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ABSTRACT Time series identification is one of the key approaches to dealing with time series data and
discovering the change rules. Therefore, time series forecasting can be treated as one of the most challenging
issues in this field. In order to improve the forecasting performance, we propose a novel time series prediction
model based on a complex-valued ordinary differential equation (CVODE) to predict time series. A multi
expression programming (MEP) algorithm is utilized to optimize the structure of the CVODEmodel. So as to
achieve the optimal complex-valued coefficients, a novel optimization algorithm based on a complex-valued
crow search algorithm (CVCSA) is proposed. The chaotic Mackey-Glass time series, small-time scale traffic
measurements, Nasdaq-100 index, and Shanghai stock exchange composite index are utilized to evaluate the
performance of our method. The results prove that our proposed method could predict more accurately than
state-of-the-art real-valued neural networks and an ordinary differential equation (ODE). The CVCSA has
faster convergence speed and stronger optimization ability than the crow search algorithm (CSA) and particle
swarm optimization (PSO).

INDEX TERMS Complex-valued, ordinary differential equation, crow search algorithm, time series.

I. INTRODUCTION
Time series forecasting method is to observe and learn time
series data, and focus on discovering the change rule, so as
to forecast the level that may be reached in the next period
of time or in the next few years [1]–[4]. Time series data can
hardly overcome some shortcomings, including high noise,
randomness and nonlinearity. Considering those limitations,
the modeling and prediction of such type of data are always
research hot and difficulty points in this field [5], [6]. As the
most classical modeling model, neural network (NN) has
been utilized to solve these practical problems [7]–[10].
Generally, neural network can be regarded as a black box,
and researchers could not understand the specific functional
relationship among these variables, which make it difficult
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to analyze the internal mechanism of the system. Recently,
mathematical formulations especially ordinary differential
equations (ODE) have been proposed to model the relation-
ships between input and output variables by intelligent com-
puting methods, whose theory analysis can offer the guidance
for practical systems [11]–[14].

Ordinary differential equation model has proposed to pre-
dict time series data and model the real systems [15]–[19].
Hass et al. proposed fast integration-based prediction bands
to assess ODEmodel’s uncertainty for cellular signaling [20].
Zjavka et al. proposed differential polynomial neural network
(DPNN) with ODE substitutions to predict Short-term power
load [21]. Linares et al. presentedODE and partial differential
equation (PDE) to accurately quantify the basic phenomenon
of methadone mass transfer during hemodialysis in order to
provide the methadone dosage guidance for the doctors [22].
Cao et al. utilized ODE model to identify gene regulatory
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network (GRN) with the time-series data [23]. Ilea et al.
applied ODE model in molecular biology, which conforms
well to many biological laws and relations [24].

Complex number could have richer representation abil-
ity than real value, and also improve the memory retrieval
mechanism of noise robust. Many complex-valued models
have been proposed to predict time series data [25]–[29].
Xiong et al. presented complex-valued radial basis function
neural networks (FCRBFNNs) to forecast real interval stock
price time series data [30]. Saoud et al. presented fully
complex-valued wavelet network (FCWN) to predict the
global solar irradiation and complex-valued gradient descent-
learning method was proposed to search the complex-valued
parameters [31]. These experiment results revealed that
complex-valued models could perform better than the corre-
sponding real-valued versions.

In order to accurately predict time series, a novel complex-
valued time series prediction model based on ordinary differ-
ential equation (CVODE) is proposed. In a CVODE model,
coefficients and functions are complex-valued. A novel
hybrid evolutionary method based on Multi expression pro-
gramming (MEP) algorithm and complex-valued crow search
algorithm (CVCSA) is proposed to optimize the structure
and complex-valued coefficients of CVODE models. The
simulated time series from chaotic Mackey-Glass differen-
tial delay equation and three real time series datasets from
small-time scale trafficmeasurements, Nasdaq-100 index and
Shanghai stock exchange composite index are utilized as the
standard datasets.

II. METHOD
A. COMPLEX-VALUED ORDINARY
DIFFERENTIAL EQUATION
Complex-valued ordinary differential equation (CVODE) is
the complex-valued version of ODE model. In a CVODE,
input variables, output variables, functions and coefficients
are complex-valued, which is described as follows.

dZ
dt
= W · F(Z , t). (1)

where, W is the complex-value coefficient vector, F(·) is
complex-valued function and Z is complex-valued input
vector.

