock cycles, and the
sharing of modules reduces the area from simply doubling.
Although data dependency of two multipliers can only allow

one pipeline to be inserted into the critical path, a mixed-
pipeline architecture can be implemented to further increase
frequency. Specifically, the most critical path is realized with
the least logic and cut in half, and other paths are built with
two pipeline stages. Results show that the mixed-pipeline
two-multiplier architecture can be even faster than a three-
multiplier architecture, and equally balanced to most one-
multiplier architectures.

IV. ARCHITECTURE OF POINT MULTIPLICATION
IMPLEMENTATION
In point multiplication, there are mainly two parts: the Mont-
gomery Ladder unit and modular inversion unit. Fig. 3 shows
the overall architecture of the proposed point multiplica-
tion design. Apart from combining the architecture of 3CC
Montgomery Ladder and modular inversion, an additional
modular adder and some extra DFFEs (D Flip Flops with
Enable signal) are implemented to finish extra calculation
required during final coordinate transformation. The Mont-
gomery Ladder unit is in charge of calculating point addition
and point doubling cyclically based on an input k and it will
output results in projective coordinate system. By modular
inversion unit, results in affine coordinate system can be
calculated in the end.

In this section, we first propose our novel 3CC Mont-
gomery Ladder algorithm and then analyze data dependency
in the algorithm. Based on the data dependency, the corre-
sponding data flow is designed which is illustrated in detail.
The data flow proves the feasibility of our novel 3CC Mont-
gomery Ladder architecture. From the data flow, a novel hard-
ware design is proposed and the mixed-pipeline architecture
is introduced to explain the key to frequency improvement.
Then, a novel high-speed architectures of modular inversion
is introduced with the improvement to previous modular
inversion architectures.

A. PROPOSED ARCHITECTURE WITH 3CC MONTGOMERY
LADDER ALGORITHM BASED ON TWO PARALLEL
MULTIPLIERS
1) THE 3CC MONTGOMERY LADDER
Based on the 6CC Montgomery Ladder in Section II.C,
the minimum number of clock cycles to process one bit of
the input k with two parallel multipliers is 3 clock cycles.
In 6CCMontgomery Ladder Algorithm, since there is no data
dependency between st1 and st2, st3 and st4, st5 and st6,
the multiplications can be distributed to two multipliers. The
proposed algorithm for two parallel multipliers is called 3CC
Montgomery Ladder, as is shown in Algorithm 3.

2) DATA DEPENDENCY OF THE 3CC MONTGOMERY LADDER
According to Algorithm 3, the difference in operation
between ki = 1 and ki = 0 mainly lies in the order of the
input. In other words, the algorithm for ki = 0 can be obtained
by exchanging the X1 and X2, Z1 and Z2 in the algorithm for
ki = 1. Therefore, data dependency can be divided into three
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FIGURE 3. Proposed point multiplication architecture including 3CC Montgomery Ladder unit and Modular inversion unit.

Algorithm 3 Proposed 3 CCMontgomery Ladder Algorithm
Require: P(X1,Z1),Q(X2,Z2), ki
Ensure: Point Addition and Point Doubling

for i = t − 2 downto 0 do
if (ki = 1) then
st1: Z1← X2Z1;X1← Z2X1
st2: X2← bZ4

2 + X
4
2 ;Z2← Z2

2X
2
2

st3: X1← X1Z1 + x(X1 + Z1)2;Z1← (X1 + Z1)2

else if (ki = 0) then
st1: Z2← X1Z2;X2← Z1X2
st2: X1← bZ4

1 + X
4
1 ;Z1← Z2

1X
2
1

st3: X2← X2Z2 + x(X2 + Z2)2;Z2← (X2 + Z2)2

end if
end for
conversion step for y

groups: data dependency of ki, data dependency between the
same ki and ki−1 and data dependency between different ki
and ki−1. Specific data dependency is as follows : for ki,

the input of st3 depends on the output of st1; between same
ki and ki−1, the input of st1 for ki−1 depends on the output
of st3 for ki, and the input of st2 for ki−1 depends on the
output of st2 for ki; between different ki and ki−1, the input of
st1 for ki−1 depends on the output of st2 for ki, and the input of
st2 for ki−1 depends on the output of st3 for ki. Among them,
the critical one is the dependency of st1 input for ki−1 on the
st3 output for ki, leaving only one clock cycle to finish the
operation. Therefore it is determined by the 3CC algorithm
that only one pipeline stage can be inserted in themost critical
data-path.

