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ABSTRACT When the fractional Fourier transform (FRFT) is introduced into the weak and high-dynamic
global navigation satellite system (GNSS) signal acquisition, the 2-D search cell will be transferred to a
3-D one with respect to the code chip, the Doppler shift, and the Doppler rate. The proper determinations
of the code bin and Doppler shift bin in the acquisition process have already been covered in the previous
researches. The aim of this paper is to provide an exhaustive analysis of the approach to specify an optimal
FRFT order bin, in terms of the Doppler shift rate. The lower and upper bound of FRFT order ranges is
determined by the incoming signal dynamics. Then, we propose a precise model to yield an optimal FRFT
order bin. Besides, a novel and fast Doppler estimator based on the non-linear least square (NLS) method
is presented to improve the performance of the digital FRFT implementation. Finally, an alternate search
procedure is proposed to reduce the singular estimations of the NLS method. The simulating examples
demonstrate the performance of the proposed algorithms. It has been verified that the computation efficiency
and the estimation accuracy have been significantly improved by proposed techniques.

INDEX TERMS Global navigation satellite system (GNSS) signal, linear frequency modulation (LFM),
fractional Fourier transform (FRFT) order, acquisition, Doppler rate, non-linear least square (NLS).

I. INTRODUCTION
The deterioration of global navigation satellite system
(GNSS) signal occurs through signal masking caused by
foliage or building obstructions, ionospheric scintillation,
multipath, jamming, and dynamics with respect to Doppler
shift error or Doppler rate [1], [2]. Signal power loss can
be unintentionally introduced in these situations, and the
GNSS signal is hard to be acquired, or the receiver is easy
to be out of lock from the tracking. To address the weak
GNSS signal, longer coherent integration time is needed in
acquisition and tracking. However, the receiver will be more
sensitive to the accelerating incoming signal, clock oscillator
vibration-induced noise, navigation bit sign transition and
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tracking-loop stability condition, when the long integration is
adopted for the receiver design [3]. Vector tracking structures
are proposed to mitigate the effect of the oscillator vibration-
induced noise [4] and improve the tracking performance of
high-dynamic carrier phase [5]; to solve the bit ambiguity,
extending integration time coherently is reported by a high-
sensitivity GNSS receiver design approach [3]; open-loop
tracking method plays a significant role to implement a long
coherent integration under a severe environment [6].

The GNSS receiver will undertake much dynamic stress
under high dynamics that refers to many situations such as
the missile navigation in military field [7], aerospace appli-
cations [8], and some deep space applications like moon mis-
sions [9]–[11] where the carrier-to-noise ratio density (C/N0)
is very low. Besides, if the inertial navigation system (INS)
of the GNSS/INS integration system is influenced by the
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external interference at a high-dynamic situation, it may not
work at all until the in-motion alignment is completed which
will take a long time [12], [13]. Therefore, it is important to
enhance the sensitivity of GNSS receiver as well as increase
estimation accuracy of the initial Doppler for the weak signal
processing performance in a high-dynamic environment.

Almeida proposed the physical definition of fractional
Fourier transform (FRFT) that represents a rotation in the
time domain [14]. The digital computation of the FRFT was
published by Ozaktas et al. [15]. The FRFT was a widely
used tool in radar [16]–[20], image processing [21], [22],
communications [23], [24], in which the signal is formedwith
linear frequency modulation (LFM), and it is still currently a
powerful tool for different applications [25]–[28].

The high-dynamic GNSS signal with Doppler rate is
a typical LFM signal, so, it is reasonable to process
dynamic GNSS signal with FRFT algorithm. The ordinary
algorithms, e.g., serial-search acquisition and code-phase
parallel-search acquisition, cannot well address weak and
dynamic signals. Then, matched filter [29], [30] and partially
matched filter [31] are introduced to design the high-sensitive
GNSS receiver. However, the trade-off in terms of coherent
integration time is hard to be made in a weak and high-
dynamic environment. The fractional Fourier transform has
been introduced to address the GNSS signal processing with
linear frequency modulation in a weak and dynamic sit-
uation in recent times [32]–[34]. The computational com-
plexity has been analyzed regardless of the effect of the
FRFT order search rate [32]. The computational cost
can largely be increased if an inappropriate order search
rate, or FRFT order bin, is determined. The coarse-to-fine
search strategy is widely used to decide an optimal FRFT
order in the process of FRFT estimation as well [35], [36].
However, the extra implementations of the digital FRFT
(DFRFT) should be considered to make decisions on a proper
order bin. Fixed order bins are also decided by some experi-
mental trials applied to the weak and dynamic GNSS signal
acquisition [34]. However, the digital computational com-
plexity will be highly increased due to a narrow FRFT order
bin [15], [32]. Trade-off should be made on the estimation
accuracy of the Doppler rate and FRFT order bin in the
GNSS receiver design. There are few references that can pro-
vide a proper mathematical analysis to determine the proper
FRFT order bin for different cases and the order bin will
usually be reduced to a very small size to guarantee a high
detection probability and a more accurate estimation for the
Doppler rate in terms of the acquisition process of the high-
dynamic GNSS signal. However, a very narrow order bin
size will highly increase the computational complexity of the
DFRFT implementation [32]. Hence, a fast DFRFT method
is hard to be implemented due to this limitation.

Two purposes in terms of the acquisition of the high-
dynamic GNSS signal can be achieved based on the DFRFT
implementation by reducing the order bin size. At first,
the detection probability of the acquisition process can be
increased. Then, the estimation accuracy with respect to

the Doppler rate can be improved. Since how to make a
trade-off between the computational burden of the DFRFT
and the detection probability of the weak and high-dynamic
GNSS signal is not our contribution in this work, it might
be done in the future work. Under this circumstance, we will
mainly focus on how to improve the estimation accuracy
of the Doppler rate for the LFM-based GNSS signal, and
how to increase the computational efficiency of the DFRFT
implementation in our research. A theoretical model with
respect to the DFRFT amplitude [15] is proposed in this
research. Two main contributions are made for the GNSS
signal acquisition based on the FRFT algorithm in our work:
Firstly, an approach to decide the optimal FRFT order bin is
proposed; secondly, algorithms to largely improve the com-
putation efficiency of the digital FRFT implementation for
the Doppler rate estimation, i.e., a novel and fast Doppler rate
estimator based on the DFRFT, is presented.

The organization for the remaining of this paper is provided
as follows. Section II introduces the dynamic GNSS signal
model based on linear frequency modulation; Section III
contains a brief introduction about how the FRFT imple-
mentation works on the LFM-based GNSS signal, and a
description related to the proposed theoretical model of the
FRFT gain for the incoming GNSS signal; the way to com-
pute an optimal FRFT order bin size with the proposed gain
model is explained in Section IV; a detailed introduction for
proposed Doppler rate estimator is provided in Section V;
in Section VI, an overall flow chart for proposed three algo-
rithms in this research is presented; the experimental results
are included in the subsequent Section VII; Section VIII is
devoted to some analysis and discussions corresponded to the
simulation results; the last Section IX concludes this paper
and presents its scope of the application in the future.

II. GNSS SIGNAL MODEL WITH LINEAR FREQUENCY
MODULATION
The general form of the incoming intermediate frequency (IF)
GNSS signal can be given by

s (t) =
√
2PrD (t − τ)C (t − τ)

× cos [2π (fi + fd ) t + ϕ0]+ n (t) (1)

where Pr is the power of the incoming signal; D (·) denotes
the data code; C (·) stands for the spreading code; τ is the
time delay of received signal; fi, ϕ0, and fd represent the
intermediate frequency, the initial carrier phase in radius, and
Doppler of the incoming signal, respectively; n (t) stands
for the random noise. When the signal is transmitted in
a high-dynamic environment, high-order components with
respect to dynamics besides of Doppler shift should not be
ignored in the received Doppler model of fd . It is assumed
that dynamics over quadratic terms with respect to the time
variable will be not considered in our research. Under this
circumstance, the high-dynamic GNSS signal is a typical type
of LFM or chirp signal. The associated carrier phase in cycle
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can be obtained as

θ (t) = θ0 − h ·
∫ t

0
(v+ aτ) dτ

= θ0 − hvt −
1
2
hat2

= θ0 + f0t +
1
2
µt2 (2)

with

f0 = −hv, µ = −ha, h =
fr
c

(3)

where v is the line-of-sight (LOS) velocity between the satel-
lite and the GNSS receiver antenna, a is the LOS acceleration,
θ0 denotes the initial carrier phase, f0 is the initial Doppler
shift, µ represents the Doppler shift rate, fr and c represents
the radio frequency of the received GNSS signal and the
speed of light, respectively. Then, the highly dynamic signal
model can be rewritten as

s (t) =
√
2PrD (t − τ)C (t − τ)

× cos
{
2π (fi + f0) t + πµt2 + 2πθ0

}
+ n (t) (4)

Assuming that no bit transition error occurs during the inte-
gration process and bit sign ambiguity does not exist, after
mixing with the local code and carrier replicas, the coherent
integration outputs of the incoming signal in terms of in-
phase (I ) and quadrature (Q) components can be derived as

I (n) =
√
2PrR (1τ)

×

∫ nT

(n−1)T
{cos [2πθ (t)]+ n (t)} cos

(
2π f̂ t

)
dt

≈ AR (1τ)

×

∫ nT

(n−1)T

[
cos

(
2π1ft + πµt2 + 2πθ0

)
+n(t)

]
dt

(5)

and

Q (n) =
√
2PrR(1τ )

×

∫ nT

(n−1)T
{cos [2πθ (t)]+ n (t)}

[
− sin

(
2π f̂ t

)]
dt

≈ AR (1τ)

×

∫ nT

(n−1)T

[
sin
(
2π1ft + πµt2 + 2πθ0

)
+n(t)

]
dt

(6)

where n is the index of the discrete signal samples;
A, which stands for the signal amplitude, is equal to

√
2Pr
2 ;

f̂ denotes the local frequency replica formed by the receiver
numerically controlled oscillator (NCO); R (·) and1τ denote
the auto-correlation function (ACF) of the spreading code
and code phase delay error, respectively; 1f represents the
Doppler frequency error caused by the difference of fre-
quency between the incoming and local signals, i.e., 1f =
fi + fd − f̂ . Therefore, the normalized complex form for the

signal model after the integration and dump implementation
can be given by

S (n) = AR (1τ)×
1
T

×

∫ nT

(n−1)T
exp

[
j
(
2π1ft + πµt2 + 2πθ0

)]
dt

+ Ñ (n) (7)

where Ñ (·) stands for the output of the complex Gaussian
white noise. Referring to [32], an average angular velocity
during the time interval from (n− 1)T to nT can be obtained
as

