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ABSTRACT One key challenging issues of facial expression recognition (FER) in video sequences is
to extract discriminative spatiotemporal video features from facial expression images in video sequences.
In this paper, we propose a new method of FER in video sequences via a hybrid deep learning model.
The proposed method first employs two individual deep convolutional neural networks (CNNs), including
a spatial CNN processing static facial images and a temporal CN network processing optical flow images,
to separately learn high-level spatial and temporal features on the divided video segments. These two CNNs
are fine-tuned on target video facial expression datasets from a pre-trained CNN model. Then, the obtained
segment-level spatial and temporal features are integrated into a deep fusion network built with a deep belief
network (DBN) model. This deep fusion network is used to jointly learn discriminative spatiotemporal
features. Finally, an average pooling is performed on the learned DBN segment-level features in a video
sequence, to produce a fixed-length global video feature representation. Based on the global video feature
representations, a linear support vector machine (SVM) is employed for facial expression classification tasks.
The extensive experiments on three public video-based facial expression datasets, i.e., BAUM-1s, RML,
and MMI, show the effectiveness of our proposed method, outperforming the state-of-the-arts.

INDEX TERMS Facial expression recognition, spatio-temporal features, hybrid deep learning, deep
convolutional neural networks, deep belief network.

I. INTRODUCTION
Facial expression is one of the most natural nonverbal ways
for expressing human emotions and intentions. In recent
years, automatic facial expression recognition (FER), which
aims to analyze and understand human facial behavior, has
become an increasingly active research topic in the domains
of computer vision, artificial intelligence, pattern recognition,
etc. This is because FER has many potential applications
such as human emotion perception, social robotics, human-
computer interaction and healthcare [1]–[5].

FER methods can be divided into two categories: video
sequence-based methods (dynamic) and image-based meth-
ods (static). Most previous FER studies focus on identifying

The associate editor coordinating the review of this manuscript and
approving it for publication was Tariq Ahamed Ahanger.

facial expressions from static facial images [1]–[4]. Although
these image-based methods can effectively derive spatial
information from still images, they cannot capture the tempo-
ral variability in consecutive frames in video sequences. As a
dynamic event, classifying facial expression from consecu-
tive frames in a video is more natural, since video sequences
provides much more information for FER than static facial
images. One key issue for video sequence-based FER meth-
ods is how to effectively encode input video sequences into
an appropriate feature representation. Currently, the main-
stream methods employ hand-designed feature representa-
tions, such as Gabor motion energy [6], Local Binary Patterns
from Three Orthogonal Planes (LBP-TOP) [7] or Local
Phase Quantization from TOP (LPQ-TOP) [8]. However,
these hand-designed feature representations are low-level to
discriminate dynamic facial expressions. Recently, the deep
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neural network driven feature learning representations from
data may achieve better performance without requiring
domain expertise [9]–[15].

Inspired by the strong feature learning ability of deep neu-
ral networks, this paper proposes a new deep neural network-
based FERmethod in video sequences by using a hybrid deep
learning model. Our hybrid deep learning model contains
three deep models. The first two deep models are deep Con-
volutional Neural Networks (CNNs) [16], including a spatial
CNN network processing static facial images and a tem-
poral CNN network processing optical flow images. These
two CNNs are separately used to learn high-level spatial
features and temporal features on the divided video segments.
The third deep model is a deep fusion network built with a
Deep Belief Network (DBN) [17] model, which is trained to
jointly learn a discriminative spatio-temporal segment-level
feature representation. When finishing the joint training of
a DBN, an average-pooling is applied on all the divided video
segments to produce a fixed-length global video feature rep-
resentation. Then, a linear Support Vector Machine (SVM)
is adopted to perform facial expression classification tasks in
video sequences.