B. MULTI EXPRESSION PROGRAMMING
1) CHROMOSOME STRUCTURE
Multi expression programming (MEP) is a novel evolutionary
algorithm based on structure proposed by Oltean, which is an
improved version of genetic programming (GP) [32], [33].
Compared to GP, MEP algorithm has the following advan-
tages: (1) each chromosome has the linear structure; (2) the
chromosome could store multiple solutions of the problem,
and generally the best solution is utilized as the individual’s
solution; (3) the chromosome expression can reuse the code,
and no code area is rich and diverse. So MEP has been

FIGURE 1. An example of the chromosome in MEP with eight genes. The
first column denotes gene sequence number, the second column contains
the function or terminal symbol selected randomly and the last column
contains gene sequence numbers of operands of function symbol.

FIGURE 2. The corresponding eight expressions of eight genes of the
chromosome in MEP. The expression of gene with function symbol could
be composed by function symbol and the expressions of gene sequence
numbers of operands.

widely applied in many areas, such as image processing [34],
bioinformatics [35], and time series prediction [36].

In MEP algorithm, each chromosome contains multiple
expressions, each of which is called a gene. There are three
kinds of gene symbols: function symbol, terminal symbol and
gene sequence number. In this paper, MEP is utilized to opti-
mize the structure of CVODE model. Suppose that function
symbol set is F = {+,−,×, /, sin, cos, ex}, terminal symbol
set is T = {z1, z2, . . . , z5,R} (R is complex-valued constant),
and the number of genes is set as 8. An example of the chro-
mosome is created in Fig. 1. Each gene is a complex-valued
expression or CVODE model, which is depicted in Fig. 2.
Each gene is also a candidate solution or candidate CVODE
model. In order to represent the complex-valued coefficients,
each gene in chromosome of MEP is assigned a complex
value, which is described in Fig. 3. The fitness values of all
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FIGURE 3. (a) Chromosome with complex-valued parameters in MEP.
Each gene is assigned a complex-valued coefficient. (b) The
corresponding eight expressions of eight genes of the chromosome with
complex-valued parameters in MEP.

genes in one chromosome are calculated, and the best fitness
value is selected as the fitness value of the individual.

2) CHROMOSOME REPRODUCTION
In order to search for the best chromosome, three genetic
operators, including selection, crossover and mutation, are
utilized. Selection operation is utilized to select the bet-
ter solution to the next generation. The crossover operation
exchanges the partial genes of two chromosomes. Mutation
operation is utilized to change some genes in chromosomes.
The specific operator processes are introduced in Ref [32].

C. PARAMETERS OPTIMIZATION
1) CROW SEARCH ALGORITHM
Crow search algorithm (CSA) is a novel meta heuristic
optimization algorithm, which was proposed in 2016 and
originates in simulating the behavior of crows searching for
food [37]. Crows live in groups. Each crow remembers the
best place of the food. Crows could observe where other birds
hide their food and steal them when they leave. If a crow
commits theft, it can protect its food against theft with a
certain probability.

Because CSA is simple, and has less parameters and com-
putation complexity, this algorithm performs better than bat
algorithm (BA), genetic algorithm (GA), particle swarm opti-
mization (PSO), group search optimization (GSO), mine blast
algorithm (MBA), and harmony search (HS) [37], [38].

CSA is described as follows:
a) Initialize the population and parameters. Suppose that

the population has N crows X = [X1,X2, . . . ,XN ], M t
i

represents the best place of hiding food of i-th crow at t-th
time point, APti is awareness probability of i-th crow at t-th
time point, and fl ti is flight length of i-th crow at t-th time
point.

b) Calculate the fitness values of the population f (X ).
c) Update the places of crow group. The update strategies

contain two cases. The first case is that j-th crow does not
know that i-th crow tracks it and i-th crow will get closer to
the best placeM t

j of hiding food of j-th crow at t-th time point.
The second one is that if j-th crow finds that i-th crow tracks
it, j-th crow could deliberately take i-th crow to a random
location. The update formula is shown as follows.

X ti+1 =

{
X ti + ri × fl

t
i × (M t

j − X
t
i ), rj ≥ APtj

a random position, otherwise
(2)

where, ri and rj are random variables in [0, 1].
d) Judge the feasibility of the new location of i-th crow

and evaluate the fitness of the new location of i-th crow. The
place of hiding food of i-th crow is updated with the following
formula.