3) DATA FLOW
To better show how hardware units work orderly to fit with the
3CC Montgomery Ladder Algorithm, data flow of the whole
architecture will be elaborated in this subsection.

The data flow, which is related to both ki and ki−1, consists
of four different situations, ki = 0 and ki−1 = 0, ki = 1
and ki−1 = 1, ki = 1 and ki−1 = 0, ki = 0 and ki−1 = 1.
Since the difference between ki = 1 and ki = 0 is merely an
exchange of X1 and X2, as well as Z1 and Z2, we will only
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FIGURE 4. Data flow of ki = ki−1 = 1.

FIGURE 5. Data flow of ki = 0 and ki−1 = 1.

discuss the data flow in one case (ki−1 = 1), and the data
flow when ki−1 = 0 can be easily obtained by exchanging
the input. The situations of ki = 1 while ki−1 = 1, and ki = 0
while ki−1 = 1 are shown respectively, in Fig. 4 and Fig. 5.
It can be gathered from the figure that the two displayed

situations are completely unified against potential SPAs.
A control unit is responsible for selecting each MUX and
enabling the DFFEs to store the intermediate computation
results. By sharing of states in different situations of ki and
ki−1, the control unit is also simplified to save area.

4) PROPOSED ARCHITECTURE OF MONTGOMERY LADDER
Based on the data flow of 3CC Montgomery Ladder,
we present the architecture as is shown in Fig. 6. Twomodular

FIGURE 6. Proposed architecture of 3CC Montgomery Ladder.

squaring units (SQR in Fig. 6), three modular 22th powering
units (QUA in Fig. 6), one modular addition unit and two
balanced full-precision multipliers are included. Compared
to the one-multiplier implementation [22] which utilizes one
modular squaring unit, one modular 22th powering unit,
two modular addition units and one full-precision multiplier,
the proposed architecture doubles the number of multipli-
ers and modular square units, implements more than twice
the number of 22th power unit, and reduces the number of
modular adder, so the area of the main operation units is less
than twice of the one-multiplier design. Furthermore, the 3CC
algorithm introduces less routing logic, resulting in an extra
drop in area.

A novel mixed-pipeline architecture is implemented in the
proposed design as the key factor of frequency increase. The
architecture takes advantage of the special data dependency
of the 3CC Montgomery Ladder. Only the most critical data
path (the red path in 8) is designed to be one-stage-pipelined,
while the other paths are two-stage-pipelined. The logic on
the critical path is reduced. For instance, the modular adder
is duplicated to be implement individually so that the MUX
before adder will not be on the critical path, and the fan-out
of the adder is reduced to improve timing. Since modular
adder is merely m-bit XORs on GF(2m), the area increment
is negligible, while the timing improvement is critical. The
critical path delay is reduced to the delay of MUX, modu-
lar adder, plus the delay of modular multiplier. Specifically,
critical path = t4−1 mux + tadd + tmul .

B. ARCHITECTURE OF MODULAR INVERSION
Compared to other basic operations in extended binary
fields, modular inversion is a very costly operation. Fortu-
nately, based on Fermat’s Little Theorem, ITA can finish the
modular inversion operation through modular multiplication
and modular powering, which makes it easier for hardware
implementation.
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FIGURE 7. Common modular inversion architecture.

The former works mainly aimed at either low latency or
low area. In pursuit of low area, cascaded modular 2nth
powering units are used to reduce the complexity, and hybrid
Karatsuba multiplier is used to reduce area in [28]. Parallel
cascades of squaring units and square-root units are used to
reduce area utilization in [29]. In pursuit of low latency, 2n

units of combinational logic are used to speed up the calcu-
lation of powering at a large cost of area, which reaches the
minimum theoretical clock cycles of one operation in [30].
A tree-structure-k-times squarer block is implemented in the
ITA structure to achieve high clock frequency in [27].

However, none of the above architectures is suitable to
implement in a complete point multiplication process. Since
the inversion unit has to share multiplier with the Mont-
gomery Ladder unit to reduce area, modular inversion unit
and the Montgomery Ladder unit have to work at the same
frequency. In other words, area, computational clock cycles
as well as operating frequency need to be optimized at the
same time.