ω̄ (n) = 2π
(
1f +

µ

2
nT
)

(8)

Accordingly, equation (7) can be approximated as

S (n) ≈
1
T
AR (1τ) exp (j2πθ0)

×

∫ (
n+ 1

2

)
T(

n− 1
2

)
T

exp [jω̄ (n) t] dt + Ñ (n)

=
1
T
AR (1τ) exp (j2πθ0)

×
1

jω̄ (n)
exp [jω̄ (n) t]|

(
n+ 1

2

)
T(

n− 1
2

)
T
+ Ñ (n)

= exp {jω̄ (n) nT + j2πθ0}

×AR (1τ) sinc
[
ω̄ (n)

T
2

]
+ Ñ (n) (9)

So, the final expression of (7) can be given as follow

S(n) = AR (1τ) sinc
(
1fT +

µ

2
nT 2

)
× exp

[
j2π

(
θ0 +1fnT +

µ

2
n2T 2

)]
+ Ñ (n) (10)

Depending on these analysis and associated (10), it could be
concluded that the GNSS signal under high dynamics can
be assumed as a typical chirp signal model. In this case,
the FRFT is introduced to process the signal, and an extra
Doppler rate search process will be added besides of the
original acquisition cell with respect to the Doppler bin and
the code bin.

III. FRFT FOR GNSS SIGNAL
In this section, we firstly introduce the FRFT model
and the corresponding FRFT gain for the high-dynamic
GNSS signal is derived. Then, a strategy for determining the
optimal FRFT order bin is proposed.

A. DEFINITION OF FRFT
The definition of the fractional Fourier transform for signal
x (t) is given as follow [14], [37]

X (p, u) =
∫
∞

−∞

x (t)Kp (t, u) dt (11)
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FIGURE 1. DFRFT gain of the high-dynamic GPS L1 C/A signal; τd = 51.2 ms, T = 0.2 ms, input real acceleration is −100 g, initial
Doppler shift is 0 Hz.

In (11), Kp (t, u) denotes the transformation kernel of FRFT
which contains a quadratic term of the independent
variable t , and it is defined as

Kp (t, u)

=


Cαejπ

[(
t2+u2

)
cotα−2·u·t·cscα

]
, α 6= nπ

δ (t − u), α = 2πn
δ (t + u), α = (2n+ 1) π

(12)

where Cα =
√
1− j cotα = 1

√
|sinα|

; p represents the order
of FRFT which is an arbitrary real number and α = π

2 p.
α can be assumed as a rotation angle from the time-frequency
plane in terms of the ordinary Fourier transform (FT) to an
extended plane which is formed by the FRFT implemen-
tation. When this transformation is done, the power of the
LFM signal is expected to converge in the fractional Fourier
domain (FRFD), while it will diverge in the ordinary fre-
quency domain.α, or p, in the definition of FRFT corresponds
to the estimation process of signal Doppler rate. The discrete
fractional Fourier transform of the known GNSS signal (10),
S (n), can be defined as [38]

X (p, u)

= Kp exp
(
jπ cotαu2

)
×

N−1∑
n=0

TS (n) exp
(
jπ cotα(nT )2 − j2π cscαunT

)
(13)

with

Kp = Cα exp
(
j
α

2
− jπ

sgn (sinα)
4

)
(14)

Equation (10) shows that the high-dynamic GNSS signal
can become a typical LFM or chirp signal regardless of the
signal dynamic components which are equal to or over the
jerk terms. Hence, it is reasonable to introduce the FRFT
to process this type of signal, and an extra Doppler rate
search process is likely to be added besides of the orig-
inal acquisition cell with respect to the Doppler bin and
the code bin. Accordingly, if the signal is detected by the

DFRFT algorithm [15], it can be given by{
p̂x , ûx

}
= argmax

p∈(0,2),u∈R

∣∣{DFp [S (n)]} (u)∣∣ (15)

with a certain FRFT order bin, where {DFp [·]} (u) denotes
the operator of the digital FRFT proposed by [15]; the asso-
ciated matched frequency, fp, can be derived as

fp = ûx csc α̂x = ûx csc
(π
2
p̂x
)

(16)

with

α̂x =
π

2
p̂x (17)

where fp stands for the detected frequency in FRFD;
N denotes the number of samples. Then, thematchedDoppler
rate obtained by (15), µ̂, can be obtained as

µ̂x = ζ
(
p̂x
)
= −

cot
(
α̂x
)

NT 2 = −
cot

(
α̂x
)

τdT
(18)

where τd is equal to NT , and denotes the search dwell
time [39]. τd will be frequently used in the following contents.
Finally, the Doppler frequency error of signal (10) estimated
through (15) and (16), 1f̂ , is given by

1f̂ = fp −
1
2
µ̂xNT = fp −

1
2
µ̂xτd (19)

In our work, the digital computation algorithm for FRFT
implementation proposed in [15] is adopted here for simu-
lation purpose. A picture to describe how the DFRFT gain
of the high-dynamic L1 C/A signal of the global positioning
system (GPS) changes with the FRFT order p is illustrated
in Fig. 1. When p is equal to 1, the FRFT is equivalent to
the ordinary Fourier transform [14], as given in the second
property of (65). So, an amplitude peak of the high-dynamic
LFM GNSS signal will appear when a proper FRFT order
is swept in the FRFD, while it will not occur in an ordinary
frequency domain.

B. FRFT GAIN
In this part, the expression with respect to the theoretical
FRFT gain for GNSS signal model with linear frequency
modulation will be derived.
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Substituting (10) to (13) gives the normalized FRFT
approximated as

|X (p, u)| ≈

{
1
N

∣∣∣∣∣
N∑
n=1

R (1τ)

∣∣∣∣∣
}

︸ ︷︷ ︸
R6

×

{
1
TN

∣∣∣∣∫ NT

0
sinc (ϕt) dt

∣∣∣∣}︸ ︷︷ ︸
κ
f
1

×

{
1
NT

∣∣∣∣∫ NT

0
exp (j2πδut) dt

∣∣∣∣}︸ ︷︷ ︸
κ
f
2

×

{
Cα
N

∣∣∣∣∣
N∑
n=1

exp
[
jπn2T 2 (µ+ cotα)

]∣∣∣∣∣
}

︸ ︷︷ ︸
κ
µ
2

(20)

with

ϕt = 1fT +
µ

2
Tt (21)

and the discrete form of δu

δu = f (u) = 1f +
µ

2
t − u cscα (22)

where noise term, as mentioned earlier, is zero mean, so,
it is removed by average procedure; u stands for frequency
spectral parameter of FRFT; δu denotes the error of the
frequency or Doppler estimation.

If the auto-correlation attenuation of the code is not
neglected, the term of R6 for (20) could be deduced by [32]

R6 ≈



1−
(1+ N )1fT

2frTc
−

(
2N 2
+ 3N + 1

)
µT 2

12frTc
,

1τ ≥ 0

1+
(1+ N )1fT

2frTc
+

(
2N 2
+ 3N + 1

)
µT 2

12frTc
,

1τ < 0

(23)

where fr denotes the radio frequency, Tc stands for the code
chip interval.

Based on Taylor series expansion and mathematical com-
putations, κ f1 for (20) satisfies

κ
f
1 = 1+

ϕ0
2
(
ϕ0

2
− 5

)
4

+
ϕ0
(
2ϕ02 − 5

)
µNT 2

8

+

(
6ϕ02 − 5

)
µ2N 2T 4

48
+
ϕ0µ

3N 3T 6

32
+
µ4N 4T 8

320
(24)

where ϕ0 = 1fT .
Again, κ f2 can be given by

κ
f
2 = sinc (δuNT ) (25)

FIGURE 2. Approximated curves with respect to κµ2 .

Next, κµ2 , which also accounts for (20), can be transferred
to the form as [40]

κ
µ
2 = Cα

∣∣∣∣ 1r2
∫ r2

0
ejτ

2
dτ

∣∣∣∣ (26)

with

r2 =

√
π · δµNT

2
(27)

and

δµ =
∣∣ζ (p̂x)− µ∣∣ (28)

where µ is the real Doppler rate. Using Fresnel integral
formula and Taylor series expansion, given∣∣∣∣ 1r2

∫ r2

0
ejτ

2
dτ

∣∣∣∣ ≈ (1− 0.02r22 − 0.03r24
)

(29)

Therefore, it can be given by

κ
µ
2 = Cα ·

(
1− 0.02r22 − 0.03r24

)
(30)

as shown in Fig. 2, in which different types of lines corre-
spond to different approximations, i.e., the left side of (29)
accounts for Original while Proposed (29) matches with the
right side of (29); the expression in terms of Fresnel Integral
can be approximated as∣∣∣∣ 1r2

∫ r2

0
ejτ

2
dτ

∣∣∣∣ ≈ 2
√
π

3
erf (r2)
r2

−
1

3r22

[
1− exp

(
−r22

)]
(31)

where erf (·) denotes the error function; then, Reference
refers to the approximation extracted from the equation (15)
in [40], which is given by∣∣∣∣ 1r2

∫ r2

0
ejτ

2
dτ

∣∣∣∣ ≈ (1− 0.37r2 + 0.04r22
)

(32)

Equations (23), (24), (25), and (30) can be used to construct

an accurate estimator of the Doppler rate. Again, proposed
κ
µ
2
Cα

obtained from (30), which can almost match with the original
expression as given in the left side of (29), (31), or (32), will
make a significant difference for the subsequent Doppler rate
estimator under high dynamics. More detailed analysis will
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be elaborated in subsequent sections. Finally, the proposed
normalized theoretical FRFT gain is given by

|X (p, u)| ≈ R6κ
f
1κ

f
2κ

µ
2 (33)

More detailed derivations for (33) can be found in
Appendix -B.