It is noted that two-stream CNNs have been successfully
used for video action recognition [18]. Nevertheless, in [18],
a score-level scheme, which belongs to a shallow fusion
method, is used to merge different features produced by two-
stream CNNs. This shallow fusion method is not able to
effectively model the complicated non-linear joint distribu-
tion of multiple input modalities [19]. To tackle this issue,
it is desired to design deep fusion methods which lever-
age a deep fusion model to implement multiple meaning-
ful feature fusion operations. Since a DBN model consists
of multiple RBMs, each of which can be used to jointly
learn feature representations of multiple input modalities,
it may be feasible to use a DBN model as a deep fusion
method to integrate different features produced by two-
stream CNNs. This motivates us to develop a hybrid deep
leaning method to learn video features for facial expression
recognition in video sequences. Experiment results on three
public video-based facial expression databases, including
the BAUM-1s database [20], the RML database [21], and
the MMI database [22], are presented to demonstrate the
effectiveness of the proposed method on FER tasks in video
sequences.

The distinct features of this paper can be summarized
in two-fold: (1) We propose a hybrid deep learning model,
comprising a spatial CNN network, a temporal CNN net-
work and a deep fusion network built with a DBN model,
to apply for FER in video sequences. To the best of our knowl-
edge, it is the first time to employ a hybrid deep learning
model to learn video features for FER in video sequences.
(2) To deeply fuse the spatial CNN features and temporal
CNN features, we employ a deep DBN model as a deep
fusion network to learn a joint discriminative spatio-temporal
segment-level feature representation for FER. Extensive
experiments are conducted on three public video-based facial

expression datasets, and experiment results demonstrate that
our method outperforms the-state-of-the-arts.

The structure of this paper is organized as follows.
Section 2 reviews the related work in brief. Section 3
describes our proposed method in detail. Experiment results
and analysis are given in Section 4. Section 5 presents the
conclusions and future work.

II. RELATED WORK
In this section, we review the recent works related to feature
extraction in FER in video sequences, which uses hand-
designed features and deep learning-based features.

A. HAND-DESIGNED FEATURE-BASED METHOD
For facial feature representation in static images, a variety
of local image descriptors, including Local Binary Pattern
(LBP) [23], Histogram of Oriented Gradient (HOG) [24],
and Scale Invariant Feature Transform (SIFT) [25] have been
widely used for FER. For dynamic expression recognition,
these typical local features have been extended and applied
to video sequences, such as LBP-TOP [7], LPQ-TOP [8],
3D-HOG [26], 3D-SIFT [27], respectively. Hayat et al. [28]
compare the performance of various dynamic descriptors
including HOG, 3D-HOG, 3D-SIFT and LBP-TOP by using
bag of features framework for video-based FER, and find that
LBP-TOP performs best among these dynamic descriptors.
Additionally, spatio-temporal Gabor motion energy filters [6]
is presented for low-level integration of spatio-temporal
information on FER tasks.

Recently, some efforts have been conducted to develop
more powerful spatio-temporal feature extraction methods
for FER. For instance, Liu et al. [29] present an expressionlet-
based spatio-temporal manifold descriptor which shows
the superiority over traditional methods on FER tasks.
Fan and Tjahjadi [30] provide a spatio-temporal feature based
on local Zernike moment and motion history image for
dynamic FER. Yan [31] proposes a collaborative discrim-
inative multi-metric learning for FER in video sequences.
In particular, for each video sequence they firstly calculate
multiple feature descriptors such as 3D-HOG, and geometric
warp features. Then, these extracted multiple features are
employed to learn multiple distance metrics collaboratively
to obtain complementary and discriminative information for
dynamic FER.

B. DEEP LEARNING-BASED METHOD
In recent years, deep CNNs [16], [32]–[34], composed of
multiple convolution layers and pooling layers, have domi-
nated various computer vision tasks such as image classifica-
tion, object detection and face recognition. These deep CNNs
extends the traditional CNN model [35] into a deep multi-
layered architecture which consists of five convolution layers
followed by three max-pooling layers.

