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ABSTRACT Density-based spatial clustering of applications with noise (DBSCAN) is the most commonly
used density-based clustering algorithm but may not be sufficient when the input data type is heterogeneous
in terms of textual description. When we aim to discover clusters of geo-tagged records relevant to a
particular point of interest (POI) on social media, examining only one type of input data (e.g., the tweets
relevant to a POI) may draw an incomplete picture of clusters due to noisy regions. To overcome this
problem, we introduce DBSTexC, a newly defined density-based clustering algorithm using spatio-textual
information on social media (e.g., Twitter). We first characterize the POI-relevant and POI-irrelevant geo-
tagged tweets as the texts that include and do not include a POI name or its semantically coherent variations,
respectively. By leveraging the proportion of the POI-relevant and POI-irrelevant tweets, the proposed
algorithm demonstrates much higher clustering performance than the DBSCAN case in terms of F1 score
and its variants. While DBSTexC performs exactly as DBSCAN with the textually homogeneous inputs,
it far outperforms DBSCAN with the textually heterogeneous inputs. Furthermore, to further improve the
clustering quality by fully capturing the geographic distribution of geo-tagged points, we present fuzzy
DBSTexC (F-DBSTexC), an extension of DBSTexC, which incorporates the notion of fuzzy clustering into
the DBSTexC. We then demonstrate the consistent superiority of F-DBSTexC over the original DBSTexC via
intensive experiments. The computational complexity of our algorithms is also analytically and numerically
shown.

INDEX TERMS Density-based clustering, fuzzy clustering, geo-tagged record, point-of-interest (POI),
spatio–textual information.

I. INTRODUCTION
A. BACKGROUND
Clustering is one of the prominent tasks in exploratory data
mining, and a common technique for statistical data anal-
ysis. Cluster analysis refers to the partitioning of objects
into a finite set of categories or clusters so that the
objects in one cluster have high similarity but are clearly
dissimilar to objects in other clusters [1]. Several dif-
ferent approaches to clustering have broadly been intro-
duced in the literature. For example, algorithms such as
K-means [2] and Clustering Large Applications based on
Randomized Search (CLARANS) [3] were designed based
on a partitioning approach; Gaussian mixture models [4] and

The associate editor coordinating the review of this manuscript and
approving it for publication was Mamoun Alazab.

COBWEB [5] belong to a model-based approach; Divisive
Analysis (DIANA) [6] and Balanced Iterative Reducing and
Clustering using Hierarchies (BIRCH) [7] were developed
based on a hierarchical approach; Statistical Information Grid
(STING) [8] and Clustering in Quest (CLIQUE) [9] were
designed as a grid-based approach; and Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) [10]
and Ordering Points to Identify the Clustering Structure
(OPTICS) [11] are examples of a density-based approach.

Among those approaches, density-based clustering has
been extensively studied to discover insights in geographic
data [12]. Due to the fact that density-based clustering returns
clusters of an arbitrary shape, is robust to noise, and does
not require prior knowledge on the number of clusters, it is
suitable for diverse nature-inspired applications [13]. For
instance, through density-based clustering on geographic
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data, researchers are capable of finding clusters of restaurants
in a city, clusters along roads and rivers, and so forth. Due to
its robust performance and intuitive representation, DBSCAN
stands out as the most frequently used density-based clus-
tering algorithm. Variations of DBSCAN were also widely
studied in [12], [14], and [15].

Recently, owing to the popularity of online social networks
(or equivalently, social media), the volume of spatio–textual
data is rising drastically. Hundreds of millions of users on
social media tend to share their geo-tagged media content
such as photos, videos, musics, and texts. For example, when
users visit a point-of-interest (POI), they are likely to check
in, upload photos of their visit, or post geo-tagged textual
data via social media to describe their individual idea, feel-
ing or preference relevant to the POI. An example includes
the case where more than five hundred million tweets are
posted on Twitter [16] everyday,1 and approximately 1% of
them are geo-tagged [17], which correspond to five million
geo-tagged tweets everyday. As a result, there is a high
demand for processing andmaking good use of spatio–textual
information based on massive datasets of real-world social
media. While there were several studies on the spatio-textual
queries [18]–[21], which are to find objects satisfying certain
spatial and textual constraints, researches on spatio-textual
data analysis by clustering [22], [23] have not been closely
and comprehensively carried out.