IV. OPTIMAL FRFT ORDER BIN
The amplitude of digital computation of FRFT process [15]
can be perfectly modeled as (33). The long coherent integra-
tion is hard to be implemented for the weak GNSS signal
under high dynamics. Therefore, fractional Fourier transform
technique is proposed to address weak and dynamic GNSS
signal acquisition in [32], in which it has been proved that
the detection probability can be dramatically improved with
the digital FRFT implementation. The digital computational
complexity in terms of the Doppler shift search based on the
FRFT implementation has also been evaluated in this refer-
ence. However, the analysis of the FRFT order bin, which
also has a close relationship with the complexity, has been
ignored. To solve this problem, we will particularly elaborate
on the points of how to determine an optimal FRFT order
bin, so that the proposed FRFT acquisition technique could
be more feasible to be implemented in a GNSS receiver.

As far as the traditional acquisition algorithm inside the
GNSS receiver, two required unknown parameters, i.e., code
phase and carrier Doppler, must be roughly estimated.
According to the rules of thumb, the Doppler bin size is fre-
quently chosen as 2

3τd
Hz to guarantee a maximum coherent

integration power loss of 3 dB; the code phase bin size is
frequently chosen as 1

2 of the chip duration for GPS L1 C/A
signal to guarantee a maximum loss of 3 dB as well [39].
Similarly, an algorithm is proposed to compute the Doppler
rate bin size with respect to the FRFT technique, which is
known as FRFT order bin or FRFT order search rate in
this work. The optimal size of the FRFT order bin can be
equivalently contrast to 2

3τd
for Doppler bin, or 1

2 for code
phase bin as mentioned earlier. The FRFT order bin will be
constrained by a certain signal power loss of 6 dB in our
proposed algorithm. Once the bin size is determined with
this rule, the trade-off between the computational complexity
and detection probability in terms of the search dimension for
Doppler rate can finally be made. The bin size with the value
of 0.001 is frequently used in previous literature [33], [34].
But it is sometimes too small to increase the computation
efficiency. The other method, which is called the coarse-to-
fine search strategy, is also widely used to decide an optimal
FRFT order [35]. However, extra implementations with the
digital FRFT should still be added to make decisions on a
proper order search rate for this algorithms. In our algorithm,
once a priori and coarse Doppler rate range, i.e., [0g, 200g],
is given, an optimal FRFT order bin can be decided.

In summary, a very small FRFT order bin is commonly
decided at first for previous methods, but the reason why such
bin size is decided was seldommentioned. According to [32],
the computational complexity will be highly increased by

a small FRFT order bin. Since the corresponding optimal
code bin and the frequency bin in terms of traditional GNSS
acquisition algorithms have access to be decided based on the
assumption of a certain signal power loss as explained earlier,
the optimal FRFT order bin is also expected to be decided in a
similar way. The 6-dB power loss is chosen as the threshold in
our work to decide the optimal FRFT order bin and there are
two reasons for this choice: firstly, the code phase is assumed
to be fully matched with the real value and more tolerance
for the power loss is allowed; secondly, such threshold can
make full use of the proposed model (29) as given in Fig. 2,
and more detailed analysis can be found in the discussions
below (38).

When the upper bound of the input Doppler rate is µ̄,
the rotation angle, which is related to the maximum
FRFT order, p̄, can be given by

p̄ = ζ−1 (µ̄), ᾱ =
π

2
p̄ (34)

subject to

ζ−1 (x) ∈ (0, 2) (35)

where x denotes the input unknown variable. Referring
to (16), the worst resolution for frequency, δuR,
satisfies [15], [38]

δuR =
1

NT |sin ᾱ|
(36)

Again, according to (18), the corresponding Doppler rate
resolution, δµR, could be derived as

δµR =

∣∣∣∣µ̄− ζ (p̄+ 1p2
)∣∣∣∣+ ∣∣∣∣µ̄− ζ (p̄− 1p2

)∣∣∣∣ (37)

where 1p is the FRFT order bin which is assumed as an
unknown variable.

The Doppler shift and code phase search processes are
included in the regular GNSS signal acquisition implementa-
tion. An extra search dimension with respect to the Doppler
rate is also contained in our algorithm with the digital
FRFT technique. To guarantee a maximum coherent integra-
tion power loss of 6 dB based on FRFT algorithm in this work,
given

10 lg
[
(GR)2

]
≥ −6⇒ GR ≥ 0.5 (38)

with

GR =

∣∣∣∣X (p, u| p = ζ−1 (δµR2
)
, u = f −1

(
δuR
2

))∣∣∣∣ (39)

where Cα of κµ2 is approximated as 1
√
|sin ᾱ|

here.
Since Cα is very close to 1, regardless of the effect of Cα

on κµ2 , it can be roughly concluded that when κµ2 ≥ 0.5,
the proposed model (30) can approximate the original curve
as illustrated in Fig. 2. Furthermore, when κ

µ
2 ≥ GR,

the unknown variable, 1p, then, has access to be computed
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by (33) and (38). Therefore, the range of the order bin can
finally satisfy

0 < 1p ≤
4
π

{
cot−1

[
−2D− µ̄NT 2

]
− ᾱ

}
(40)

with 

B =
2
3

C =
100
3

(
γ

R6κ
f
1κ

f
2Cα
− 1

)
1 = B2 − 4C

D = −
B−
√
1

πN

(41)

subject to 
1 ≥ 0
−B+

√
1 ≥ 0

0 ≤ r2 ≤

√
−B+

√
1

2

(42)

where γ is equal to 0.5 as used in (38); r2 is given by (27).
More detailed derivations for (40) can refer to Appendix -C.
Given

1p = ψ (µ̄, τd ,T )

=
4
π

{
cot−1

[
−2D− µ̄NT 2

]
− ᾱ

}
(43)

where ψ maps µ̄, τd , and T to the proposed optimal FRFT
order bin.

A report from Jet Propulsion Laboratory (JPL) of National
Aeronautics and Space Administration (NASA) in 1988 sug-
gested that the highest dynamic stress determining the upper
bound on the performance of some modern agile missiles is
an acceleration ramp of 50 g in 0.5 s or jerk for derivative
of acceleration of 100 g/s [41]. Therefore, an acceleration
threshold ranging from 0 g to 200 g to account for the
high-dynamic environment is determined for GNSS signal
processing as a priori condition for estimating the optimal
FRFT order bin in our work, which is reasonable.

The strategy for determining the optimal FRFT order bin
is shown in Algorithm 1 and the associated results are given
by Fig. 3, in which different markers correspond to dwell
time, τd , and colors correspond to sampling interval, T .
After the optimal FRFT order bin is decided, on the con-

dition that the code phase is known, the power peak of the
GNSS signal can finally be detected, which satisfies{

p̂, û
}
= argmax

p∈(0,2),u∈R

∣∣{DFp [S (n)]} (u)∣∣{
p̂′, û′

}
= argmax

p∈(0,2),u∈R,p 6=p̂,u 6=û

∣∣{DFp [S (n)]} (u)∣∣ (44)

with a determined optimal FRFT order bin through
Algorithm 1, where p̂ and û are the quasi-estimations of
the real FRFT order and the frequency, respectively; p̂′ and
û′ stand for the counterparts of sub-quasi-estimations. Then,
substituting p̂ to (18) gives the Doppler rate estimation.

Algorithm 1 Strategy for Determining the Optimal FRFT
Order Bin
1: Require:The maximum estimation error of Doppler

frequency with {DFp [·]} (u), δu = uR
2 ; and the maximum

estimation error of Doppler rate with {DFp [·]} (u), δµ = µR
2 ;

2: for T = 0.1, 0.2, 0.4 ms do
3: for τd = 25.6, 51.2, 102.4, 204.8 ms do
4: for µ̄ = 0g, 10hg, 20hg, · · · 200hg do
5: Compute the gain R6 of (23);
6: Compute the gain κ f1 of (24);
7: Compute the gain κ f2 of (25);
8: Compute the gain κµ2 of (30);
9: Compute (43) for each case in the loop, i.e.,1p =

ψ (µ̄, τd ,T );
10: end for
11: if |ψ (0, τd ,T )− ψ (200hg, τd ,T )| > 0.001 do
12: Do not use this case to handle the high-dynamic

GNSS signal with acceleration ranging from 0 to
200 g, and remove ψ (µ̄, τd ,T ) to determine a
final optimal FRFT order bin;

13: end if
14: end for
15: end for
16: Fix the parameters of τd and T , the median value with

respect to dynamics is chosen to determine the final opti-
mal FRFT order bin, i.e., 1po = ψ (100hg, τd ,T ).

FIGURE 3. Optimal FRFT order bin 1p; numbers correspond to T and τd
in the legend where they are expressed as τd -T .

Whereas, the accuracy of the estimation would typically be
reduced by the discrete search processes of p̂ and û.
As illustrated in Fig. 4, where g denotes the gravity,

and TC, DS, and SG represent proposed theoretical curves
of |X (p, u)|, discrete samples of |X (p, u)|, and correspond-
ing simulated gains,

∣∣X (p̂, û)∣∣ [15], respectively, the pro-
posed model |X (p, u)| is almost consistent with the real gain
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FIGURE 4. Gain comparisons of
∣∣X (

p,u
)∣∣ and

∣∣X (
p̂, û

)∣∣.

based on the digital FRFT operator, {DFp [·]} (u). So, it can
be verified that the proposed model approximates the real
value.

As shown in Fig. 5, the red lines describe the FRFT gain
trends, when the FRFT order search process is discrete and
Doppler shift dimension is assumed to be continuous; the
dark lines in the pictures of upper right corner and lower
left corner show the trends that what the gain shape will be
like, when the frequency resolution increases and simultane-
ously is gradually close to the real value; the real FRFT gain
trend is only consistent with the dark line in the last picture.
The curves in Fig. 5 is able to show that both the discrete
FRFT frequency dimension and discrete FRFT order dimen-
sion make significant contributions to the final digital FRFT
implementation results. This fact must be the premise for the
subsequent proposed non-linear least square (NLS) algorithm
to achieve a Doppler rate estimator. Furthermore, it can also
be confirmed that proposed Algorithm 1 is expected to be
correct, since the lowest FRFT gain formed with the dark
solid at the last sub-picture in Fig. 5 is close to the previously
set threshold, i.e., γ = 0.5. Accordingly, it can be concluded
that the final gain is dominated by the FRFT order bin and
FRFT frequency bin. Therefore, the theoretical model (33)
can almost be used to construct an estimator which provides
high-precise Doppler rate estimations.