One of the major drawbacks of conventional CNNs is that
they are able to extract spatial relationships of input images,
but cannot model the temporal relationships of them in
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FIGURE 1. The framework of our proposed hybrid deep learning network for facial expression recognition in video sequences.

a video sequence. To solve this problem, the recently-
developed 3D-CNNs [36] may present a possible solution.
3D-CNNs can extract spatio-temporal features in a video
sequence by means of sliding over the temporal dimen-
sion of input data as well as the spatial dimension simul-
taneously. In recent years, 3D-CNNs have been used to
learn spatio-temporal expression representations from suc-
cessive frames in video sequences [12], [15]. In addi-
tion, a variant of 3D-CNNs is 3DCNN-DAP [14] used for
dynamic FER. In 3DCNN-DAP, a constraint of Deformable
Action Parts (DAP) is incorporated into the basic 3D-CNN
framework. Similar to 3DCNN-DAP, Jung et al. [10] propose
a small temporal CNN to extract temporal geometric features
from facial landmark points. Although these 3D-CNNs based
methods have achieved good performance on FER tasks in
video sequences, but they still has a drawback. That is,
these methods cannot take the deep fusion of spatio-temporal
features into account simultaneously in the procedure of
extracting them.

To tackle this problem, two-stream CNNs used for video
action recognition [18], may present a cue. However, the used
shallow fusion method in [18] based on a score-level scheme,
cannot able to effectively model the complicated non-linear
joint distribution of multiple input modalities. To make full
use of the advantages of two-stream CNNs, we design a deep
fusion network built with a deep DBN model to jointly learn
the outputs of two-stream CNNs. This is our proposed hybrid
deep learning model. Then, we apply this hybrid deep learn-
ing model for FER in video sequences. Experiment results
on three video-based facial expression databases demonstrate
the advantages of our proposed method.

III. OUR METHOD
Figure 1 shows the framework of our proposed hybrid deep
learningmodel. As depicted in Fig.1, ourmethod is composed

of two individual channels of input streams, i.e., a spatial
CNN network processing static frame-level cropped facial
images and a temporal CNN network processing optical
flow images produced between consecutive frames. To inte-
grate the learned spatio-temporal features represented by
the outputs of fully connected layers of these two CNNs, a
fusion network built with a deep DBN model is designed.
In detail, our method contains four key steps: (1) genera-
tion of CNN inputs (2) spatio-temporal feature learning with
CNNs (3) spatio-temporal fusion with DBNs (4) video-based
expression classification. In the followings, we present the
details about abovementioned four steps of our method.

A. GENERATION OF CNN INPUTS
Since CNNs require a fixed size of input data, we divide each
video sample with different durations into a certain number
of fixed-length segments as inputs of CNNs. This not only
produces appropriate inputs of CNNs, but also augments the
amount of training data to some extent.

Following in [18], the divided segment length L is set
to be L = 16 for its good performance when using the
temporal CNN network. As a result, in the latter experiments,
we divide each video sample into a fixed-length segment
with L = 16. To this end, when L > 16 we eliminate the
first and last (L − 16)/2 frames. Oppositely, when L < 16,
we simply duplicate the first and last (16−L)/2 frames. In this
way, we make sure that each divided segment has a length
of L = 16.

1) INPUTS OF TEMPORAL CNNs
To produce suitable inputs of temporal CNNs, we extract
optical flow images between consecutive frames in a video
sequence. Optical flow images represent the displacement
changes of corresponding positions between consecutive
frames. Following in [37], we firstly transform the values of
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the motion field dx , dy into the interval [0, 255] by

d̃x|y = adx|y + b, (1)

where a = 16, b = 128.
Then, the transformed flow maps are conserved as an opti-

cal flow image containing three channels, which corresponds
to motion d̃x , d̃y and the optical flow magnitude. In this
way, we finally produce an optical flow image with size of
227 × 227 × 3. It is noted that a video segment L = 16 can
generate 15 optical flow images as inputs of temporal CNNs,
since two consecutive frames yield one optical flow image.

2) INPUTS OF SPATIAL CNNs
For inputs of spatial CNNs, we employ a cropped facial
image of 150 × 110 × 3 for each frame in a video segment,
as in [23]. In detail, a robust real-time face detector [38] is
firstly leveraged to perform face detection to crop a facial
image from each frame in a video segment. Then, in terms of
the normalized distance between two eyes, a cropped image
of 150 × 110 × 3 containing facial key parts, such as head,
nose, mouth, etc., is obtained from a facial image. Finally,
we resize the cropped facial image into 227 × 227 × 3 as
inputs of spatial CNNs. Note that we discard the first frame in
a video segment L = 16, and employ the remaining 15 frames
as inputs of spatial CNNs. In this case, we can make sure that
the input frames of spatial CNNs in a video segment equals
to that of temporal CNNs.

