
Received February 2, 2019, accepted February 22, 2019, date of publication March 5, 2019, date of current version May 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2903195

When Road Information Meets Data Mining:
Precision Detection for Heading
and Width of Roads
XUN ZHOU1, XUELIAN CAI 1, YUEHANG BU1, XI ZHENG 2, JIONG JIN 3, (Member, IEEE),
TOM H. LUAN 4, AND CHANGLE LI 1, (Senior Member, IEEE)
1State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
2Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
3School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
4School of Cyber Engineering, Xidian University, Xi’an 710071, China

Corresponding author: Xuelian Cai (xlcai@mail.xidian.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant U1801266 and Grant 61571350, and in
part by the Key Research and Development Program of Shaanxi under Contract 2017KW-004, Contract 2017ZDXM-GY-022,
Contract 2018ZDXM-GY-038, and Contract 2018ZDCXL-GY-04-02.

ABSTRACT Real-time road information plays a crucial role in enabling intelligent transportation sys-
tems (ITS) applications. With sufficient road information, the map of road topography can be built and
updated more easily. Furthermore, many appealing ITS applications can be enabled accordingly. Aiming
at improving the quality and update rate of road information, a hot topic today is how to mine information
from global positioning systems (GPS) trajectories by the clustering-basedmethods. Such schemes, however,
encounter two challenges: 1) GPS noise and 2) low sampling rate of GPS traces data. As a result, it is
difficult to infer road information from these irregular clusters. To tackle the above issues, we directly mine
useful road information, heading, and width of roads, for ITS applications from GPS point cloud, i.e., a
set of GPS points. First, the distribution of GPS points is discussed and the least squares method (LSM)
is demonstrated to be outstanding for mining the heading of the road under a huge number of GPS points.
Second, the weighted approximation least squares method is proposed to improve the accuracy of the LSM.
Furthermore, combining with relevant distribution features in GPS points, the data distribution variance-road
width discretemodel is proposed tomine roadwidth fromGPS point cloud. Finally, using real-world datasets,
we demonstrate that these proposed methods can achieve satisfactory performance in practice.

INDEX TERMS Intelligent transportation systems, road information, GPS data, data mining.

I. INTRODUCTION
Road information is one of the most important resources for
intelligent transportation systems (ITS), such as autonomous
driving [1], navigation [2], [3] and traffic management
[4]–[7]. For instance, Gelso and Sjoberg et al. [8] combine
road information with traffic data to generate a consistent
threat assessment in rear-end near-crashes, which is useful
for promoting Collision Avoidance Systems in autonomous
driving. Moreover, Liu and Zhang et al. [9] propose an
instantaneous optimization method based on the recognition
of traffic conditions from road information. This method
can improve navigation systems of hybrid electric vehicles.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhong-Ke Gao.

Chen et al. [10] apply a clustering-basedmethod to mine road
information from GPS data, aiming to reconstruct accurate
digital maps for autonomous driving. Therefore, aiming to
popularize intelligent transportation systems, it is necessary
to improve data accuracy and timeliness of road information.

Traditionally, this crucial road information is obtained
through ground measurement [11]. It means moving devices
equipped with sensors and visual systems are used to collect
original information of road segments. This ground measure-
ment is regarded as a time-consuming and expensive method.
Recent years, with the research on ad hoc network, various
individual mobile devices, such as unmanned aerial vehicles
and robots [12], can collect road information simultaneously
and share it with each other in this network. This way is
effective to improve the collection rate for road information.
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FIGURE 1. Mining road information from GPS point cloud. (a) Raw GPS point cloud. (b) Mined road line and distribution of GPS points.
(c) Inferred heading and width of roads.

However, the downside of it is that devices with high-quality
sensors, reliable communication systems and a large number
of infrastructures are demanded, which greatly increases cost
for road information collection.

With wide use of Global Positioning Systems (GPS),
a large amount of data about mobile terminal locations and
states can be collected and uploaded timely [13], [14]. Com-
pared with information obtained by special devices, such as
vehicles equipped with visual systems and unmanned aerial
vehicles, acquisition of GPS data is low-cost and even some
open databases of GPS data are free [15], [16]. In addition,
GPS data are updated frequently with a refresh cycle every
several minutes or even every few dozens of seconds, which
is beneficial for updating road information timely.

Considering these advantages of GPS data mentioned
above, the paper [17] proposes a clustering-based framework
that mines road information from GPS traces. By clustering
similar vehicular trajectories, this work successfully obtains
road structure. The paper [18] carefully divides this frame-
work in [17] into three steps, i.e., clustering, linking and
smoothing. To be specific, in the clustering procedure, GPS
traces which are similar in heading and position are combined
together, trying to generate cluster centres. In the second
step, these cluster centres are linked in order to reconstruct a
geometric construction of the road. Finally, in the smoothing
step, remaining refinedwork is completed, such as generating
arcs and intersections between adjacent road segments. These
clustering-based methods reduce the cost of collecting and
updating road information in real-time.