To implement ITA, a common architecture is used as
shown in Fig. 7. The differences of existing designs mainly
lie in powering units, design of multiplier and pipeline stages
inserted in the loop. In our case, since the modular multiplier
is shared by the whole design, the extra area brought by
modular inversion depends on the modular powering units.
According to [31], if we simplify the modular powering
units into XOR gate arrays, the area of modular powering
grows exponentially as powering number increases. There-
fore, elimination of higher powering units can effectively
reduce the area. However, higher powering operations can
only be achieved by reusing lower powering units for several
clock cycles. The implementation area is reduced by compen-
sating with clock cycles. For instance, in GF(2163), the mod-
ular powering units required to finish modular inversion in
the minimum clock cycles are squaring, 22th powering, 25th
powering, 210th powering, 220th powering, 240th powering

Algorithm 4 Hardware ITA Algorithm
Require: x
Ensure: z = x−1

st1 :z← x2 (squaring unit in GF(2163))
st2 :y← x • z (multiplication in GF(2163))
st3 :z← y2

2
(22 unit in GF(2163))

st4 :y← y • z (multiplication in GF(2163))
st5 :z← y2 (squaring unit in GF(2163))
st6 :y← x • z (multiplication in GF(2163))
st7 :z← y2

5
(25 unit in GF(2163))

st8 :y← y • z (multiplication in GF(2163))
st9 :z← y2

10
(25 unit in GF(2163) for 2 clock cycles)

st10:y← y • z (multiplication in GF(2163))
st11:z← y2

20
(25 unit in GF(2163) for 4 clock cycles)

st12:y← y • z (multiplication in GF(2163))
st13:z← y2

40
(25 unit in GF(2163) for 8 clock cycles)

st14:y← y • z (multiplication in GF(2163))
st15:z← y2 (squaring unit in GF(2163))
st16:y← x • z (multiplication in GF(2163))
st17:z← y2

81
(25 unit in GF(2163) for 16 clock cycles)

st18:y← y • z (multiplication in GF(2163))
st19:z← y2 (squaring unit in GF(2163))
return z;

and 281th powering. If 281th powering unit is excluded, 281th
powering operation has to be replaced by going through 240th
powering unit twice (modular squaring can be attached to
the output of 240th powering unit to reduce one clock cycle).
In total, the latency increases by one clock cycle, while the
area drops massively. If 240th powering unit is also excluded,
the total latency increases by five clock cycles, while the area
drops more than 50%. These two modifications seem hostile
to latency, but it is very beneficial to optimize the critical path
as well as reduce area. In fact, if both 240th powering and
281th powering are eliminated, the critical path will be much
shorter which is close to the critical path of the Montgomery
Ladder. If they are reserved, three to four pipeline stages
must be added to separate the complex combination logic,
which will result in three to four times latency and more area
consumption.

Fig. 8 elaborates the proposed architecture for modular
inversion in point multiplication, and Algorithm 4 shows
the corresponding hardware algorithm (for data path con-
trolling). With a full consideration on timing, latency, and
area, we choose to reserve modular squaring unit, 22th pow-
ering unit and 25th powering unit. Several pipeline stages are
inserted as shown to make sure the critical path of modular
inversion unit is close to that of the Montgomery Ladder (It
is predictable that more stages are required if more powering
units are reserved.). The total area of the powering units is
less than 1000 LUTs, which is nearly negligible to the whole
design. Although the latency increases to nearly 50 cycles by
the elimination of higher powering units, the latency cost is
bearable. As is discussed in Section II.B, in a whole point
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FIGURE 8. Proposed architecture of modular inversion in point
multiplication.

multiplication process, modular inversion is only used once,
at the coordinate transformation stage after the Montgomery
Ladder. For example in GF(2163), modular inversion takes
up to 52 clock cycles. Compared to 489 clock cycles that
the Montgomery Ladder costs, the additional clock cycles
brought by inversion is nearly negligible, and is worthy to
trade apparent improvement on frequency and area consump-
tion. Our design of modular inversion is also a key factor to
the outstanding overall performance.

C. LATENCY CALCULATION
The whole process of one point multiplication is to first cal-
culate theMontgomery Ladder and get the result in projective
coordinate X and Z . Since yp is not used in this process,
an extra coordinate transformation is needed to recover Y
based on X and Z . In an ECC encryption system, point
addition is always connected to the output of point multipli-
cation. In this case, there is no need to transform to the affine
coordinate system, since all point operations can be done
in the projective coordinate system. The affine coordinate is
only required when the key is transmitted, in which case only
affine coordinate x is needed. Therefore the point multiplica-
tion unit should support the output of projective coordinate
X , Y , Z , and affine coordinate x. As a result, the latency
of the proposed architecture is comprised of three parts,
the Montgomery Ladder, the coordinate transformation and
one modular inversion to obtain x. The Montgomery Ladder
takes 3 cycles per bit of input k , the total number of clock
cycles is 3∗163 = 489 clock cycles. The coordinate transfor-
mation consists of 10 multiplications. With two parallel mul-
tipliers, we managed to reduce it to 6 clock cycles. Due to the
special architecture of modular inversion to improve timing,
calculating modular squaring as well as 22th powering needs
2 clock cycles respectively and 25th powering needs 3 clock
cycles. Higher order powering operations are implemented by