B. SPATIO-TEMPORAL FEATURE LEARNING WITH CNNs
As described in Fig.1, the used spatial and temporal CNNs
have the same structure as the original VGG16 [16], which
consists of five convolution layers (Conv1a-Conv1b, Conv2a-
Conv2b, Conv3a-Conv3b-Conv3c-, · · · , Conv5a, Conv5b-
Conv5c), five max-pooling layers (Pool1, Pool2, · · · , Pool5),
and three fully connected (FC) layers (fc6, fc7, fc8). Note
that fc6 and fc7 have 4096 units, while fc8 represents a class
label vector which equals to data categories. Note that fc8 in
VGG16 corresponds to 1000 image categories.

To realize the task of spatio-temporal feature learning
with CNNs, we fine-tune the pre-trained VGG16 [16] on tar-
get video-based facial expression data. In particular, we firstly
copy the existing VGG16 parameters pre-trained on large-
scale ImageNet data to initialize the temporal CNN network
and the spatial CNN network, respectively. Then, we replace
the fc8 layer in VGG16 with a new class label vector cor-
responding to six facial expression categories used in our
experiments. Ultimately, we individually retrain these two
CNN streams by using the standard back propagation strat-
egy. Specially, we use the back propagation technique to solve
the following minimizing problem so as to update the CNN
network parameters:

min
W ,θ

N∑
i=1

H (softmax (W · ϒ(ai;ϑ)), yi), (2)

where W denotes the weights of the softmax layer for the
network parameters ϑ belonging to spatial CNNs or tem-
poral CNNs. ϒ(vi;ϑ) is the 4096-D output of fc7 for input
data ai. And yi is the class label vector of the i-th segment, H
is the softmax log-loss function defined as

H (ϑ, y) = −
C∑
j=1

yj log(yj), (3)

where C is the total number of facial expression categories.
Once both spatial CNNs and temporal CNNs are trained,
the 4096-D outputs of their fc7 layers represent the learned
high-level feature representations in video segments.

C. SPATIO-TEMPORAL FUSION WITH DBNs
When finishing the training of spatial CNNs and tempo-
ral CNNs, the 4096-D outputs of their fc7 layers were directly
concatenated into a total 8192-D vector as inputs of the fusion
network built with a deep DBN model [17], as illustrated
in Fig.1. This deep DBN model is used to capture highly
non-linear relationships across spatial and temporal modali-
ties, and produce a joint discriminative feature representation
for FER.

A DBN model is a multi-layered neural network struc-
ture formed by stacking a series of Restricted Boltzmann
Machines (RBMs) [39], each of which is a bipartite graph.
In Fig.1, two RBMs constituted by one visible layer and two
hidden layers, are presented as an illustration of a DBN’s
structure. Here, the output layer denotes the softmax layer
for classification. One key characteristic of a DBN is that it
can employ multiple RBMs to learn a multi-layer generative
model of input data. As a result, DBNs can effectively dis-
cover the distribution properties of input data, and learn the
hierarchical feature representations of input data.

As done in [40], we use a two-step strategy to train the
DBN fusion network, as described below.

(1) An unsupervised pre-training is conducted in the
bottom-up way by means of a greedy layer-wise training
algorithm. According to the logarithm of the probability of
derivative, the weights of each RBM model is updated by

1w = ε(< vihj >data − < vihj >model), (4)

where ε denotes the learning rate, < · > represents the data
expectation. vi and hj are the status of visual nodes and hidden
nodes, respectively.

(2) A supervised fine-tuning is performed to update the
network parameters with back propagation. Specially, super-
vised fine-tuning is realized by using the following loss func-
tion between input data and the reconstructed data.

L(x, x ′) =
∥∥x − x ′∥∥22 , (5)

where x and x ′ separately denotes input data and the recon-
struction data, ‖‖22 is the L2-norm reconstruction error.