V. A NOVEL DOPPLER RATE ESTIMATOR
In Section IV, the maximum or optimal FRFT order bin has
been calculated as shown in Fig. 3. However, large search
intervals with respect to the FRFT order will finally reduce
the estimation accuracy of the Doppler rate by using dig-
ital FRFT operator with (44). Based on previous analysis
locating at last of Section IV, an approach can be proposed
to significantly improve the Doppler rate accuracy in this
situation.

A. SYSTEM MODEL FOR NLS ESTIMATION
Firstly, a loss function is given by

J (θ)

=

∣∣∣∣∣∣X (p, u| p = ζ−1 (µ) , u = f −1 (δu)
)∣∣∣− P̃∣∣∣2

=

∣∣∣R6κ f1Cαsinc (δuNT ) (1− 0.02sδµ − 0.03s2δµ
)
− P̃

∣∣∣2
(45)

with {
sδµ =

π

4
δµN 2T 2

θ = [δu, δµ]T
(46)

where δu of (22) and δµ of (28) are unknown variables for
Doppler shift error and Doppler rate error in FRFD, respec-
tively; P̃ is the detected amplitude of the incoming signal by
the digital FRFT implementation with (44).

We can notice that the original loss function is a non-
linear case which is hard to be handled. So, the Taylor series
expansion is used to yield a linearized form, which can be
approximated as

J (θ, ξ) ≈ J (θ0, ξ)+
∂J (θ, ξ)
∂δu

∣∣∣∣
θ=θ0

(δu− δu0)

+
∂J (θ, ξ)
∂δµ

∣∣∣∣
θ=θ0

(δµ− δµ0) (47)

where ξ is the input vector obtained from (44), which is
ξ = [p, u]T ; the subscripts of 0 denote the initial value of
the unknown states; the design matrix is finally given by

G =



∂J
(
θ, ξ (1)

)
∂δu

∣∣∣∣∣
θ=θ0

∂J
(
θ, ξ (1)

)
∂δµ

∣∣∣∣∣
θ=θ0

...
...

∂J
(
θ, ξ (i)

)
∂δu

∣∣∣∣∣
θ=θ0

∂J
(
θ, ξ (i)

)
∂δµ

∣∣∣∣∣
θ=θ0


i×2

(48)

where i represents the order of the input vector. Detailed
derivations for (47) is offered in Appendix -D.

Next, the state vector, 1x, can be given by

1x = [1δu, 1δµ]T = [δu− δu0, δµ− δµ0]T (49)

and the measurement misclosure vector, b, satisfies

b = [J
(
θ, ξ (1)

)
, · · · , J

(
θ, ξ (i)

)
]T (50)

In this research, only two measurements are contained; rely-
ing on (44), they are given by{

P̃m =
∣∣X (p̂, û)∣∣

P̃′m =
∣∣X (p̂′, û′)∣∣ (51)

In this case, i = 2. These two measurements are included in b
referring to (45). Accordingly, the solutions can be obtained
using non-linear least square method as follow [42]

1x̂ =
(
GTG

)−1
GT b (52)
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FIGURE 5. Gain transition trends w.r.t. frequency resolution with a fixed optimal FRFT order bin.

B. IMPLEMENTATION OF PROPOSED DOPPLER RATE
ESTIMATOR
The proposed Doppler rate estimator based on FRFT with
NLS method is summarized in Algorithm 2. It should be
noticed that half of the optimal FRFT order bin computed
through Algorithm 1, i.e., 1po2 , is expected to be determined
as the final order search bin in the digital FRFT implementa-
tion for our proposed Doppler rate estimator, as provided by
Step 4 inAlgorithm 2. In order to elaborate the reasonwhy the
strategy is adopted, an extreme case with respect to the digital
FRFT implementation for Algorithm 2 is shown in Fig. 6.

On the one hand, two unknown variables are contained in
the state vector, (49), of the NLSmodel. Therefore, minimum
two measurements should be involved in the estimation pro-
cess to require a full rank of the NLS solution.

On the other hand, as mentioned in Section V-A, P̃m
and P̃′m are two measurements of the NLS estimation. Only
when

∣∣X (p̂, û)∣∣ > 0.5 and
∣∣X (p̂′, û′)∣∣ > 0.5, can the

proposed |X (p, u)| be used to approximate them, as explained
below (38).

Based on these analysis, if a full optimal FRFT order bin,
which is obtained through Algorithm 1, is chosen as the order
search bin during the digital FRFT implementation, the case
when both P̃m and P̃′m are larger than 0.5 will be very hard
to occur as shown in Fig. 6. Therefore, half of the optimal
FRFT order bin,1p = 1po

2 , should be used in Algorithm 2 to
confirm that the estimation result is reliable enough.

As mentioned earlier, the absolute value of Doppler rate
for the high-dynamic GNSS signal can be assumed to range
from 0 to 200g in this work, so, the search range of the FRFT
order is subject to

p ∈
[
ζ−1 (200hg), ζ−1 (−200hg)

]
(53)

The outliers sometimes occur after the NLS process, so,
the blunder check algorithm needs to be contained in the
implementation. As mentioned earlier, the FRFT order search

FIGURE 6. An extreme case w.r.t. the digital FRFT implementation
for Algorithm 2.

bin is half of the value with the computed optimal order
bin, i.e., 1po2 . Based on the previous analysis and simulation
results as shown in Fig. 2 and Fig. 4, the proposed NLS
method can be assumed to be unbiased. Again, according to
the central limit theorem [43], the standard deviation (STD)
of the Doppler rate estimation error, σµ, should be mainly
caused by half of the FRFT order bin size. Besides, since
1p
4 is expected to be small enough, σµ can finally be approx-
imated as

σµ ≈

∣∣∣∣ζ (p)− ζ (p+ 1p4
)∣∣∣∣

≈

∣∣∣∣ζ (p)− ζ (p− 1p4
)∣∣∣∣

≈

∣∣∣ζ (p)− ζ (p+ 1p
4

)∣∣∣+ ∣∣∣ζ (p)− ζ (p− 1p
4

)∣∣∣
2

(54)
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FIGURE 7. First case for alternate search procedure with digital FRFT implementation.

where p corresponds to the real Doppler rate or acceleration.
Similarly, the STD of fp can be approximated as

σu =
1

4NT
∣∣sin (π2 p)∣∣ (55)

Referring to (54), (55) and (19), the variance of the Doppler
shift estimation,1f̂ , for the original digital FRFT implemen-
tation can be derived as follow

σ 2
1f = var

(
1f̂
)

= var
(
fp
)
+
N 2T 2

4
· var

(
µ̂
)

≈ σ 2
u +

N 2T 2

4
· σ 2
µ (56)

Finally, the STD of 1f̂ can be obtained as

σ1f =

√
σ 2
u +

N 2T 2

4
· σ 2
µ (57)

In this research, 3σ rule will be used to make decisions.
If the NLS result manages to pass the blunder check proce-
dure, based on (18) and (44), the Doppler rate estimation can
be finally given as follow

µ̂ = ζ
(
p̂
)
+1δµ̂ (58)

where 1δµ̂ is estimated by (52). Then, based on (16), (19),
and (44), the initial Doppler shift estimation can be given by

1f̂ = û csc
(π
2
p̂
)
−

1
2
µ̂NT +1δû (59)

where 1δû is also estimated by (52).

C. ALTERNATE SEARCH PROCEDURE
In Algorithm 2, the values of

[
P̃m, P̃′m

]
are possible to be

very close to each other, and this fact can lead to the con-
sequence of singular estimation results. An alternate search
procedure, as illustrated in Fig. 7, is introduced to alleviate
the given problem. In this figure, two blue circles correspond
to two samples of

[
P̃m, P̃′m

]
before the alternate search

Algorithm 2 A Novel Doppler Rate Estimator
1:Require: Determined optimal FRFT order bin1p through
Algorithm 1; the normalized acquisition process.
2: Initialize pwith lower bound of FRFT order search range;
3: while p satisfies (53) do
4: p = p+ 1po

2
5: Implement the digital computation of FRFT;
6: end while
7: Implement (44) with results from steps 2 to 6;
8: Obtain signal amplitudes with (51);
9: Compute the design matrix, G, by (48);
10: Build the measurement misclosure vector, b, by (50);
11: Estimate the frequency error,1δû, and Doppler rate error,

1δµ̂, of the unknown state vector, 1x̂, based on NLS
method by (52);

12: Compute σµ by (54) for blunder check;
13: if

∣∣1δµ̂∣∣ ≤ 3σµ do
14: Compute the accurate Doppler rate by (58);
15: Compute the initial Doppler shift by (59);
16: else do
17: µ̂ = ζ

(
p̂
)
, by (18);

18: Compute the initial Doppler shift by (19).
19: end if

procedure, while two blue squares represent the counterparts
of the samples when the alternate search procedure is done.
On the other hand, if the amplitude difference between two
candidate samples is firstly large enough, this property would
not be influenced by the alternate search procedure so much
as shown in Fig. 8.

Therefore, an alternate search procedure is added after
Algorithm 2 to efficiently reduce the probability of singular
NLS estimations. The expressions for alternate search proce-
dure can be given by

{
DF p̂+

1po
4 [S (n)]

} (
û
){

DF p̂−
1po
4 [S (n)]

} (
û
) (60)
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FIGURE 8. Second case for alternate search procedure with digital FRFT implementation.

Accordingly, given

p̂alt = argmax


∣∣∣{DF p̂+1po4 [S (n)]

} (
û
)∣∣∣,∣∣∣{DF p̂−1po4 [S (n)]

} (
û
)∣∣∣
 (61)

Then, the associated alternate FRFT gains are given as follow
P̃alt = max

[∣∣∣∣X (p̂+ 1po4 , û
)∣∣∣∣, ∣∣∣∣X (p̂− 1po4 , û

)∣∣∣∣]
P̃′alt = min

[∣∣∣∣X (p̂+ 1po4 , û
)∣∣∣∣, ∣∣∣∣X (p̂− 1po4 , û

)∣∣∣∣]
(62)

So, the Doppler rate estimation based on the measurements
of (62) is given by

µ̂alt = ζ
(
p̂alt

)
+1δµ̂alt (63)

and the corresponding Doppler shift estimation is given by

1f̂alt = û csc
(π
2
p̂alt

)
−

1
2
µ̂altNT +1δûalt (64)

where 1δûalt and 1δµ̂alt represent estimations of Doppler
shift error and Doppler rate error related to (62), respectively.