applying lower order powering units iteratively. Thus, latency
for 210th powering, 220th powering, 240th powering and 281th
powering are 4 clock cycles, 6 clock cycles, 10 clock cycles
and 18 clock cycles. Therefore according to Algorithm 4,
the total delay of modular division (modular inversion with
an multiplication) is 4 ∗ 2 (squaring) + 2 (22th powering) +
3+4+6+10+18+1 (multiplication)= 52 clock cycles. The
total latency of point multiplication is 489 + 6 + 52 = 547
clock cycles, which is the worst-case latency. When only
projective coordinate is required, the modular inversion can
be bypassed and 52 clock cycles can be reduced, leaving only
495 clock cycles required to finish the point multiplication
operation.

V. IMPLEMENTATION RESULTS AND COMPARISONS
The proposed architecture is implemented on Xilinx Virtex-
5 and Virtex-7 platform by Synplify 2018. Although the pro-
posed architecture is feasible on all binary fields over Koblitz
curve, only GF(2571) and GF(2163) are implemented to reflect
universality since they are the two NIST-recommended
GF(2m) with the longest and the shortest bit length of m.
The implementation results are shown in Tab. 2 and Tab. 3.
The performances of different designs are evaluated by the
product of implementation area (LUT number) and latency
(number of clock cycles * period). Since our design is speed-
oriented, latency and performance are key factors of the
comparison.

The proposed design on GF(2163) reaches the frequency
of 211 MHz, and finishes one operation in 2.6 µs (547 clock
cycles) at the cost of 29309 LUTs on Virtex-5. The same
design reaches frequency of 320.5 MHz, and latency of 1.7
µs at the cost of 28911 LUTs on Virtex-7. Tab. 2 lists all
existing designs on GF(2163) in recent years, which aimed at
realizing high-speed point multiplication operation. Among
all published designs onVirtex-5 andVirtex-7, total latency of
the proposed design is state-of-the-art. Meanwhile, the imple-
mentation achieves a relatively balanced performance, with
high frequency, low latency and acceptable area cost. Conse-
quently, it is especially suitable for high speed ECC applica-
tions.

Compared to [32], our design takes about 1/8 number of
clock cycles under the frequency of 0.7 times of their design,
achieving approximately 5.4 times speed, with comparable
performance on Virtex-5. On Virtex-7, the frequency of the
proposed design is improved to 0.8 times of their design,
which leads to 6.2 times speed. The structure of two 55-bit
modular multipliers proposed in [33] results in 40% less area
than our proposed architecture on Virtex-5. As for latency,
it takes six times clock cycles under 20% higher frequency,
therefore it needs five times latency than the proposed design.
The structure with one 163-bit multiplier was implemented
in [12], [34], and [35] to finish the point multiplication oper-
ation. Since the multiplier dominates the area of the design,
and their number of multipliers is half of ours, their designs
cost fewer hardware resources. But their total latencies are
4.2, 3.65, and 3.3 times longer than the proposed design, as a
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TABLE 2. FPGA implementation result on GF (2163).

TABLE 3. FPGA implementation result on GF (2571).

result of excessive number of clock cycles and long critical
path. Compared to [20], our design is 26% higher in area, but
the number of clock cycles is only 40%, leading to 2.1 times
speed and 66% better performance.