However, for these clustering-basedmethods, there are two
challenges: 1) GPS noise; and 2) the low sampling rate of GPS
traces data, that impact the reliability of these methods. For
example, GSP noise results in the collected GPS data being
far from their actual locations and even being not on roads.

Also, the low sampling rate leads to temporal uncertainties,
because the line between two logged locations is too long to
be matched with the real route. These two factors seriously
limit use of the clustering-based methods.

In this paper, the problem about collecting road informa-
tion can be defined as how to transform a set of raw GPS
data to useful road parameters (in Fig. 1). Considering the
aforementioned low sampling rate of GPS traces, we mine
road information, heading and width of roads, from GPS
point cloud, i.e., a set of GPS points including instantaneous
locations of devices (in Fig. 1(a)). To be specific, by analysing
the Gaussion distribution of GPS points, the least squares
method (LSM) is demonstrated to be effective to mine the
heading of the road line under a huge number of GPS points
(in Fig. 1(b)). Furthermore, the weighted approximation least
squares method (WALSM) is applied to improve the accuracy
of the LSM under realistic datasets, and the Data Distribution
Variance - Road Width Discrete Model (DV-RWDM) is pro-
posed to discover correlation between the road width and the
variance of GPS points to mine the road width (in Fig. 1(c)).
The real-world GPS data collected by Taiwan, China gov-
ernment from local buses are applied to verify our models.
In order to ensure road information can be obtained and
updated in real time, execution time of these mining models
is 15s (more details of GPS data is in Section IV, Part A).
In summary, our contributions in this paper are as follows:

1) The performance of LSM on mining the heading of
the road is analysed, then a WALSM is proposed to
improve its accuracy.

2) A DV-RWDM is proposed to mine the width of the
corresponding road by correlating the variance of GPS
points and the width of the road.

3) The performance of our proposed solutions is verified
by using the real-world GPS data.
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The rest of this paper is organized as follows. In Section II,
we introduce background and relevant work. Thenwe analyse
our data mining models in details in Section III. In Section IV,
we conduct simulation experiments to evaluate our data min-
ing methods. The conclusion is in Section V.

The notations used are summarized in Table 1.

TABLE 1. Main notations.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND
1) ROAD INFORMATION
Information about curvature, elevation, width, position, and
heading of roads has received much attention in the con-
text of civil engineering as well as for appealing ITS
applications [10], [13], [19]. To illustrate, for autonomous
driving and navigation, travel direction of moving devices
should be consistent with the heading of the road to ensure
them safely driving and reaching destinations. Furthermore,
the accurate width of the road can support prediction of traffic
flow and congestion in short-time.

2) 2D COORDINATES
In order to apply appropriate methodologies to research, a 2D
coordinates-(longitude, latitude) is established to describe
road information. For example, in this 2D coordinates,
the heading of the road is defined as the angle between this
road line and longitude-axis (in Fig. 1(c)). For other example,
GPS points are the results of GPS data projected on this 2D
coordinates and each GPS point includes the instantaneous
information of the mobile unit, such as latitude, longitude and
speed. These dense GPS points construct unstructured GPS
point cloud.

3) ROAD CENTERLINE
In much literature, the road centerline is discussed frequently.
The reason is that lanes on the road are often seen as parallel,
so from the road centerline, information, such as curvature,
elevation, position, and heading of the road can be extracted.

Furthermore, combining with the road width, the structure of
this road can be recognized completely.

B. RELATED WORK
Mining road information from raw GPS data aims to replace
traditional labour-intensive ways for collecting and updat-
ing this information. However, two challenges mentioned
above restrain applications of the clustering-based methods
seriously.

To overcome the challenge of the low sampling rate of
GPS traces, existing work focuses on directly mining road
information from GPS point cloud. The paper [19] proposes
the Spatial-Linear Cluster (SLC) algorithm to obtain a long
and thin cluster from the entire set of GPS points and applies
a geometric approach to estimate road segments from each
cluster. As for the paper, Chen et al. [10] attempt to cluster
the unstructured GPS point cloud in the area around road
centerline and link these cluster centres to recognize the struc-
ture of the road segment. Then with prior knowledge on road
design, the up-to-date map can be automatically obtained.
Corresponding experimental results show these two methods
can reconstruct more accurate road information than those
methods based on GPS traces.