Finally, the criterion for the alternate search procedure is
summarized in Algorithm 3.

VI. INTRODUCTION OF THE PROPOSED ALGORITHMS
We introduce three algorithms in this section, and we explain
them through a flow chart as illustrated in Fig. 9, where the
red lines highlight the main flow for the estimation process
of the unknown initial Doppler shift and Doppler rate of
the incoming GNSS signal. Required input information are
also shown in the other blocks of this chart. A summary
for this flow chart will be subsequently provided. At first,
Algorithm 1 is used to calculate the proposed optimal bin
size of the FRFT order with the priori information about
the range of the signal dynamics. The computed bin size
can guarantee a maximum 6-dB loss of the DFRFT in the
acquisition process as mentioned earlier in Section IV. Then,
Algorithm 2 proposes a novel and fast Doppler rate estimator

Algorithm 3 Alternate Search Procedure
1: Require: 1δû, 1δµ̂ and σµ through Algorithm 2;
2: Implement alternate digital FRFT algorithm with (60);
3: Obtain

[
P̃alt , P̃′alt

]
by (62);

4: Compute the design matrix, G, by (48);
5: Build the measurement misclosure vector, b, by (50);
6: Estimate the frequency error, 1δûalt , and Doppler rate

error, 1δµ̂alt , of the unknown state vector based on NLS
method by (52);

7: if
∣∣1δµ̂∣∣ < ∣∣1δµ̂alt ∣∣ do

8: if
∣∣1δµ̂∣∣ < 3σµ do

9: Compute the accurate Doppler rate by (58);
10: Compute the initial Doppler shift by (59);
11: else do
12: Compute the Doppler rate by (18);
13: Compute the initial Doppler shift by (19).
14: end if
15: else do
16: if

∣∣1δµ̂alt ∣∣ < 3σµ do
17: Compute the accurate Doppler rate by (63);
18: Compute the initial Doppler shift by (64);
19: else do
20: Compute the Doppler rate by (18);
21: Compute the initial Doppler shift by (19).
22: end if
23: end if

with the NLS method based on the DFRFT implementa-
tion. At last, the alternate estimations of the Doppler shift
and Doppler rate unknown variables would be attained with
Algorithm 3 as well. The decision making process will be
done and the proper estimations would be simultaneously
determined with Algorithm 3.

VII. SIMULATION RESULTS
GPS L1 C/A signal is adopted to verify proposed algo-
rithms, and Matlab R2016b is the software platform used for
simulations. Only carrier and spreading code are included
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FIGURE 9. An overall flow chart for the proposed three algorithms,
i.e., Algorithm 1, Algorithm 2, and Algorithm 3.

TABLE 1. Parameter settings for simulations.

in simulated signals. In reality, assisted GNSS (A-GNSS)
technology, by which navigation data can be retrieved
from an Internet server through Wifi/cellular network [44],
is frequently used to obtain the data-wipe-off signal for
a very long coherent integration in a challenging environ-
ment [45]–[47]. Besides, some other techniques are also able
to address the data-bit-transition problem, e.g., the proposed
approach in [3]. Therefore, it is reasonable that data bits
are ignored in our simulations. The false alarm rate is set
to 10−6. Input initial Doppler shift is 0 Hz. Experiments will
be only carried out when the signal is detected. Since the
acquisition process in terms of the spreading code dimension
is not related to this work, it is assumed that the code phase
is acquired in simulations. The parameter settings are listed
in Table 1.

Referring to Algorithm 1 and the associated results illus-
trated in Fig. 3, four cases are chosen to verify the proposed
algorithms, i.e., Algorithms 2 and 3. The associated param-
eter settings are listed in Table 2 where the upper and lower
bounds of p with the given acceleration ranges are primarily
estimated and constrained by the computation results of (53).

It should be noticed that just the cases with positive accelera-
tions are included in simulations. Explanations for this choice
will be subsequently described.

Suppose that the operator for continuous FRFT is given
by Rα (·); F (·) is the operator for the ordinary Fourier trans-
form. As mentioned in [14], Rα (·) and F (·) should have the
following properties

F {F [x (t)]} = x (−t)
R
π
2 [x (t)] = F [x (t)]

Rβ {Rα [x (t)]} = Rα+β [x (t)]
X (p,−u) = R

π
2 p [x (−t)]

(65)

where x (t) stands for a signal in the time domain. According
to these properties, it can be derived as

X (p+ 2, u) = Rα+π [x (t)]

= Rα
{
Rπ [x (t)]

}
= Rα {F {F [x (t)]}}

= Rα [x (−t)] = X (p,−u) (66)

where α = π
2 p; X (p, u) denotes the FRFT output of x (t)

with a rotation angle of α, or with a FRFT order of p.
|X (p, u)| is periodic with period π in terms of the rotation
angle. Accordingly, it is appropriate that the DFRFT is carried
out within a single period in terms of the sweeping search
interval, i.e., α ∈ [0, π]. Furthermore, depending on (18) and
the property of cotangent, it can also be obtained as

µ =

{
ζ (p) ≥ 0, p ∈ [1, 2)
ζ (p) ≤ 0, p ∈ (0, 1]

(67)

where µ denotes the Doppler rate of the signal. Again,
according to the property of the cotangent function, it can be
derived as

ζ (p) = −ζ (2− p) (68)

Then, if ζ (p) ≤ 0 with p ∈ (0, 1], substituting (68) to it
gives ζ (2− p) ≥ 0 with 2 − p ∈ [1, 2), i.e., ζ

(
p′
)
≥ 0

with p′ ∈ [1, 2) and p′ = 2 − p. The derivation
result means that the estimated positive Doppler rate has
access to be equivalent to the negative one, vice versa,
i.e.,

∣∣X (2− ζ−1 (−µ) , u)∣∣ = ∣∣X (ζ−1 (µ) , u)∣∣. Therefore,
the FRFT amplitude of |X (p, u)| with positive dynamics are
symmetric with the onewith negative dynamics, whichmeans
that they are dual with the zero-acceleration solution, where
the case with detected p = 1 corresponds to the one that
the acceleration is equal to zero. So, it is reasonable that the
simulations in which only the single period with respect to
the sign of the Doppler rate are implemented. Fig. 5 can help
to understand this story.

A. ROOT-MEAN-SQUARE ERROR FOR ESTIMATIONS
Some simulation results are illustrated in Fig. 10 and
Fig. 11, where opt-frft denotes the original DFRFT operator,
i.e., {DFp [S (n)]} (u), with the determined optimal FRFT
order bin given as 1p = 1po

2 ; opt-frft-nls stands for the
result computed with Algorithms 2 which is based on the
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TABLE 2. Simulation parameter settings for digital FRFT implementation.

FIGURE 10. Monte Carlo simulation performances for Case 1, 2, and 3.
Displayed accelerations for the x-axis are the absolute values of the real
input accelerations.

NLS estimation; alt-opt-frft represents the alternate coun-
terparts with

{
DF p̂alt [S (n)]

} (
û
)
of opt-frft; alt-opt-frft-nls

denotes the result corresponded to the alternate search of
opt-frft-nls, of which the computation process is given in
Algorithm 3; fine-frft is the original operator {DFp [S (n)]} (u)
with a fine FRFT order bin size, i.e., the value of 0.001. The
dashed red lines in Fig. 10 and Fig. 11 highlight the proposed
maximum root-mean-square error (RMSE) among the cases
with different input accelerations. 100 trials are contained for
each experiment in Fig. 10 and Fig. 11.

Through the Monte Carlo experiment results in Fig. 10
and Fig. 11, it can be roughly concluded that the results
with proposed algorithms for Case 1 and Case 2 perform
worse than the ones with fine-frft; the results for Case 3 are
similar to the ones for Case 4 considering the average RMSE
results. However, the maximum RMSE of Case 3 is larger
than the error of Case 4. It can be accordingly inferred that
the proposed algorithms are more efficient in Case 4 than
in Case 3. In this case, Case 4 is finally determined to test
how the performance of proposed algorithms change with
different input C/N0 values. As illustrated in the bottom

FIGURE 11. Monte Carlo simulation performances for Case 4. Displayed
accelerations for the x-axis are the absolute values of the real input
accelerations.

of Fig. 11, the lower the C/N0 is, the worse the proposed
algorithms perform. It should be noticed that the performance
of the acquisition based on the digital FRFT implementation
for the weaker-signal situation can be improved by increasing
the dwell search time [32].

When the real input acceleration is fixed, the theoretical
lower bound (LB) for Doppler rate and Doppler shift estima-
tion based on the digital FRFT implementation is approxi-
mated as (54) and (57), respectively. Based on the analysis of
the stochastic model [48], the mean of STD for Doppler rate
estimation among the full acceleration search dimension can
be derived as follow

σ̄µ =

√√√√√ M∑
i=1

(
σ
(m)
µ

)2
M

(69)

where the superscript m corresponds to the index of the input
acceleration; M stands for the number of input acceleration.
Similarly, the mean of STD for Doppler shift estimation can
be given by

σ̄1f =

√√√√√ M∑
i=1

(
σ
(m)
1f

)2
M

(70)
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FIGURE 12. RMSE for Doppler rate and Doppler shift estimations based
on Monte Carlo experiments with proposed algorithms. Displayed
accelerations for the x-axis are the absolute values of the real input
accelerations.

Another group of Monte Carlo experiments are carried
out to verify the estimation accuracy with proposed algo-
rithms. Firstly, the RMSE curves estimated from the exper-
iment results with proposed algorithms as given in Fig. 9 are
illustrated in Fig. 12. It can be found that the RMSEs for
Case 1 and Case 2 perform similarly with each other; the
estimation performances are also addressed similarly within
Case 3 and Case 4. Besides, it is assured that the results
of Case 3 and Case 4 outperform the ones computed from
Case 1 and Case 2 as shown in Fig. 12.