B. MOTIVATION AND MAIN CONTRIBUTIONS
Our study is motivated by the insight that when we find
clusters (or geographic regions) from geo-tagged records
related to a certain POI on social media, DBSCAN [10]
and its several variations [12], [14], [15] may not pro-
vide good clustering results. This comes from the fact
that while the geographic region surrounding a POI gen-
erally comprises two types of heterogeneous geo-tags that
include and do not include annotated keywords about the
POI (defined as POI-relevant and POI-irrelevant geo-tags,
respectively), DBSCAN uses only one type of input data
(e.g., POI-relevant geo-tags) in the process of finding clus-
ters. Therefore, although clusters found by DBSCAN seem
to correctly discover groups of POI-relevant geo-tags on the
surface, they also blindly include geographic regions which
contain a large number of undesired POI-irrelevant geo-tags,
thus leading to a poor clustering quality. Hence, in the case
of such a heterogeneous input data type, the methodology
of DBSCAN using only POI-relevant geo-tags may not be
a complete solution to finding clusters. It is essential to
perform clustering based on a textually heterogeneous input,
including both POI-relevant and POI-irrelevant geo-tagged
records, in order not only to find highly dense clusters of
POI-relevant geo-tagged points but also to exclude the
regions with a large number of POI-irrelevant points.

To this end, we introduceDBSTexC, a novel spatial cluster-
ing algorithm based on spatio–textual information on social

1www.internetlivestats.com/ accessed on December 26, 2018.

media such as Twitter [24], [25].2 We first characterize
POI-relevant and POI-irrelevant geo-tagged tweets as the
texts that include and do not include a POI name or its
semantically coherent variations, respectively. By judi-
ciously considering the proportion of both POI-relevant and
POI-irrelevant tweets, DBSTexC is shown to greatly improve
the clustering quality in terms of F1 score and its variants
including a geographic factor, compared to that of DBSCAN.
This gain comes due to the robust ability of DBSTexC that
excludes noisy regions which contain a huge number of
undesired POI-irrelevant tweets. Note that DBSTexC can
be regarded as an extension of DBSCAN since it performs
exactly as DBSCAN with the textually homogeneous inputs
and far outperformsDBSCANwith the heterogeneous inputs.

It is worth noting that DBSTexC assumes the resulting
clusters having strict boundaries, which however may not
fully exploit the entire geographic features of the data. To fur-
ther improve the clustering quality based on the observation
that the geographic distribution of tweets is generally smooth
and thus it is not clear which tweets should be grouped as
clusters or be treated as noise, we present a fuzzy DBSTexC
(F-DBSTexC) algorithm. F-DBSTexC relaxes the constraints
on a point’s neighborhood density by allowing an ambigu-
ous tweet to belong to a cluster with a distinct membership
degree. We empirically evaluate its performance by showing
the superiority over the original DBSTexC in terms of our
performance metric. This additional gain over the original
DBSTexC comes from the fact that decision boundaries for
clusters can be fuzzy. The runtime complexity of our two
algorithms is also analytically shown, and our analysis is
numerically validated. Our main contributions are five-fold
and summarized as follows:

• We introduce DBSTexC, a new spatial clustering
algorithm, which intelligently integrates the existing
DBSCAN algorithm and the heterogeneous textual
information to avoid geographic regions with a large
number of POI-irrelevant geo-tagged posts in the result-
ing clusters.

• We show the evaluation performance of the proposed
clustering algorithm in terms ofF1 score and its variants,
while demonstrating its superiority over DBSCANby up
to about 60%.