In contrast to clustering-based methods, aiming to resist
GPS noise, another kind of data-driven models is based
on the distribution features of GPS data to mine road
information. GPS noise is often seen as Gaussian noise
in much literature, thus the distribution of GPS points
is considered as Gaussian distribution [20]. For instance,
the paper [11] proposes to apply the LSM to fit the center-
line of road segments, because this method is inspired to
fit traces from scattered points under Gaussian noise. In the
2D coordinates-(longitude, latitude), this road centerline can
show the detail information, position and heading, of the
road. For other example, the paper [21] models the spread of
these GPS traces as a Gaussian distribution. It is beneficial
for researchers to explore the width of the road from the
distribution of theseGPS traces. In summary, by analysing the
random distribution of GPS data, these methods mentioned
above can establish the relationship between road information
and fixed parameters of the random distribution, such as
variance.

Inspired by these seminal works mentioned above, in the
paper, we devote to mine the road information, heading and
width of roads, from raw GPS point data. To be special,
the LSM is demonstrated to be effective to mine the heading
of the road at first. However, due to the system error in GPS
data, the LSM is hard to estimate the accurate position of
the road centerline. Then, a WALSM is applied to improve
the accuracy of the LSM. Finally, DV-RWDM is proposed to
estimate the road width and effectively enrich the information
mined from raw GPS data.

III. OUR DATA MINING MODELS
In this part, the 2D coordinates-(longitude, latitude) is
applied to analyse GPS data and mine extra infor-
mation. Moreover, according to related work [20], [21],
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FIGURE 2. Mining road information by LSM. (a) Distribution of raw GPS
points. (b) Result from LSM.

the distribution ofGPS points is seen asGaussian distribution.
The details about GPS data are in the Section IV part A
and relevant statistical method is also applied to verify their
Gaussian distribution.

A. THE LEAST SQUARES METHOD AND
GAUSSIAN DISTRIBUTION
In the 2D coordinates, let x-axis denotes longitude and y-axis
denotes latitude, the centerline of the road segment can be
defined as the linear function (1),

y = a0 ∗ x + b0, (1)

where slope a0 and intercept b0 define the heading and the
position of the road centerline respectively (though the curve
road segment may be a complex function, it can be shown as a
combination of several linear segments by linking neighbour
intersections with linear edges [17]). In much literature these
GPS points present Gaussian distribution around the center-
line of the road (in Fig. 2(a)), which means as (2) and (3),

li =
a0 ∗ xi + b0 − yi√

a02 + 1
, (2)

p(li) =
1

η
√
2π

exp(−
1
2
(
li − α
η

)2), (3)

where xi and yi denote the longitude and latitude of the ith
GPS point, (xi, yi), in the data set. In addition, li denotes
the perpendicular distance between point (xi, yi) and the road
centerline. (3) means that these GPS points around the road
centerline following Gaussian distribution l ∼ N

(
α, η2

)
.

Gaussian distribution is leaded by random error in GPS data
and bias α is contributed by system error in GPS.

In (2) the
√
a02 + 1 is constant for each point (xi, yi),

and we define variable l ′i = li ∗
√
a02 + 1. Therefore, l ′ ∼

N
(
f (α), η′2

)
where f (α) = α ∗

√
a02 + 1. From the point

view of probability theory, the maximum likelihood estima-
tion for parameters (a0, b0) can be inferred as follows:

(a0′, b0′) = argmax
(a,b)

(ln
n∏
i=1

1

η′
√
2π

exp(−
1
2
(
l ′i−f (α)

η′
)2))

= argmax
(a,b)

(−
1

2η′2

n∑
i=1

(l ′i − f (α))
2
−n ln η′

√
2π ),

(4)

where n is number of GPS point samples and (a0′, b0′) is the
maximum likelihood estimation result for (a0, b0) from the n
samples. Considering l ′i = a ∗ xi + b− yi, the (a0′, b0′) can
be estimated from (5),

(a0′, b0′) = argmin
(a,b)

(
n∑
i=1

(l ′i − f (α))
2)

= argmin
(a,b)

(
n∑
i=1

(a ∗ xi + (b− f (α))− yi)2). (5)

However, corresponding estimation for (a0, b0) under LSM
is shown as (6)

(A0′,B0′) = arg min
(A,B)

(
n∑
i=1

(A ∗ xi + B− yi)2), (6)

where A0′ = a0′ and B0′ = b0′ − f (α). It means LSM can be
used to fit the heading of the road centerline a0, and however,
the position of the estimation road centerline under LSM has
bias f (α) with maximum likelihood estimation position b0′.
In other word, LSM only can be used to fit the parallel line
y = a0 ∗ x + b0 − f (α), because GPS points are really
distributed with this line forN

(
0, η′2

)
(in Fig. 2(b)). This bias

α is from system error in GPS.
According to the law of large numbers, only when the

number of samples tends to be a very large number or to
be infinite, the result of maximum likelihood estimation will
coincide with the real result. Therefore, the estimation head-
ing of the road centerline A0′ from the LSM only gradually
approximates to the real heading of the road centerline a0 with
the number of GPS point samples increasing.