In addition, considering that the input dynamics ranging
from 0 g to 200 g, the means of the RMSE for all these
estimations are computed with (69) and (70), and the results
of Doppler rate estimation errors and initial Doppler shift esti-
mation errors are shown in Fig. 13 and Fig. 14, respectively,
where LB denotes the theoretical lower bound computed
with (69) and (70). At first, the estimation trends of the
simulation data are almost matched with the curves of the
theoretical lower bound. Besides, there is a noticeable error
difference between the LB and the practical mean of the
RMSE, because the noise level is omitted here. However,
the random noise should also be assumed as a factor that
would contribute to the value of the LB in this work.

B. COMPUTATIONAL COMPLEXITY
To verify the improvement of the computation efficiency
with proposed algorithms, the computational complexity with
different methods will be analyzed in this section.

The computational complexities for proposed
Algorithm 2 and Algorithm 3 will be analyzed. The most
time-consuming step for computation is supposed to be the

FIGURE 13. Mean of RMSE for Doppler Rate estimations based on Monte
Carlo experiments.

FIGURE 14. Mean of RMSE for Doppler shift estimations based on Monte
Carlo experiments.

procedure of the NLS estimation with (52), which con-
tains twice matrix multiplication and once matrix inversion,
regardless of the process with the digital FRFT implemen-
tation. As mentioned in [49], the computational complexity
for both matrix multiplication and inversion implementations
should be given by2

(
i3
)
, where2(·) is the notation for time

complexity; i stands for the matrix dimension which is equal
to 2 in proposed algorithms. Again, seven-times iterations are
used to confirm a reliable convergence for the NLS estimation
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process. Therefore, the computational complexity with (52)
can be obtained as follow

Onls = 7× 3×2
(
23
)
= 21 ·2

(
23
)

(71)

Next, referring to [32], the computational complexity for the
digital FRFT algorithm is given by

O =
pr
21p

[
18τd
T

log2
(τd
T

)
+

34τd
T

]
(72)

where pr denotes the search range of FRFT order.
The computation process for proposed algorithms in

Case 4 will be subsequently taken to be an example. Firstly,
the corresponding complexitywith respect toAlgorithm 2 can
be obtained as

O1 =
pr

2× 1po
2

[
18τd
T

log2
(τd
T

)
+

34τd
T

]
=

1.084− 0.986
2× 0.007

×

[
18× 51.2

0.2
× log2

(
51.2
0.2

)
+

34× 51.2
0.2

]
= 318976 (73)

Then, the time complexity in terms of the NLS estimation has
been offered with (71). Finally, extra added computational
complexities in Algorithm 3 compared with Algorithm 2 will
be given by

O2 = 2
[
18τd
T

log2
(τd
T

)
+

34τd
T

]
= 2×

[
18× 51.2

0.2
× log2

(
51.2
0.2

)
+

34× 51.2
0.2

]
= 91136 (74)

Therefore, the final computational complexity for proposed
algorithms, i.e., Algorithm 2 plus Algorithm 3, can be sum-
marized as

Op = O1 + Onls + O2 = 410112+ 21 ·2
(
23
)

(75)

As shown in Fig. 13 and as listed in Table 3, the estimation
accuracy with proposed algorithms in Case 4 performs better
than the original FRFT implementation with an order search
rate of 0.002 but worse than the one with an order search rate
of 0.001. The computational complexities for these two FRFT
implementation processes are given by

O0 =
pr
21p

[
18τd
T

log2
(τd
T

)
+

34τd
T

]
=

0.098
2× 0.001

×

[
18×51.2

0.2
×log2

(
51.2
0.2

)
+
34×51.2

0.2

]
= 2232832 (76)

O′0 =
pr
21p

[
18τd
T

log2
(τd
T

)
+

34τd
T

]
=

0.098
2× 0.002

×

[
18×51.2

0.2
×log2

(
51.2
0.2

)
+
34× 51.2

0.2

]
= 1116416 (77)

TABLE 3. Mean RMSE of Doppler rate estimations with different
methods; units are in g.

where O0 denotes upper bound of the computational com-
plexity with proposed algorithms, while O′0 represents the
lower bound of it. The computational improvement for pro-
posed algorithm can be approximated as

r =
O0 − Op
Op

=
2232832−

[
410112+ 21 ·2

(
23
)]

410112+ 21 ·2
(
23
)

≈ 444.44%

r ′ =
O′0 − Op

Op
=

1116416−
[
410112+ 21 ·2

(
23
)]

410112+ 21 ·2
(
23
)

≈ 172.22% (78)

where r denotes the percentage of maximum improvement,
while r ′ stands for the percentage of minimum improve-
ment. Since 212

(
23
)
is very small when it is compared

with the total complexity, it is omitted in the computations.
Therefore, it can be concluded that the performance of the
proposed novel Doppler rate estimator is much better than
the original digital FRFT, and the improvements are around
172.22%− 444.44% for Case 4.
The summaries for the analysis of the computational com-

plexities and the improvements with all cases mentioned
in Table 2 are listed in Table 4, where the computational
complexity related to the NLS estimation process is very
small so that it is omitted in the calculation as mentioned
earlier.

VIII. ANALYSIS AND DISCUSSION
In this section, some analysis and discussions based on simu-
lation results will be presented. Some arguments of proposed
algorithms on comparisons with previous works will be also
provided. At last, the achievements and significance of our
works would be illustrated.

A. ESTIMATION ACCURACY
Some conclusions can be drawn through Fig. 10 and Fig. 11.
On the one hand, the simulation results in Case 3 and
Case 4 with proposed algorithms are very similar to the ones
estimated by the DFRFT implementation with a fine order bin
size. However, the computational cost of proposed algorithms
is much lower than the DFRFT with the fine bin size. So,
it can be generally concluded that the computation efficiency
has been improved. Some more rigorous analysis for the
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TABLE 4. Computational complexity performance of proposed Doppler rate estimator.

dependence of the estimation accuracy and computational
complexity on the FRFT order search rate will be provided
in Section VIII-B.

On the other hand, based on the results illustrated in
Fig. 10, Fig. 11, Fig. 12, and Fig. 13, as well as the com-
putational cost, Op, listed in Table 4, proposed algorithms
in the case with higher computational complexity can offer
higher estimation accuracy. Since Onls is so small when it is
compared with Op as mentioned earlier, it is omitted in the
given results.

As shown in Fig. 13, the estimation accuracy of the
Doppler rate with the ordinary DFRFT is highly influenced
by the determined FRFT order bin, 1p. The narrower the
FRFT order bin is, the more accurate estimations the DFRFT
can provide. The estimation accuracies for the Doppler shift
in Case 4 are higher than the accuracy results in Case 3, and
proposed algorithms in Case 2 perform slightly better than the
results in Case 1, as illustrated in Fig. 14. Besides, Doppler
shift estimations in both Case 3 andCase 4 are evidently supe-
rior to the estimation results in Case 1 and Case 2. Secondly,
when the longer dwell time is used for DFRFT implemen-
tation, both accurate Doppler rate and Doppler shift results
can be estimated in a more accurate way. Besides, the sam-
pling interval would theoretically make a slight difference on
the final estimation results. If the dwell time is fixed, more
promising estimation results in terms of the Doppler rate
can be offered when a larger sampling interval in frequency
domain is determined referring to (18), (37), (54), and (69).
Therefore, the performance of the Doppler shift estimation
is highly related to the dwell time but not so dependent on
the level of the computational complexity. Nevertheless, both
of these two factors play a significant role to influence the
accuracy of the Doppler rate estimations. In reality, when the
chosen FRFT order bin is narrower, the final results will be
more possible to be influenced by the noise random error
instead of the frequency sampling interval. Then, the Doppler
shift estimation is dependent on both frequency resolution
and the Doppler rate estimation accuracy as mentioned
in (19), (36), (57), and (70). Thirdly, since different settings
in terms of dwell time and sampling interval are used to verify
our proposed algorithms, it can be proved from the estimation
results that the proposed algorithm can perform much better
with the determined optimal FRFT order bin than the results
obtained from the ordinaryDFRFTwith the same FRFT order
bin size.

Finally, the estimation accuracies of Doppler rate with
proposed algorithms are compared with the ones estimated
from the DFRFT method when the same FRFT order bin size
is used. Referring to Table 3, the results of the first row and
the sixth row should be contained in comparison. Based on
the computation process of (78), similarly, the percentages of
the improvement for Case 1 to 4 are calculated as 242.35%,
199.59%, 99.78%, and 243.96%, respectively. So, the esti-
mation accuracy has largely been improved by proposed
algorithms when compared with the ordinary DFRFT.

B. COMPUTATIONAL COMPLEXITY
Referring to the data in Table 4, the computation efficiency
for all involved cases have significantly been improved with
proposed algorithms. The improvement performs worst in
Case 3 which is within a minimum improved percentage
of 81.48%, while the estimation results in Case 4 benefit most
from proposed algorithms, and the computational complexity
can be reduced by minimum 172.22%. However, the real
improvements will be more than the minimum value referring
to the means of the RMSE listed in Table 3. In conclusion,
it can be proved that the proposed novel Doppler rate esti-
mator as described in Algorithm 2 and Algorithm 3 has the
ability to highly improve the computation efficiency based on
the DFRFT implementation.

C. COMPARISONS WITH PREVIOUS ALGORITHMS
There are some other algorithms reported in previous works
being used to increase the computation efficiency. For
instance, a two-dimensional (2D) neighbor search approach
is proposed to reduce the search range of the FRFT order [33].
The brief idea for this algorithm will be subsequently
described. Once an initial acceleration or Doppler rate is
detected with the digital FRFT [15], the search range in terms
of the FRFT order bin related to the following Doppler rate
estimations can be narrowed with (19), and more detailed
explanations can be read in [33]. However, there is lack
of explanation why the FRFT order bin is set to 0.001 in
their work. If an over small search bin is used in the digital
implementation, the computation complexity can be seriously
increased [32] and the fact is not allowed to occur in the real-
time implementation. On the other hand, it can be noticed that
the parameter setting for the digital FRFT implementation
in [33] is identical to Case 4 as shown in Table 2 in our
research. Estimation results based on the algorithms of the
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DFRFT implementation in [33] and this work are corre-
sponded to DFRFT: 1p = 0.001 and Proposed: 1p = 1po

2 ,
respectively. Therefore, it can be concluded that proposed
algorithms outperform the 2D neighbor search approach
introduced in [33] based on previous analysis, and the
2D neighbor search can even be improvedwith a proper FRFT
order bin calculated through Algorithm 1 in this work.