M t+1
i =

{
X t+1i , f (X t+1i ) > f (M t

i )
M t
i , otherwise

(3)

e) If the end condition is satisfied, algorithm stops;
otherwise go to step c).

2) COMPLEX-VALUED CROW SEARCH ALGORITHM
Compared with the real-valued optimization method,
complex-valued evolutionary methods have the higher pop-
ulation diversity and are easy to search the global optimal
solution due to the higher dimension space. Thus complex-
valued crow search algorithm (CVCSA) is firstly proposed to
optimize the complex-valued coefficients of CVODE models
in this paper.

In CVCSA, initialize n complex-valued crows according
to the number of complex-valued coefficients in CVODE
model. Each crow is evaluated after the complex number is
converted into real number. The real and imaginary part of
each complex-valued individual are updated separately. The
pseudo code of CVCSA is described in Algorithm 1.

D. THE FLOWCHART OF TIME SERIES
PREDICTION WITH CVODE MODEL
The flowchart of time series prediction is depicted in Fig. 4,
which is introduced in detailed as follows.
Step 1 (Data Preprocessing): Due to that the input data

of CVODE model are complex-valued and the predicted
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Algorithm 1 Pseudo code of CVCSA.

1 Initialize N complex-valued crows
[X1,X2, . . . ,XN ](Xk =
(x1,Rk + x

1,I
k i, x2,Rk + x

2,I
k i, . . . , xn,Rk + x

n,I
k i)) with the n

dimension and value range [Vmin,Vmax];
2 for k = 1; k ≤ N ; k ++ do
3 Calculate the fitness F(Xk );
4 end
5 Initialize
(M1,R

k +M
1,I
k i,M2,R

k +M
2,I
k i, . . . ,Mn,R

k +M
n,I
k i)) of

each complex-valued crow (for example k);
6 while t < tmax do
7 for k = 1; k ≤ N ; k ++ do
8 Select a crow randomly (j);
9 rj← a random variable;

10 if rj ≥ APtj then
11 XRi (t + 1)←

XRi (t)+ ri ∗ fl
R
i (t) ∗ (M

R
j (t)− X

R
i (t));

12 X Ii (t+1)← X Ii (t)+ri∗fl
I
i (t)∗(M

I
j (t)−X

I
i (t));

13 end
14 else
15 XRi (t + 1)← a random position;
16 X Ii (t + 1)← a random position;
17 end
18 Evaluate the new positions of the

complex-valued crows;
19 Update Mk with Eq.(3);
20 end
21 end
22 Store the best solution obtained;

Algorithm 2 Real_valued input vector is converted into
complex_valued one.
Input : Real_valued input data [g1, g2, . . . , gm] (m is

the number of sample points);
Output: Complex_valued vector [z1, z2, . . . , zm];

1 Calculate the maximum and minimum values of input
data gmax and gmin;

2 //Real data are converted into complex_valued values;
for i = 1; i ≤ m; i++ do

3 ϕi =
gi−gmin
gmax−gmin

(2π − δ);
4 zi = eiϕi ;
5 end

time series data are real-valued, it is necessary to convert
time series into complex data. The specific process is shown
in Algorithm 2.
Step 2 (Training Phase): Combined with complex-valued

time series data, MEP is utilized to optimize the structure
of CVODE model, and CVCSA is utilized to optimize the

FIGURE 4. The flowchart of time series data prediction by CVODE model.

Algorithm 3 Complex_valued input vector is converted
into real_valued one.
Input : Complex_valued vector [z1, z2, . . . , zm];
Output: Real_valued vector [y1, y2, . . . , ym];

1 for i = 1; i ≤ m; i++ do
2 arg zi = ϕi;
3 yi =

ϕi(gmax−gmin)
2π−δi

+ gmin;
4 end

complex-valued coefficients of CVODE model. The specific
optimization process is described as follows:

(1) Initialize the CVODE population, containing the
complex-valued structure and parameters of the model.

(2) The fitness value of each CVODE model is calculated
with Algorithm 4.

(3) The structure is optimized by MEP with selection,
crossover and mutation operators. And the corresponding
complex-valued parameter of each gene inMEP chromosome
is evolved by complex-valued crow search algorithm.