B. WEIGHTED APPROXIMATION
LEAST SQUARES METHOD
When the number of GPS points tends to be infinite, under the
law of larger numbers, the maximum likelihood estimation
distribution of these GPS points coincides with their real
Gaussian distribution. In other words, the estimation A0′

from the LSM coincides with the heading a0 of the real
road centerline under this situation. However, the amount of
data is insufficient to meet this condition in the real world.
Therefore, improvements should be required for the LSM.

First of all, the influence from these GPS points for the
estimated result in (6) is analysed. Under the gradient descent
method, the calculating process of (6) can be shown as its
partial derivative in (7) and (8),

f (A,B)
∂A

=

n∑
i=1

xi(A ∗ xi + B− yi) = 0, (7)

f (A,B)
∂B

=

n∑
i=1

(A ∗ xi + B− yi) = 0, (8)

where the (A0′,B0′) are unique determined by the (7) and (8)
meeting the requirement in (6). It means that starting from any
initial value (A,B), the unique parameters (A0′,B0′) which
corresponds to the minimum value in (6) can be obtained in

60402 VOLUME 7, 2019



X. Zhou et al.: When Road Information Meets Data Mining: Precision Detection for Heading and Width of Roads

finite time by the gradient descent. In addition, if the (a0, b0−
f (α)) is assumed as the initial value of (A,B), it is unable to
meet the (7) and (8), since there are differences between the
maximum likelihood estimation and real results. Its updated
parameters are shown as,

A0′ = a0 −
n∑
i=1

xi(a0 ∗ xi + (b0 − f (α))− yi), (9)

B0′ = b0 −
n∑
i=1

(a0 ∗ xi + (b0 − f (α))− yi), (10)

which also denotes differences between real results and esti-
mation results. In (9), xi denotes the longitude and the content
in parentheses denotes the distance Li′ between GPS point
(xi, yi) and the parallel line (a0, b0 − f (α)). When this GPS
point (xi, yi) with a distance Li′, which can find a symmet-
ric point (xi, yi′) with distance −Li′, it cannot contribute
update for parameter (A0′,B0′). However, in the realistic
finite datasets when a point with large distance appears, it is
hard to find its symmetric point and easy for this point to
contribute a large error for the estimation result.

Then, in order to reduce the differences between real
results andmaximum likelihood estimation, a weighted factor
ωi = 2/(1+ exp(L2i /2σ )) is used to update locations of GPS
point i by the (11) and (12),

xi := xi + I (a0)(1− ωi) ∗ Li ∗ sin(arc(a0)), (11)

yi := yi − I (a0)(1− ωi) ∗ Li ∗ cos(arc(a0)), (12)

where Li is the perpendicular distance between the point
(xi, yi) and the initial parallel line (a0, b0 − f (α)), and I (a0)
denotes that if a0 is greater than 0, the I (a0) is 1, otherwise,
I (a0) is -1. The σ is an hyper-parameter which is related to
the learning rate. Actually, the (11) and (12) reduce the per-
pendicular distance between the point (xi, yi) and the parallel
line (a0, b0−f (α)) toωi∗Li. The weighted factorωi is chosen
from the view that its value is approximately equal to 1 when
Li is relatively small, and its value is approximately equal
to zero when Li is relatively large. Due to the factor ωi is
only related with attribute Li, if the corresponding symmetric
points (xi, yi′) and (xi, yi) can be matched, they cannot update
the parameters (A,B). As for the remaining points, with the
distance Li increasing, the factor ωi is increasing to reduce its
influence.

Finally, this improved LSM is named Weighted Approx-
imation Least Squares Method (WALSM) whose process is
shown in Fig. 3, and its pseudocode is shown in Algorithm 1.

The input dataset D includes m GPS points collected from
the corresponding road segment. The related parameters,
learning rate σ and threshold value DISthreshold , are input
at first. Parameter n denotes the iteration times. The func-
tion L(•) denotes using the LSM to calculate parameters
(an, bn) from m samples. The function distancen(•) denotes
the method in (2) which calculates the distance for GPS point
samples with line (an, bn). Firstly, the LSM is used to estimate
the initial road line (a1, b1) as benchmark and calculate the

FIGURE 3. Mining the road heading by WALSM. (a) Initialization for
WALSM. (b) The Second turn for WALSM. (c) The final turn for WALSM.