• We also present the F-DBSTexC algorithm, an extension
of DBSTexC, which incorporates the notion of fuzzy
clustering into the DBSTexC framework, to fully capture
the geographic distribution of tweets in various loca-
tions.

• We demonstrate the robust ability of F-DBSTexC that
further improves the clustering quality via intensive
experiments, compared to that of DBSTexC by up to
about 27% for several POIs that are located especially
in sparsely-populated areas.

2Even if our focus is on analyzing tweets, the dataset on other social media
(or micro-blogs) can also be directly applicable to our research.
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TABLE 1. Summary of notations.

• Weanalytically and numerically show the computational
complexity of our proposed algorithms when two differ-
ent implementation approaches are employed.

This paper is the first attempt to integrate the exist-
ing DBSCAN and the heterogeneous textual information,
and thus our methodology sheds light on how to design
highly-improved spatial clustering algorithms by leveraging
spatio–textual information on social media.

C. ORGANIZATION
The rest of the paper is organized as follows. In Section II,
we review the prior work related to our research. Section III
describes how to collect POIs and search for POI-relevant
tweets. In Section IV, we present the proposed DBSTexC
algorithm and empirically evaluate its performance. The com-
putational complexity of our algorithm is analytically shown
in Section V. Section VI introduces F-DBSTexC, an extended
version of DBSTexC. Finally, Section VII summarizes the
paper with some concluding remarks.

D. NOTATIONS
The list of all the notations used in our work is presented
in Table 1. Some notations will be more precisely defined as
they appear in later sections of this paper.

II. PREVIOUS WORK
Our clustering algorithm is related to four broad areas of
research, namely traditional spatial clustering, spatio–textual
similarity search, clustering based on spatial and non-spatial
attributes, and fuzzy clustering.

A. SPATIAL CLUSTERING
A variety of spatial clustering algorithms have been devel-
oped in the literature. Several algorithms using a partitioning
approach were introduced and widely utilized in [2], [3],

and [26]. Even though such algorithms are useful for finding
sphere-shaped clusters, they require prior knowledge on the
number of clusters and thus are unable to find clusters of arbi-
trary shapes. Next, hierarchical clustering algorithms [6], [7]
can be further divided into two types based on the following
clustering processes: the agglomerative (bottom-up) process
and the divisive (top-down) process. Their strengths lie in
the hierarchical relation among clusters and an easy inter-
pretation. However, hierarchical clustering does not have
well-defined termination criteria, and if some objects are
mis-clustered during the growth of the hierarchy, then such
objects will remain in a certain wrong cluster until the clus-
tering process is terminated. In addition, from a density-based
point of view, the DBSCAN algorithm [10] uses a series
of density-connected points to form density-based clusters.
Since DBSCAN does not require the number of clusters as
an input parameter, and does not assume any underlying
probability density behind the clusters, it can discover clus-
ters of arbitrary shapes. As follow-up studies on DBSCAN,
numerous algorithms have been developed as follows: GDB-
SCAN [12] generalized DBSCAN by extending the notion
of a neighborhood over the traditional ε-neighborhood and
by using different measures to define the ‘‘cardinality’’ of
the neighborhood; ST-DBSCAN [14] was designed by dis-
covering clusters based on spatial and temporal attributes;
HDBSCAN [15] was presented by generating a density-based
clustering hierarchy and then extracting a set of significant
clusters based on a measure of stability. Unlike the afore-
mentioned studies, our work aims to integrate the existing
DBSCAN and the heterogeneous textual information to avoid
noisy regions having numerous POI-irrelevant geo-tags.

B. SPATIO–TEXTUAL SIMILARITY SEARCH
It is of paramount importance to find spatially and textually
closest objects to query objects. To offer compelling solutions
to this problem, several algorithms [18]–[21] were intro-
duced. Particularly, a method to answer queries containing
a location and a set of keywords was presented in [18].
Next, an indexing framework for processing top-k query that
takes into account both spatial proximity and text relevancy
was introduced in [19]. Although these algorithms study the
spatio–textual distance between objects, they are inherently
different from our proposed approach, which finds density-
based spatio–textual clusters using the textually heteroge-
neous input data type on social media such as Twitter.