A maximum-amplitude-based coarse-to-fine (MACF)
algorithm is also proposed in previous work [36] to shrink
the FRFT search range as much as possible. However, some
limitations could not be ignored when this algorithm will
be applied to different types of signals. The acquisition
process for dynamic and weak GNSS signals based on the
DFRFT with the MACF will be taken as an example here.
If parameter setting is initially determined with an inappro-
priate coarse FRFT order bin for the signal acquisition in
a weak and dynamic situation, the FRFT amplitude peak
of the real signal will be buried with the noise at a very
high possibility. More DFRFT implementations have to be
contained in the computation to confirm a correct estimation,
and extra computational complexities would be added in this
situation. Algorithm 1 is presented in this work to deal with
this given issue and amaximumFRFT order bin can be finally
constrained within a reasonable range. On the other hand,
the maximum and minimum FRFT order bins are chosen
as 0.1 and 0.001, respectively, through the search procedure
with the MACF algorithm. There is no explanation why
these values are decided here. Since an appropriate FRFT
order bin is highly related to the sampling interval T , dwell
time τd , and the dynamics of the incoming signal as described
in Algorithm 1, it is possible that the optimal order bin is
larger than 0.1 and less than 0.001. It means that the MACF is
not globally applicable for various types of the signal process-
ing. However, proposed algorithms have the potential scope
of dealing with different types of LFM signals. Furthermore,
extra DFRFT implementations, with respect to the change
of the range from beginning coarse search order bin to the
final fine search order bin, must be contained based on the
MACF algorithm to find out an optimal FRFT order bin.
Nevertheless, proposed Algorithm 1 is a brute force tool
to find out the optimal FRFT order bin without any extra
DFRFT implementations. At last, the final accurate estima-
tion based on the MACF algorithm is dependent on a fine
FRFT order bin, i.e., 0.001, as well after the coarse-to-fine
search procedure. As mentioned earlier, a small order bin can
highly increase the computational complexity of the DFRFT.
However, proposed Algorithm 2 and Algorithm 3 provide a
way to offer accurate estimations based on the DFRFT with
a possibly maximum FRFT order bin.

An algorithm which is called as minimum norm method
(MNM) [35] is also investigated by researchers to uncover
the compact FRFT domain by searching the optimal
FRFT order or angle that minimizes its `1-norm instead
of the maximum amplitude as an improved version of the
MACF method [36]. Simulations results demonstrate that the
MNM performs better than the MACF method in terms of

the number of significant amplitudes (NSA) and the `1-norm.
The MNM and the MACF which are both followed with
the coarse-to-fine search approach for the DFRFT hold the
same computational cost whose total number of the DFRFT
(NDFRFT) implementations is given by [35], [36]

Nref =
(
pr
1pi
+ 1

)
+

(
λ−1 + 1

)
×

⌈
log2

(
1pi
ε

λ−1

)⌉
(79)

where d·e denotes the ceiling function; 1pi stands for the
initial equidistant pieces in terms of the FRFT order bin;
λ represents a variable parameter adjusting the order bin
size for each loop implementation; ε provides a priori lower
bound which is expected to quit the loop running at the
last step. More detailed descriptions for (79) can be referred
to [35] and [36]. On the other hand, according to (71), (73),
(74), and (75), the total NDFRFTs for proposed algorithms
can be generally attained as

Np =
pr
1po
+ 2 (80)

It can be noticed that the performance of the MNM and the
MACF method is highly related to the selection of three
parameters, i.e.,1pi, λ, and ε. As reported in [35], the coarse-
to-fine approach is totally possible to fail to detect the global
minimum with improper parameter settings. However, how
to theoretically decide these parameters has seldom been
mentioned in previous researches. In this case, the order
bin has to be determined with a size as small as possible
to guarantee the detection probability of the global mini-
mum as high as possible [35], [36]. So, the order bin will
usually be much smaller than the value it is expected to
be to tolerate the uncertainty caused by the ambiguous set-
tings with respect to the DFRFT as provided with (79) and
corresponding discussions. The fast search algorithm of the
DFRFT for the practical applications can be dramatically
limited due to the narrow order bin size. In this research,
we have presented some solutions to deal with this issue. For
example, the DFRFT gain has been modeled with (33) in our
work, the power loss of the global minimum has access to
be constrained with the value of maximum 6 dB when it is
compared with the estimation with a perfect match in the
acquisition as provided with (38). Under this circumstance,
the NDFRFT of the proposed algorithms is given by (80)
which are only dependent on 1po instead of 1pi, λ, and ε,
when compared with (79). Again,1po can be computed with
proposed Algorithm 1 so that the FRFT order bin is finally
fixed and it is also considered to be the maximum or optimal
bin size. In a word, the proposed algorithms in this work
manage to cover a significant gap related to the DFRFT as
mentioned in [35].

Although, the optimal FRFT order bin size has been deter-
mined, but it cannot be used to confirm a high accuracy of the
Doppler rate estimation. The order bin has to become smaller
to improve the estimation performance and the computational
burden is accordingly added. The proposed Algorithm 2 and
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Algorithm 3 are proposed to provide a high estimation accu-
racy of the Doppler rate without narrowing the order bin
size. In this way, only very small computational complexity
will be extra added, i.e., Onls + O2. Otherwise, a higher
computational cost would be taken with the DFRFT imple-
mentation to achieve a similarly high-precision solution if the
proposed algorithms are not used as summarized in Table 3.
In conclusion, the computational cost can be largely reduced
with the proposed Algorithm 2 and Algorithm 3. In other
words, the computational efficiency has been significantly
improved as summarized in Table 4.

In addition, according to the earlier analysis and discus-
sions, the coarse-to-fine search strategy is frequently used
to confirm a fast DFRFT implementation. More detailed
introduction for this algorithm can be referred to [36]. A loop
iteration process based on the DFRFT implementation with
varying FRFT orders and order bin sizes is the key idea for
the coarse-to-fine algorithm. However, the first loop for the
DFRFT implementation is dependent on the very ambiguous
and coarse initial FRFT order range and search order bin.
If these two parameters are determined with inappropriate
values in the beginning, the estimation will be hard to be
detected with the DFRFT at the first loop iteration, or the
acquired estimation will be far from the real value. In this
situation, more loop iterations have to be carried out to search
for an accurate estimation as far as possible, so that the
computational cost will be increased. Proposed algorithms,
which provide novel ideas to compute an optimal order bin,
i.e., Algorithm 1, and present a novel and fast Doppler rate
estimator, i.e., Algorithm 2 and Algorithm 3, can largely
speed up the DFRFT implementation in the first loop iteration
according to the results listed in Table 3 and Table 4. Then,
the coarse-to-fine search strategy will be certainly improved
with proposed novel ideas. However, this research is not our
main contribution in this work and it might be done in the
future work.

D. ACHIEVEMENTS AND SIGNIFICANCE
Some achievements have been realized in this paper.
According to the simulation results and comparisons between
proposed algorithms and other previous algorithms, i.e., the
2D neighbor search approach [33], the MACF [36], and
the MNM [35], it can be concluded that the proposed
Algorithm 1, Algorithm 2, and Algorithm 3 are very efficient
methods to improve the performances of the DFRFT imple-
mentation on both computational efficiency and estimation
accuracy in terms of the acquisition process of the high-
dynamic GNSS signal.

On the other hand, the significance of our work can
be subsequently summarized. At first, an important issue
which is reported in [35] have been solved as mentioned in
Section VIII-C, i.e., the maximum power loss of the global
minimum can be computed and a more simplified fast algo-
rithm for the DFRFT is finally proposed. Besides, the esti-
mation accuracy in terms of the Doppler rate based on the
DFRFT can be improved without speeding up the sweeping

rate of the FRFT order dimension and the computational
complexity can be largely reduced. The fact can help the
DFRFT become more promising to be applied in practical
applications. In other words, the proposed algorithms can
perform more efficiently on the fast DFRFT implementation
process. In addition, they also have the scope of processing
different types of LFM signals besides of the dynamic GNSS
signal.

IX. CONCLUSION
The FRFT order search dimension is highly related to the
implementation efficiency of the digital FRFT process. The
Doppler rate of high-dynamic GNSS signal can be efficiently
estimated with the FRFT algorithm when the FRFT order
is accurately determined. In this research, an algorithm is
firstly proposed is compute the optimal FRFT order bin
as described in Algorithm 1; then, a novel Doppler rate
estimator with the optimal FRFT order bin are introduced
to offer an accurate Doppler rate estimation as mentioned
in Algorithm 2; finally, an alternate search procedure is
simultaneously proposed to reduce the singular estimations
with the NLS method and corresponding contents are given
in Algorithm 3. Simulations with proposed algorithms are
carried out for four different cases with high-dynamic GPS
L1 C/A signal as listed in Table 1 and Table 2. The estimation
accuracy performances of Doppler shift and Doppler rate are
evaluated. Then, the computational complexity of proposed
algorithms are also computed in details. It can be proved that
the computation efficiency has been significantly improved
with proposed algorithms as well as the estimation accu-
racy has been largely increased. Proposed algorithms based
on an optimal order bin size defined in this work can be
deemed as one novel fast DFRFT algorithmwhich has seldom
been researched in previous papers. Moreover, the proposed
technique is an improvement of the FRFT algorithm itself,
the scope of application for this technique is not limited. The
mentioned scales can be adjusted flexibly for other types of
LFM-signal, so it can be applied to other types of signal in
the future.

APPENDIX
A. ABBREVIATIONS
The abbreviations used in this paper are listed in Table 5.