Algorithm 1 Weighted Approximation Least Squares
Method
1: Input: (1) GPS points dataset D =

{(x1, y1), (x2, y2), . . . , (xm, ym)}, (2) σ , (3) DISthreshold
2: output: (a∗, b∗)
3: /*Initialization*/
4: n = 1
5: Dn = D, (an,bn) = L(Dn)
6: for inputCoutput pair (xi, yi) in Dn do
7: Li = distancen(xi, yi)
8: end for
9: /*Weighting and approximating*/

10: while max(abs(L)) >= DISthreshold do
11: for inputCoutput pair (xi, yi) in Dn do
12: if an >= 0 then
13: xi := xi + (1− ωi) ∗ Li ∗ sin(arc(an))
14: yi := yi − (1− ωi) ∗ Li ∗ cos(arc(an))
15: else
16: xi := xi − (1− ωi) ∗ Li ∗ sin(arc(an))
17: yi := yi + (1− ωi) ∗ Li ∗ cos(arc(an))
18: end if
19: end for
20: n← n+ 1
21: Dn = {(x1, y1), (x2, y2), . . . , (xm, ym)}
22: (an, bn) = L(Dn)
23: for inputCoutput pair (xi, yi) in Dn do
24: Li := distancen(xi, yi)
25: end for
26: end while
27: (a∗, b∗) := 1

n

n∑
i=1

(ai, bi)

initial distance Li for each point (xi, yi) (in Fig. 3(a)). Then,
based on the weighted factor ωi of each GPS point sample,
locations of these points are adjusted and used as new input
for updating parameters (an, bn) and Li (in Fig. 3(b)-3(c)).
When all the GPS points cluster together, i.e., distance Li
of each point is no more than the DISthreshold , the iteration
stops. Its output (a∗, b∗) of the Algorithm 1 corresponds to
the (A0′,B0′) in (6) and A0′ is the estimation heading of the
road centerline.
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C. DISTRIBUTION VARIANCE - ROAD
WIDTH DISCRETE MODEL
Considering GPS points around the road centerline with
Gaussian distribution, it is inspired to correlate distribution
variance of GPS points with the road width. Furthermore,
because the width of the lane is fixed in majority countries,
number of lanes of these road segments can also be estimated.
In this part, a Distribution Variance - Road Width Discrete
Model (DV-RWDM) is proposed to estimated the road width.

FIGURE 4. Bi-directional road.

As shown in Fig. 4, it supposes that the road is
bi-directional and the width of each unidirectional (leftward
and rightward) road is W . In much literature, distribution of
GPS points on the unidirectional road can be regarded as
Gaussian distribution around the road centerline, shown as
follows,

lleft ∼ N (
W
2
+ α, σ 2

left ), (13)

lright ∼ N (−
W
2
+ α, σ 2

right ), (14)

where l denotes the perpendicular distance between GPS
point and corresponding bi-directional road centerline. Fur-
thermore, (13) and (14) denote GPS points on the leftward
road, i.e., setleft and the GPS points on the rightward road,
i.e., setright are around the road centerline with Gaussian
distribution ((W2 ) and (−W

2 ) are locations of leftward road
centerline and right road centerline respectively, and bias α
is contributed by system error in GPS noise). In addition,
the GPS points setroad on the bi-directional road is the com-
bination of setleft and setright , i.e., setroad = (setleft ∪ setright ).
The distribution probability density function of GPS points

on the bi-directional road can be show as follows (15):

froad (l) = aleft fleft (l)+ aright fright (l), (15)

where aleft and aright relate with number of GPS points on
each direction and f (l) is the probability density function.
Actually, aleft =

setleft
setleft+setright

and aright =
setright

setleft+setright
. From

the definition of variance, the variance D(lroad ) can be shown
as (16):

D(lroad ) =

+∞∫
−∞

[l − E(lroad )]2froad (l)dl, (16)

where E(l) denotes the expectation of distance l. By combin-
ing with (15), (16) can be extended as (17):

D(lroad ) =

+∞∫
−∞

[l−E(lroad )]2(aleft fleft (l)+ aright fright (l))dl,

(17)

where aleft and aright is unfixed, because the total number of
data setleft and data setright may be unbalanced. Considering
to simplify (17), data preprocessing may be applied to make
the aleft equal to aright , and both are set as 0.5. For example,
GPS data is often matched with the identifiable attributes,
such as the ID of mobile devices, so these attributes can be
useful for removing the redundant data, and making the scale
of these two datasets setleft and setright equal. As a result, (17)
can be converted to

D(lroad ) =
1
2

+∞∫
−∞

l2(fleft (l)+ fright (l))dl − E(lroad )2

=
1
2
[E(l2left )+ E(l

2
right )]− E(lroad )

2. (18)

and because the equation E(l2) = D(l) + E(l)2, finally,
we get (19):

D(lroad ) =
1
2
(σ 2
left + σ

2
right )+

W 2

4
. (19)

It is effective to combine the roadwithW and variance of GPS
points on the road. TheW can be estimated by the following
formula:

W = 2
√
D(lroad )− 1/2[D(lleft )+ D(lright )], (20)

which is the DV-RWDM model proposed in this paper. It is
well known, the width of the lane is set to 3.5 meters in most
countries, so it is easy to get the road lanes numbern from the
road width W . In this paper, D(lroad ), D(lleft ) and D(lright )
can be calculated based on the road line estimated by the
WALSM.