(4) If the maximum generation is reached, algorithm ends;
otherwise, go to (2).
Step 3 (Test Phase): The optimal CVODEmodel is utilized

to predict the time series of the next time point. The training
data at the last time point is selected as the initial input data
of the optimal CVODE model.
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Algorithm 4 Calculate the fitness value of the k-th
CVODE model.
Input : Real_valued output vector [o1, o2, . . . , om],

Complex_valued input vector
Z = [z1, z2, . . . , zm], step size h, CVODE
model dZdt = H (t,Z ), and fitness function F(·);

Output: Fitness value fk of the k − th CVODE model;
1 fk = 0;
2 for t = 1; t ≤ m; t ++ do
3 k1 = H (t, zt );
4 k2 = f (t + h

2 , zt + h ∗
k1
2 );

5 k3 = f (t + h
2 , zt + h ∗

k2
2 );

6 k4 = f (t + h, zt + h ∗ k3);
7 zo = zt + h ∗

k1+2k2+2k3+k4
6 ;

8 rot ← convert zo into real-valued data with
Algorithm 3;

9 end
10 fk = F(ro,Z );

III. EXPERIMENTS
A. DATA SETS AND EVALUATION CRITERIA
One simulated dataset and three real datasets are utilized to
test the performance of CVODE model. The simulated time
series are sampled from chaotic Mackey–Glass differential
delay equation [39]. Three real time series data are from
small-time scale traffic measurements, Nasdaq-100 index
from 11 January 1995 to 11 January 2002, Shanghai stock
exchange composite index (Shanghai index) from 04 January,
2011 to 01 January, 2015 [40], [41]. The parameters are
selected empirically and listed in Table 1.

TABLE 1. Parameters of our methods.

The root mean squared error (RMSE), maximum absolute
percentage error (MAP), means absolute percentage error
(MAPE) are utilized to test the performance of the method.
RMSE is selected as the fitness function of our method. Three
criterions are defined as followed.

RMSE =

√√√√ 1
N

N∑
i=1

(
f itarget − f

i
forecast

)2
(4)

MAP = max

(
|f itarget − f

i
forecast |

f iforecast
× 100

)
(5)

MAPE =
1
N

N∑
i=1

(
|f itarget − f

i
forecast |

f iforecast

)
× 100 (6)

where N represents the total time points, f itarget is the actual
index value on day i and f iforecast is the forecasting index value
on day i.

B. CHAOS TIME SERIES PREDICTION
The chaotic Mackey–Glass differential delay equation has
been utilized to model various physiological systems and
its time series have been recognized as a common bench-
mark dataset for testing the performance of nonlinear system
models. Mackey-Glass chaos time series are created with the
following equation.

x(t + 1) = (1− a)x(t)+
bx(t − τ )

1+ x10(t − τ )
. (7)

where a = 0.1, b = 0.2, and τ = 17. In order to
make the comparison with other methods fairly, input vector
[x(t−18), x(t−12), x(t−6), x(t)] is utilized to predict x(t+6)
and 1000 sample points are utilized. 500 samples are utilized
for training, and the remaining 500 samples are utilized for
prediction.

FIGURE 5. The predicted performance of Machey-Glass chaos time series.

The prediction results are shown in Fig. 5 and the corre-
lation coefficient (R2) between predicted data and real data
is calculated, which is 0.99565. The results reveal that the
predicted time series data are very close to the real ones.
The predicted errors are depicted in Fig. 6, which show that
the predicted errors mainly concentrate in the vicinity of
zero [−0.01, 0.01]. The prediction results show that CVODE
model could accurately predict chaotic time series data.

Table 2 lists the testing RMSE performance of eleven
methods for Machey-Glass chaos time series. It could be
clearly seen that CVODE model has smaller RMSE than
the classical methods such as Auto-regressive model and
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FIGURE 6. The predicted errors of Machey-Glass chaos time series.

TABLE 2. Predicted performance of eleven methods with Machey-Glass
chaos time series.

Genetic algorithm and fuzzy system, ANN, and state-of-the-
art methods such as RBF neural networks (D-RBF, SORBF
and RRBF), FNT andDE-ELM. Because of complex number,
CVODE performs better than its real-valued version (ODE).

In order to test the prediction ability of the algorithm
for noisy time series data, Gaussian noise is added to the
Machey-Glass chaos time series, and the standard deviations
of noises are 1%, 5% and 10%, respectively. The chaos data
with three kinds of noises are shown in Fig. 7. As can be
seen from Fig. 7, when the noise is up to 10%, the shape
and characteristics of the time series have been changed. The
predicted results and errors of chaos data with noises are
depicted in Fig. 8. CVODE model could accurately predict

FIGURE 7. Machey-Glass chaos time series with 1% noise (a), 5% noise
(b) and 10% noise (c).

the data with 1% and 5% noises and has the relatively small
errors. Due to that 10% noise changes the data, our method
has the bad performance.