The architecture proposed by [36] is most similar to our
design, based on two parallel multipliers. Compared to them,
we have twomajor novelty. First, the algorithm of two parallel
multipliers is optimized from 4CC Montgomery Ladder to
3CCMontgomery Ladder, resulting in 30% less clock cycles.
Second, the proposed design of balanced full-precision mul-
tiplier and mixed-pipeline architecture leads to only half of
critical path of [36]. The total latency is only half of theirs and
the performance is nearly two times on Virtex-5 and Virtex-7.
Compared to [21], the proposed design takes up three times
area and 61% less clock cycles, at the similar frequency. The
performance is 42% worse than [21], while the computation
speed is 77% higher. There are two architectures proposed
in [22] and one aims at high performance while the other aims
at low latency. Compared to HPECC in [22], the frequency
is the same while the number of clock cycles half and area
less than twice on Virtex-5, therefore the performance of our
design is more balanced. Compared to LLECC [22], a three-
multiplier design, the area of our design is 30% less, number
of clock cycles is 25% more, but the frequency is twice
on Virtex-5. In other words, our proposed design with only
two multipliers is smaller and actually faster than the design
with three parallel multipliers. On Virtex-7, the gap is even
larger as the area of our design is improved to 42% less. The
result shows that our design with only two multipliers is 53%

faster than LLECC on Virtex-5 and 66% faster on Virtex-7.
Conceivably, the proposed architecture is not only balanced
in overall performance, but also reaches lower latency than
all previous designs.

Since larger field gets better security, it is predictable
that more and more applications such as network servers
are going to turn to larger fields gradually. Therefore, it is
crucial to keep the frequency of the architecture consistently
high through different fields. However, most designs can-
not maintain high frequency when it comes to larger fields,
making them less practical in real-world applications than
lab experiments. Tab. 3 shows the comparisons on GF(2571)
on Virtex-5 and Virtex-7. The proposed architecture can
still reach high frequency on GF(2571), and the number of
computation clock cycles is 1813. On Virtex-5, it achieves
186 MHz, 284600 LUTs, and the latency of 9.74 µs; On
Virtex-7, it achieves 267MHz, 290001 LUTs, and the latency
of 6.79 µs. Since two parallel multipliers are implemented,
the area of our design is higher, but the speed and overall
performance remain high.

Compared to [21], even the design with the best perfor-
mance and fastest speed is 31.7% lower than our proposed
design in frequency, and 156% higher in number of clock
cycles on Virtex-5. Although its area is only 25%, our speed
is more than four times theirs, and the frequency is higher.
In terms of the results of both GF(2163) and GF(2571), [21]
has excellent overall performance on 163-bit platform, with
high frequency and low area, but when it comes to 571-bit
platform, the frequency drops more than half. It is therefore
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proven that [21] is more suitable for smaller fields with less
security. On the contrary, our implementation on 571-bit
platform only suffers an acceptable frequency drop of 10%
to 15%, indicating that the proposed design is less sensi-
tive to the growth of field size. The result of another high-
performance design [22], is only half on area, but twice on
clock cycles and 40% on frequency. Its overall computation
time (or latency) is five times of the proposed design and the
performance is 144%better than the proposed design. In other
words, we use twice the area to trade 5 times speed and end up
with a much better performance. Furthermore, the proposed
design also has the potential of being reconfigurable, for the
balanced full-precision multiplier can support dual-field with
minor alterations. Reconfigurable architecture can reuse the
area resources in different field, and compensate for the extra
area cost.

In general, on Virtex-5 and Virtex-7, the proposed design
achieves state-of-the-art latency compared to all exiting
design on GF(2571) and GF(2163). Since the proposed design
contains two multipliers working in parallel to speed up
point multiplication, the area is larger than designs with
one multiplier or shared hardware resources [21], [32] and
HPECC in [22]. However, extra area cost leads to a huge
improvement in latency; meanwhile, the performance of the
proposed design is among the top. Compared with other
speed-oriented designs, the proposed design is the best from
the points of total latency, performance as well as high-speed
consistence in different fields. It is obviously concluded that
the proposed speed-oriented design is significant for high-
speed applications.

VI. CONCLUSION AND FUTURE WORK
This paper introduces a novel high-speed point multiplication
architecture for ECC on extended binary fields. The architec-
ture is comprised of two parallel balanced full-precision mul-
tipliers to greatly reduce operational latency. An improved
algorithm of the Montgomery Ladder is proposed to best
utilize the parallel multipliers. And the modular inversion
architecture is studied and optimized to improve the per-
formance of the whole architecture of point multiplication.
To verify the universality of the design, it is implemented
on the smallest and the largest NIST-recommended extended
binary fields. The FPGA implementation results based on
Xilinx Virtex-5 and Xilinx Virtex-7 show that the proposed
speed-orietend design achieves the highest speed and lowest
latency, which outperforms all of existing works. Since the
multiplier and its segments work in different bit-length which
refer to different fields, the proposed architecture can also be
upgraded to a reconfigurable design to support multiple-field
point multiplication in the future.
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