IV. EXPERIMENTS
In this section, realistic GPS point data are used to ver-
ify our methods. Firstly, the real-world GPS data are
shown, and distribution of these data has been demon-
strated to be Gaussian distribution by the statistical approach
Kolmogorov-Smirnove (K-S) test. Then, real-world GPS
point data are put into the WALSM and the DV-RWDM to
mine the heading and the width of the corresponding road.

A. EXPERIMENTAL SETUP AND INITIAL FINDINGS
1) RAW DATA AND DATA PREPROCESSING
Real-world GPS data gathered from buses in Taiwan, China
are used for our study. These GPS data start on April 1,
2013 and end on April 30, 2013, collected every 20 seconds
from buses which spread across the Taiwan, China (these
real GPS datasets provided by our partners to support this
project. Now, other relevant work is still progressing based on
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TABLE 2. Example of the raw data.

these datasets. When the relevant work is completed, we will
try our best to open these datasets). Table 2 shows the exam-
ple of GPS data, which mainly includes these contents as
follows:

1) Latitude and Longitude: indicating bus’s location
uploaded based on the scheme of WGS 84;

2) Speed: indicating the speed (km/h) of the bus when the
information is uploaded;

3) Orientation: indicating the moving direction of bus
(from 0-360 degrees);

4) Timestamp: indicating the time when the informa-
tion is uploaded. (Its format is hhmmss, for instance
105020 indicates the time of 50minutes and 20 seconds
past 10 am).

FIGURE 5. Projection of GPS points.

Fig. 5 is the projection of GPS points of two buses on
electronic map (blue and yellow points respectively repre-
sent instantaneous locations of the two bueses). In order to
improve the quality of data, the raw GPS data needs to be
cleaned. The specific steps are as follows:

1) Remove the repeating data and replace the missing/
wrong data with the mean of their closest surrounding
values. The LSM is also used to estimate initial distance
Li of each point. If the initial distance is more than
20 meters, the corresponding point should be removed
(in normal condition, GPS errors are within 20 meters);

2) Extract GPS points on single direction road. Because
traffic flow on the each direction of the bi-direction
roads is uneven and independent. Therefore, we utilize
the attribute orientation in GPS data to extract GPS
points on each direction, which is necessary to accu-
rately estimate the distribution of GPS points on each
direction.

FIGURE 6. GPS data error characteristics. (a) Statistical histogram of
unidirectional (leftward) GPS points. (b) Statistical histogram of
unidirectional (rightward) GPS points. (c) Statistical histogram of
bi-directional GPS points.

2) GPS DATA CHARACTERISTICS
In this part, characteristics of GPS errors and its distribution
are discussed. Just as the results mentioned inmuch literature,
the GPS noise from lots of random factors lead to about
20 meters error for GPS data. Combining with central limit
theorem, under the noise, GPS points tend to follow the
Gaussian distribution around the road centerline. The details
are explained below:

1) GPS errors characteristics: In Fig. 2 and Fig. 3, the ran-
dom distribution of GPS points and bias between road
centerline and centre of this distribution have been
shown. In fact, there are two kind of GPS errors: system
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FIGURE 7. Relationship between the value of parameters and MAPE/TIME.

error and random error. System error leads to the same
deviation on locations for all GPS points. Random error
makes these points randomly distribute. The system
error is caused by satellite ephemeris error, ionospheric
refraction and so on [22]. The random error is caused
by multipath effect, receiver’s noise and so on.

2) GPS data distribution characteristics: there are lots
of random factors, such as weather and multipath
effects, which effect the distribution of GPS points.
Furthermore, these random factors tend to force
these GPS points following Gaussian distribution
with road centerline according to the central infi-
nite theorem [11], [20], [23]. In addition, system error
forces this Gaussian distribution with expectation f (α)
which is related system error α.