32300 VOLUME 7, 2019



S. Zhang et al.: Learning Affective Video Features for FER via Hybrid Deep Learning

D. VIDEO-BASED EXPRESSION CLASSIFICATION
After implementing the training of the DBN fusion network,
the output of its last hidden layer represents the jointly
learned discriminative spatio-temporal feature representa-
tions in video segments. Based on this learned segment-
level features of DBNs, we then apply an average-pooling
approach on all divided segments in a video sample to
produce a fixed-length global video feature representation
for FER. Finally, a linear SVM classifier is adopted to
perform the final FER tasks in video sequences.

IV. EXPERIMENTS
To verify the performance of our proposed method on FER
tasks in video sequences, FER experiments are performed on
three public video-based facial expression datasets, i.e., the
BAUM-1s database [20], the RML database [21] and the
MMI database [22].

FIGURE 2. Some examples of cropped facial expression images from the
BAUM-1s dataset.

A. DATASETS
1) BAUM-1s
The original BAUM-1 is a newly-developed spontaneous
audio-visual face database of affective and mental states [20].
The BAUM-1 database contains not only the six basic facial
expressions (joy, anger, sadness, disgust, fear, surprise) as
well as boredom and contempt, but also four mental states
(unsure, thinking, concentrating, bothered). It comprises
of 1222 video samples collected from 31 Turkish persons.
Each video frame is 720×576×3. Following in [20], we aim
to identify the six basic facial expressions, which forms a
small subset called the BAUM-1s dataset with 521 video
samples in total. Fig.2 gives some examples of cropped facial
expression images from the BAUM-1s dataset.

2) RML
The RML database [21] consists of 720 video samples col-
lected from 8 persons. Each video frame is 720×480×3. This
database has the six basic facial expressions (angry, disgust,
fear, joy, sadness and surprise). Fig.3 shows some samples of
cropped facial expression images from the RML database.

3) MMI
The MMI database [22] consists of 2894 video samples,
out of which 213 sequences have been labeled with six
basic expressions from 30 subjects aging from 19 to 62.

FIGURE 3. Some examples of cropped facial expression images from the
RML dataset.

FIGURE 4. Some examples of cropped facial expression images from the
MML dataset.

Fig.4 provides some samples of cropped facial expression
images from the MMI database.

B. EXPERIMENT SETTINGS
When training deep neural networks, we adopt a mini-
batch size of 30. The maximum number of epochs is 300
for CNNs, and 100 for DBNs, respectively. The learning rate
is set to 0.001. To accelerate the training of deep models,
one NVIDIA GTX TITAN X GPU with 12GB memory is
employed. For all experiments we adopt subject-independent
cross-validation strategy widely used in real applications.
In particular, on the BAUM-1s and MMI database with more
than 10 subjects, Leave-One-Subject-Group-Out (LOSGO)
with five subject groups is employed, whereas on the RML
database with less than 10 subjects, Leave-One-Subject-
Out (LOSO) is used for experiments. Finally, we report the
average recognition accuracy in all test-runs to testify the
performance of all compared methods.

It is noted that we train deep models on the divided
video segments so that the number of training data can be
augmented. In this work, on the BAUM-1s database about
7000 segments are produced from 521 video samples. Sim-
ilarily, on the RML database about 12, 000 segments are
produced from 720 video samples, whereas on the MMI
database, about 4000 segments are given from 213 video
samples.

C. RESULTS AND ANALYSIS
We firstly evaluate the effects of deep structures of DBNs
in the fusion network, since the deep structures of DBNs
may greatly affects the performance of fusing spatio-temporal
features. To verify the different structures of DBNs, we pro-
vide the performance of three different DBNs, includ-
ing DBN-1 (8192-4096-6), DBN-2 (8192-4096-2048-6),
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TABLE 1. Accuracy (%) of different structures of DBNS.