With the noise chaos time series data, CVODE model are
made the comparison with ANN and ODE. The comparison
results are listed in Table 3. CVODE has the smallest
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FIGURE 8. Prediction results of Machey-Glass chaos time series with 1%
noise (a), 5% noise (b) and 10% noise (c).

predicted RMSEs among three methods, which reveal that
CVODE model has more robust performance than ANN
and ODE.

TABLE 3. RMSE performances of different methods with different noise
rates.

TABLE 4. The optimal CVODE models of three datasets.

FIGURE 9. Prediction results and errors with the traffic data.

C. REAL TIME SERIES PREDICTION
Nasdaq-100 index, Shanghai index and small-time scale traf-
fic measurements are utilized to test the prediction perfor-
mance of CVODE model. In order to make the comparison
fairly, the partition of training and testing sets is the same
as literatures. Through several runs, three optimal CVODE
models achieved are listed in Table 4 for three kinds of
datasets. The CVODE forms reveal that our proposed method
could select automatically the important and proper features.

The prediction results and errors of three kinds of real
datasets are depicted in Fig. 9, Fig. 10 and Fig. 11, respec-
tively. From these figures, it can be seen that CVODE model
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FIGURE 10. Prediction results and errors with the Nasdaq-100 index.

FIGURE 11. Prediction results and errors with the Shanghai index.

could predict the real time series data well and provide
the small forecasting errors. To evaluate the performance
of CVODE model, NN, WNN, FNT, ODE and S-system
are also utilized to forecast three real time series datasets.
The comparison results are listed in Table 5, Table 6 and
Table 7, respectively.With traffic data and Nasdaq-100 index,
CVODE has the highest RMSE and MAPE except for MAP.
S-system has the best MAP performance, which reveals that
themodel has the smallest prediction error at some time point.
With Shanghai index, CVODE obtains the most convinc-
ing performance among six state-of-the art methods. On the
whole, our method performs best.

IV. DISCUSSION
In this paper, CVCSA is proposed to optimize the complex-
valued coefficients of CVODE model. In order to investigate
the performance of CVCSA, we make the comparison exper-
iments with CSA and PSO. Three real time series datasets
are utilized as testing data. For these optimization algorithms,
population size is set as 50, maximum generation is set
as 500 and other parameters are set empirically. Evolu-

TABLE 5. Predicted results of five methods with traffic data.

TABLE 6. Predicted results of six methods with Nasdaq-100 index.

TABLE 7. Predicted results of six methods with Shanghai index.

tion curves of fitness values with the three real datasets
are described in Fig. 12, Fig. 13 and Fig. 14, respectively.
From the results, it could be clearly seen that CVCSA
could search the optimal solution faster than real-valued opti-
mization algorithms (CSA and PSO), which is because that
complex-valued encoding method can improve population
diversity.

Through 30 runs, the averaged predicting performances
(mean±standard deviation (SD)) of three real time series
datasets by three optimization methods are listed in Table 8,
Table 9 and Table 10, respectively. From the results, it could
be clearly seen that CVCSA has the smallest mean and
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FIGURE 12. Evolution curves of fitness values with traffic data.

FIGURE 13. Evolution curves of fitness values with Nasdaq-100 index.

FIGURE 14. Evolution curves of fitness values with Shanghai index.

SD performances among three optimization methods, which
reveal that CVCSA has stronger and more robust optimiza-
tion ability than PSO and CSA.

TABLE 8. Averaged performances of three optimization methods for
traffic data.

TABLE 9. Averaged performances of three optimization methods for
Nasdaq-100 index.

TABLE 10. Averaged performances of three optimization methods for
Shanghai index.

V. CONCLUSIONS
In this paper, complex-valued ordinary differential equation
(CVODE) is proposed to forecast the time series datasets with
a novel hybrid evolutionary method based on Multi expres-
sion programming (MEP) algorithm and complex-valued
crow search algorithm (CVCSA). Our proposed method has
the better performance than real-valued neural networks
(ANN, RBF, WNN and FNT), ELM and nonlinear ordinary
differential equations. We investigate the prediction perfor-
mance of CVCSA and the results reveal that CVCSA has
faster convergence speed and stronger optimization ability
than crow search algorithm and particle swarm optimization.
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