In this paper, the distribution of GPS points is analysed by
the statistical approach K-S test. Fig. 6 indicates the compar-
ison of the Gaussian distribution curve and the statistical his-
tograms of GPS points. Furthermore, Fig. 6(a), 6(b) and 6(c)
corresponds to the scenario in Fig. 4 respectively. The K-S
test is performed on GPS points setleft , setright and setroad to
test whether the distribution of measured points is a known
theoretical distribution. Table 3 shows the results of the K-S
test for the three data sets (if the value, Asymp. Sig., is greater

than 0.1, samples in corresponding data set are following
the Gaussian distribution). From the test results in Table 3,
the distribution of GPS points on the unidirectional roads
coincides with Gaussian distribution. However, GPS points
on the bi-directional road are unable to meet this assumption.
In the paper, [20] a mixture Gaussian distribution is proposed
to account for GPS points distribution on the bi-directional
road.

TABLE 3. The result of K-S test.

B. EXPERIMENTAL RESULTS
1) PARAMETERS INITIALIZATION FOR WALSM
It is important to select proper parameters in the WALSM
for achieving desired results. In this paper, there are two
parameters in the WALSM: σ and DISthreshold . We use
real data as a training set to analyse different results from
different parameters selection. Mean Absolute Percentage
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Error (MAPE) is used to measure the error. Fig. 7 indi-
cates MAPE and program execution time with different
parameters.

Fig. 7(a) shows the relationship between σ and MAPE,
each curve with a constant value of theDISthreshold . From this
figure, it is clear that with the σ increasing, MAPE decreases
gradually. Note that these values of MAPE decrease rapidly
with σ from 1000 to 2000 and when σ is more than 2000,
the variation of MAPE is not obvious.

Fig. 7(b) shows the relationship between DISthreshold and
MAPE, and each curve with a constant value of σ . From
the picture, it is clear to see with DISthreshold increasing,
MAPE increases gradually. Note that these curves look like
steps and in three variation ranges ofDISthreshold , i.e., 0.2-0.3,
0.4-0.5 and 0.7-1, MAPE is invariant.

Fig. 7(c) shows the relationship between program exe-
cution time and DISthreshold . It can be observed there
is a negative correlation between program execution
time and DISthreshold , especially when DISthreshold is
from 0 to 0.1.

Fig. 7(d) shows the relationship between program exe-
cution time and σ . It can be observed there is a positive
correlation between program execution time and σ . However,
when σ is more than 1000, increase of program execution
time is not obvious.

From Fig. 7(c) and 7(d), compared with the parameter
DISthreshold , the variance of σ slightly influences program
execution time. To be specific, in this paper, the σ is set
as 2000, because starting from σ = 2000, MAPE changes
hardly from Fig. 7(a). In addition, program execution time
even hardly changes from σ = 2000 in Fig. 7(d). As for
the parameter DISthreshold , it is adjusted to trade off the rela-
tionship between estimation accuracy and program execution
time. In order to meet the real-time applications, program
execution time should be less than data update cycle. In this
paper, the GPS data of buses updates each 20 seconds, so the
program execution time is set under 15 seconds to provide
enough time to update related road information. Furthermore,
considering the curves shape in Fig. 7(b), where MAPE
hardly changes from DISthreshold = 0.7 to DISthreshold = 1,
DISthreshold is set as 1 to obtain the shorter program execution
time. When the traffic flow is stable, DISthreshold can be less
than 1 to obtain more accurate road information and reduce
the update frequency for road information.

2) MINING THE HEADING OF THE ROAD BY WALSM
These parameters used in the WALSM is (σ = 2000,
DISthreshold = 1). In Fig. 8, the projection of the origi-
nal GPS points and the projections of these updated GPS
points generated by each iteration are shown in Fig. 8(a)-8(e),
respectively. From it, we can see that the GPS points on the
road are gradually concentrated to the road linewith iterations
in Algorithm 1.

Then in Fig. 9 the proposed WALSM is compared with the
LSM under three real datasets from different road segments.
Fig. 9(1a)-9(3b) show these results in three different road

FIGURE 8. Projections of the original GPS points and the updated GPS
points.

segments, and the part (a) and the part (b) in each sub-
figure represent the different unidirectional situations in a
same bi-directional road. In each figure, the upper limit value
on x-axis denotes the iteration times for the WALSM. The
y-axis a0 is the heading of the road. Note that the curve
named pureLSM presents the result of the LSM and the
curve named Real Road presents the heading of the road
centerline.We can see that results of theWALSM can achieve
convergence, and it outperforms the LSM.