TABLE 2. Accuracy (%) of different learned deep features.

and DBN-3 (8192-4096-2048-1024-6). Table 1 presents the
recognition accuracy of different structures of DBNs in the
fusion network. From Table 1, we can observe that DBN-3
performs best among three different structures. In particular,
DBN-3 presents an accuracy of 55.85% on the BAUM-1s
dataset, 73.73% on the RML dataset, and 71.43% on the
MMI dataset, respectively. This demonstrates that the deeper
DBN exhibits stronger feature fusion ability based on the
used multiple RBMs. In the latter experiments, in the fusion
network we thus adopt DBN-3 as the default structure of the
used DBN for its best performance.

To verify the advantages of fusing spatio-temporal features
with DBNs, Table 2 shows the performance of four methods:
the single spatial CNN features, the single temporal CNN fea-
tures, the score-level fusion based on spatio-temporal CNN
features, and the DBN fusion based on spatio-temporal CNN
features. As shown in Table 2, we can see that the spatio-
temporal CNN+DBN features, which fuse spatio-temporal
CNN features with DBNs, outperform the other two features.
This indicates the effectiveness of fusing spatio-temporal
features by using a deep DBN. This is because DBNs are
able to effectively discover the distribution properties of input
spatio-temporal data, and learn the hierarchical feature repre-
sentations of input spatio-temporal data.

To further present the recognition performance for each
facial expression, Fig.5-7 separately show the confusion
matrix of recognition results achieved by the DBN fusion
network on these three datasets. It can be seen from Fig.5 that
on the BAUM-1s dataset only ‘‘joy’’ and ‘‘sadness’’ are
classified well with an accuracy of 88.44% and 72.39%,
respectively, whereas other four facial expressions are iden-
tified badly with an accuracy of less than 35%. The results
in Fig.6 demonstrate that on the RML dataset ‘‘disgust’’,
‘‘sadness’’ and ‘‘surprise’’ are recognized well with an
accuracy of more than 84%, whereas the remaining three
facial expressions are distinguished with an accuracy of less
than 80%. In Fig.7, we can see that ‘‘sadness’’ and ‘‘surprise’’
are distinguished with an accuracy of 100%, whereas the
others are identified with an accuracy of less than 75%.

FIGURE 5. Confusion matrix of recognition results with DBNs on the
BAUM-1s dataset.

FIGURE 6. Confusion matrix of recognition results with DBNs on the RML
dataset.

FIGURE 7. Confusion matrix of recognition results with DBNs on the MMI
dataset.

Now we directly conduct a comparison with previous
works on these three datasets. It is noted that these com-
paring works also employs subject-independent test-runs,

32302 VOLUME 7, 2019



S. Zhang et al.: Learning Affective Video Features for FER via Hybrid Deep Learning

TABLE 3. Performance (%) comparisons of the-state-of-the-arts on the
used three datasets.

similar to ours. Table 3 provides the comparisons of the state-
of-the-arts. From Table 3, it can be seen that our proposed
method significantly outperforms the state-of-the-arts on
these three datasets. This exhibits the superiority of our pro-
posed method over other methods, including other deep mod-
els such as 3D-CNN [14], [15], and Inception-ResNet [41],
as well as hand-designed features such as LPQ [20], and
Gabor wavelets [42]. Note that 3DCNN-DAP (Deformable
Action Parts) [14], 3D-CNN [15], Inception-ResNet [41] are
popular spatio-temporal deep feature learning methods by
using the spatial and temporal convolutions simultaneously.

V. CONCLUSION
This paper proposes a hybrid deep learning model, which
consists of the spatial CNN network, the temporal CNN
network, and the DBN fusion network, to apply for FER in
video sequences. We implement our proposed method in two
stages. (1) We employ the existing VGG16 model pre-tained
on ImageNet data to individually fine-tune the spatial CNN
network and the temporal CNN network on target video-
based facial expression data. (2) To deeply fuse the learned
spatio-temporal CNN features, we train a deep DBNmodel to
jointly learn discriminative spatio-temporal features. Exper-
iment results on three public video-based facial expression
datasets, i.e., BAUM-1s RML, and MMI, demonstrate the
advantages of our proposed method.

In future, we will extend our work to practical applications.
For instance, it is challenging to develop a real-time FER
system based on our proposed method. In addition, it is also
interesting to explore deep compression of deep models so as
to reduce the large network parameters of deep models.
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