B. DERIVATIONS FOR THE THEORETICAL FRFT GAIN
The time delay error under high dynamics can be derived
as

1τn =
ω̄ (n)
2π fr

nT (81)

where subscript n denotes the index of discrete samples; ω̄ (n)
is given by (8). Taking GPS L1 C/A signal into consideration
in this research, the ACF of the spreading code during each
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TABLE 5. List of abbreviations.

sampling interval can be approximated as

R (1τn) =


1−

1τn

Tc
, 1τn ≥ 0

1+
1τn

Tc
, 1τn < 0

(82)

Accordingly, if 1τn ≥ 0, R6 accounting for (20) can be
derived as

R6

≈
1
N

N∑
n=1

{
1−

[
1fnT + µ

2 (nT )
2]

frTc

}

= 1−
1

NfrTc

{
N∑
n=1

[
1fnT +

µ

2
(nT )2

]}

= 1−
1

NfrTc

{
1fT

(1+N )N
2

+
µT 2

2
N (N+1) (2N+1)

6

}
= 1−

1
NfrTc

{(
N+N 2

)
1fT

2
+

(
2N 3
+3N 2

+ N
)
µT 2

12

}

= 1−
(1+ N )1fT

2frTc
−

(
2N 2
+ 3N + 1

)
µT 2

12frTc
(83)

Finally, given

R6 ≈



1−
(1+ N )1fT

2frTc
−

(
2N 2
+ 3N + 1

)
µT 2

12frTc
,

1τn ≥ 0

1+
(1+ N )1fT

2frTc
+

(
2N 2
+ 3N + 1

)
µT 2

12frTc
,

1τn < 0

(84)

According to Euler’s formula, given

sinc (ϕt) =
sinπϕt
πϕt

=

∞∏
n=1

(
1−

ϕt
2

n2

)
≈

(
1−

ϕt
2

12

)(
1−

ϕt
2

22

)
= 1− ϕt2 −

ϕt
2

4
+
ϕt

4

4

= 1−
5
4
ϕt

2
+

1
4
ϕt

4 (85)

with

ϕt = 1fT +
µ

2
Tt (86)

Next, the absolute value of the integration with (85) can be
derived as

∣∣∣∣∫ NT

0
sinc

(
1fT +

µ

2
Tt
)
dt

∣∣∣∣
=

∣∣∣∣∫ NT

0
sinc (ϕt) dt

∣∣∣∣
≈

∣∣∣∣∫ NT

0

(
1−

5
4
ϕt

2
+

1
4
ϕt

4
)
dt

∣∣∣∣
=

∣∣∣∣NT − ∫ nT

0

(
5
4
ϕt

2
)
dt +

∫ nT

0

(
1
4
ϕt

4
)
dt

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

NT

+

∫ NT

0



[
1
4
(1fT )2

(
(1fT )2 − 5

)]
+

[
1
4
µT (1fT )

(
2(1fT )2 − 5

)]
t

+

[
1
16
µ2T 2

(
6(1fT )2 − 5

)]
t2

+
1
8
1f µ3T 4t3 +

1
64
µ4T 4t4


dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(87)

Supposing that ϕ0 = 1fT , so,

κ
f
1 =

1
NT

∣∣∣∣∫ NT

0
sinc (ϕt) dt

∣∣∣∣

=
1
NT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

NT

+

∫ NT

0



[
1
4
ϕ0

2
(
ϕ0

2
− 5

)]
+

[
1
4
µTϕ0

(
2ϕ02 − 5

)]
t

+

[
1
16
µ2T 2

(
6ϕ02 − 5

)]
t2

+
1
8
µ3T 3ϕ0t3 +

1
64
µ4T 4t4


dt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
1
4
ϕ0

2
(
ϕ0

2
− 5

)
+ 1

]
+

[
1
8
µTϕ0

(
2ϕ02 − 5

)]
NT

+

[
1
48
µ2T 2

(
6ϕ02 − 5

)]
N 2T 2

+
1
32
µ3ϕ0N 3T 6

+
1
320

µ4N 4T 8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1+

ϕ0
2
(
ϕ0

2
− 5

)
4

+
ϕ0
(
2ϕ02 − 5

)
µNT 2

8

+

(
6ϕ02 − 5

)
µ2N 2T 4

48
+
ϕ0µ

3N 3T 6

32
+
µ4N 4T 8

320
(88)

κ
f
2 can be derived as

κ
f
2 =

∣∣∣∣ 1
NT

∫ NT

0
exp (j2πδut) dt

∣∣∣∣
=

∣∣∣∣ 1
NT

1
j2πδu

exp (j2πδut)|NT0

∣∣∣∣
=

∣∣∣∣ 1
NT

1
j2πδu

[
exp (j2πδuNT )− 1

]∣∣∣∣
=

∣∣∣∣∣∣∣
1

πδuNT
exp (jπδuNT )

×
exp (jπδunT )− exp (−jπδunT )

2j

∣∣∣∣∣∣∣
=

∣∣∣∣ 1
πδuNT

sin (πδuNT )

∣∣∣∣ = |sinc (δunT )|
= sinc (δunT ) (89)

C. DERIVATIONS FOR THE OPTIMAL FRFT ORDER BIN
According to (38), given

10 lg
[
(GR)2

]
≥ −6⇒ GR ≥ γ (90)

Then, Doppler rate resolution is given by (37), and, again,
it can be derived as follow

δµR

=

∣∣∣∣∣µ̄−
(
−
cot

(
ᾱ + π

41p
)

NT 2

)∣∣∣∣∣+
∣∣∣∣∣µ̄−

(
−
cot

(
ᾱ − π

41p
)

NT 2

)∣∣∣∣∣
=

∣∣∣∣∣µ̄+ cot
(
ᾱ + π

41p
)

NT 2

∣∣∣∣∣+
∣∣∣∣∣µ̄+ cot

(
ᾱ − π

41p
)

NT 2

∣∣∣∣∣ (91)

Since 1p is narrow enough, it can be approximated as

δµR

2
≈

∣∣∣∣∣µ̄+ cot
(
ᾱ + π

41p
)

NT 2

∣∣∣∣∣ ≈
∣∣∣∣∣µ̄+ cot

(
ᾱ − π

41p
)

NT 2

∣∣∣∣∣
(92)

where µ̄ = − cot ᾱ
NT 2 . Next, substitute (33) to (90), given

R6κ
f
1κ

f
2Cα

(
1− 0.02r22 − 0.03r24

)
≥ γ (93)

where r2 is provided by (27) which can be assumed as an
unknown variable here. Equation (93) can be also transferred

to the form as follow

r24 + Br22 + C ≤ 0 (94)

where B and C are given by (41); γ is set to 0.5; Cα is
approximated as 1

√
|sin ᾱ|

. In order to work out the solution
of (94), based on mathematical theorems, it should satisfy

0 ≤ r2 ≤

√
−B+

√
1

2
(95)

Again, known that

r2 =

√
πδµNT
2

=

√
π
δµR
2 NT

2
(96)

Finally, it can be derived as

√
πNT

√
δµR
2

2
≤

√
−B+

√
1

2

⇒
δµR

2
≤
−2B+ 2

√
1

πN 2T 2

⇒
cot

(
ᾱ + π

41p
)

NT 2 ≥
2B− 2

√
1

πN 2T 2 − µ̄

⇒ 0 < 1p ≤
4
π

{
cot−1

[
2B− 2

√
1

πN
− µ̄NT 2

]
− ᾱ

}
⇒ 0 < 1p ≤

4
π

{
cot−1

[
−2D− µ̄NT 2

]
− ᾱ

}
(97)

with

D =
−B+

√
1

πN
(98)

D. DERIVATIONS FOR PROPOSED DOPPLER RATE
ESTIMATOR BASED ON NON-LINEAR LEAST
SQUARE METHOD
Substituting (25) and (30) to (45), the loss function can be
finally derived as follow

J (θ) =
∣∣∣∣∣∣X (p, u| p = ζ−1 (µ) , u = f −1 (δu)

)∣∣∣− P̃∣∣∣2
=

∣∣∣R6κ f1Cαsinc (δuNT ) (1−0.02sδµ−0.03s2δµ)−P̃∣∣∣2
=

(
R6κ

f
1Cα

)2
sinc2 (δuNT )

(
1−0.02sδµ−0.03s2δµ

)2
− 2P̃R6κ

f
1Cαsinc (δuNT )

(
1−0.02sδµ − 0.03s2δµ

)
+ P̃2 (99)

with 
δµ = |ζ (p)− µ|

sδµ =
π

4
δµN 2T 2

ϕδu = δuNT

(100)

Besides, according to (85), it can be obtained as

sinc (ϕδu) ≈ 1−
5
4
ϕδu

2
+

1
4
ϕδu

4 (101)
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Noticing that when the signal is detected with digital FRFT
implementation as given by (44), p′ and u′ currently can
both be assumed as the quasi-real values. This fact lead to
the consequence that ϕδu is very close to zero. Higher order
terms of Euler’s formula can be removed and sinc (ϕδu) can,
accordingly, approximated as the form of (101). So, the par-
tial derivative of (101) satisfies

∂sinc (δu · NT )
∂δu

=

∂
[
1− 5

4ϕδu
2
+

1
4ϕδu

4
]

∂δu

= −
5
2
ϕδuNT + ϕδu3NT (102)

Furthermore, the corresponding partial derivatives of (47) can
be given as follows, i.e.,

∂J (θ, ξ)
∂δu

= 2R6κ
f
1Cα

(
1− 0.02sδµ − 0.03s2δµ

)
×

(
ϕδu

3
−

5
2
ϕδu

)
NT

×


R6κ

f
1Cα

×

(
1− 0.02sδµ − 0.03s2δµ

)
×sinc (δuNT )
−P̃

 (103)

and
∂J (θ, ξ)
∂δµ

= 2 ·
(
R6κ

f
1Cα

)2
sinc2 (δu · NT )

×

(
1− 0.02sδµ − 0.03s2δµ

)
×
(
−0.02− 0.06sδµ

) ∂sδµ
∂δµ

− 2P̃R6κ
f
1Cαsinc (δu · NT )

×
(
−0.02− 0.06sδµ

) ∂sδµ
∂δµ

(104)

with
∂sδµ
∂δµ
=
π

4
N 2T 2 (105)

Hence, the results can be given as follow

∂J (θ, ξ)
∂δu

= 2R6κ
f
1Cα ×

(
1− 0.02sδµ − 0.03s2δµ

)
×

(
ϕδu

3
−

5
2
ϕδu

)
NT

×


(
R6κ

f
1Cα

)
sinc (δuNT )

×

(
1− 0.02sδµ − 0.03s2δµ

)
−P̃

 (106)

∂J (θ, ξ)
∂δµ

= πN 2T 2R6κ
f
1Cα

× sinc (δuNT )
(
−0.01− 0.03sδµ

)
×


(
R6κ

f
1Cα

)
sinc (δuNT )

×

(
1− 0.02sδµ − 0.03s2δµ

)
−P̃

 (107)
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