In Fig. 10 and 11, we show the impact of various values
of σ and DISthreshold on the WALSM. GPS points collected
from two road segments are chosen to discuss the problem,
corresponding to Fig. 10 and 11 respectively. Besides the
combination of parameters (σ = 2000, DISthreshold = 1)
(green), we add three curves (σ = 2000, DISthreshold =
0.01) (cyan), (σ = 100, DISthreshold = 1) (red) and (σ =
100, DISthreshold = 0.01) (yellow). The upper limit value
on x-axis of each curve denotes its iteration times, where
all the GPS points meet the stop condition in the WALSM,
i.e., distance Li of each point is no more thanDISthreshold . For
example, in Fig. 10, iterations of the WALSM (σ = 2000,
DISthreshold = 1, green curve) is 6 and it of the WALSM
(σ = 100, DISthreshold = 0.01, yellow curve) is 11.
By expressing pairwise comparisons, we discuss the

impact as follows:
1) By comparing with these curves on the same value of

σ , i.e., green and cyan, red and yellow, the variation of
DISthreshold hardly changes the distance between these
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FIGURE 9. Comparison between the WALSM and the LSM (a0 is the heading of the road).

curves and Real Road. In fact, DISthreshold is used to
control iteration time of the WALSM. When there are
enough iterations, the accuracy of theWALSMwill not
change, even under different values of σ .

2) By comparing with these curves on the same value
of DISthreshold , i.e., green and red, cyan and yellow,
the variation of σ changes the distance between
curves and Real Road obviously. From the two figures,
increasing the value of σ can reduce the distance
between curves and real road. It means σ easily impacts
the accuracy of the WALSM. However, it hardly
impacts iteration time of the WALSM.

3) Therefore, σ mainly impacts the accuracy of the
WALSM and by combining with Fig. 7(a), when the
σ is more than 2000, the impact becomes slight. Other
parameterDISthreshold mainly impacts the iteration time
which is relevant with program execution time.

In this paper, the proposed WALSM is one of main
data-driven methods and can be used to mine the heading of
the corresponding road fromGPS data directly. It is a low cost
and effective way. In addition, from simulations on real GPS
data, the proposed WALSM can fit the heading of the corre-
sponding road with accuracy about 10−1∼10−3 (or 1∼10−1

degree), which meets the accuracy of traditional navigation
applications about 10∼10−1 degree in the paper [2].

3) ESTIMATING LANES NUMBER BY DV-RWDM
From the Distribution Variance - RoadWidth Discrete Model
(DV-RWDM), road width can be estimated by (20). As we
all know, the lane width is generally constant, such as 3.5m,
so when the road contains 2 lanes, 3 lanes, 4 lanes or 5 lanes,
the W 2/4 in (20) is 12.25,27.5625,49,76.5625 respectively.
To verify that the DV-RWDM can be used to effectively
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FIGURE 10. Impact of σ and DISthreshold on the WALSM (1).

FIGURE 11. Impact of σ and DISthreshold on the WALSM (2).

mine the road width W and number of lanes, the real-world
GPS points collected from three different road segments are
input into this method. The corresponding results are shown
in Table 4.

TABLE 4. The validation of the DV-RWDM.

The estimated number of lanes Lestimated and the actual
number of lanes Lactual are shown in Table 4, where three
different scenarios are discussed corresponding to 3, 4 and
5 lanes respectively. In the simulation, the road width W is
estimated at first by (20). Then the width of the lane is set as
constant 3.5m, and the estimated number of lanes should be 3,
4 and 5 lanes respectively. The estimated results coincide with
the actual number of lanes of each road.

V. CONCLUSION
In this paper, by exploring the potential relationship between
GPS points data and real roads structure, we successfully

mine road information for raw GPS data. To be specific,
we demonstrate the LSM can effectively estimate the real
heading of road from raw GPS data. Aiming to improve the
accuracy of the LSM, we further propose the WALSM to
estimate the more accurate heading of the road under finite
GPS point samples. In the WALSM, the weighted factor
can be used to resist the negative impact from GPS noise
during the estimation process. Simulation results based on
real data show the WALSM outperforms the LSM in real
world. Particularly, according to the discussion about the
newly proposed WALSM, it can be seen that parameters σ
and DISthreshold impact the accuracy and program execution
time of this method, respectively. It means the performance
of WALSM can be adjusted according to requirements on
accuracy and timeliness for different applications. Further-
more, analysis of distribution of GPS points helps us infer
the DV-RWDN to mine the width of the road from raw GPS
data. Moreover, based on the constant width of the lane,
we can estimate the number of lanes on the corresponding
roads. The potential road information in raw GPS data can
be utilized to promote development of ITS, such as updat-
ing electronic map, deploying RSUs and recognizing traffic
bottleneck.

In the future work, combining with ad hoc network and
intelligent sensors on vehicles or infrastructures, real posi-
tions of mobile devices can be collected. By calculating
differences between their real positions and corresponding
measured positions from GPS, system error in this position
systems can be estimated. It means more accurate distribution
of GPS points can be obtained to help determine positions of
road segments from raw GPS data.
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