C. CLUSTERING BASED ON SPATIAL AND
NON-SPATIAL ATTRIBUTES
There have been recent studies on the use of spatial and non-
spatial attributes to improve the clustering performance in
various applications. Spectral clustering was applied in [27]
to identify clusters among gang members based on both the
observation of social interactions and the geographic loca-
tions of individuals. On the other hand, another clustering
method was presented in [28] to discover clusters that are
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dense spatially and have high spatial correlation based on
their non-spatial attributes.

D. FUZZY CLUSTERING
Most of fuzzy clustering algorithms were built upon the
fuzzy c-means algorithm [29]–[31]. These algorithms inte-
grate crisp clustering techniques and the theory of fuzzy sets
so as to discover clusters whose objects belong to multi-
ple clusters simultaneously with different degrees of mem-
bership [32], [33]. However, fuzzy density-based clustering
algorithms may or may not allow overlapping clusters. Fuzzy
neighborhood DBSCAN (FN-DBSCAN) [34] was proposed
by introducing the definition of the fuzzy neighborhood size
along with various neighborhood membership functions to
capture different neighborhood sensitivities. FDBSCAN [35]
introduced fuzzy distance functions to express the simi-
larity between two objects and integrated these functions
into DBSCAN. Three extensions of DBSCAN were also
presented in [36], while producing clusters with distinct
fuzzy and overlapping properties. A survey on popular fuzzy
density-based clustering algorithms was presented in [37].

III. DATA ACQUISITION AND PROCESSING
We first explain how we acquire the Twitter data and choose
POIs. Then, for every POI, we outline our approach to search-
ing for POI-relevant and POI-irrelevant geo-tagged tweets.

A. COLLECTING TWITTER DATA
We utilize the Twitter Streaming Application Programming
Interface (API) [38], which is a widely popular tool to collect
data from Twitter for various research purposes such as topic
modeling, network analysis, and statistical content analysis.
Streaming API returns tweets that match a query written by
an API user. An interesting finding is that even if Twitter
Streaming API returns at most a 1% sample of all the tweets
created at a given moment, it gives an almost complete set of
geo-tagged tweets despite sampling [17].
The dataset that we use includes 946,801 geo-tagged

records (i.e., tweets) collected from 132,342 Twitter users
fromMay 31, 2016 to June 30, 2016 in theUK.We deleted the
content objects that were generated by the users posting more
than three times consecutively at the same exact location,
as those were likely to be products of other services such
as Tweetbot, TweetDeck, Twimight, and so forth. Moreover,
we notice that each record consists of a number of attributes
that can be distinguished by their associated field names. For
data analysis, we select the following three attributes from the
collected tweets:

• text: actual UTF-8 text of the tweet;
• lat: latitude of the location where the tweet was posted;
• lon: longitude of the location where the tweet was
posted.

B. COLLECTING POIS
We select POIs as popular point locations which people may
be interested in and are likely to visit. Moreover, for the

TABLE 2. POI names and the corresponding geographic regions.

TABLE 3. POI names and their search queries.

geographic diversity, we choose POIs from both populous
metropolitan areas and sparsely populated cities. The names
of chosen POIs and their geographic regions are shown
in Table 2. Based on the UK gridded population dataset [39],
we are able to approximate the population as follows: the
population density for the areas surrounding POIs in London,
Edinburgh, and Oxford is >7,000/km2, <2,000/km2, and
<1,000/km2, respectively.

C. SEARCHING POI-RELEVANT TWEETS
Since Twitter users tend to convey their interest in a POI
by mentioning or tagging it in their tweets, we are able to
collect all POI-relevant tweets by querying for keywords
related to the POI in the text field of the collected tweets.
However, when users type the actual terms of each POI in
their tweets, they may misspell or implicitly mention the
POI name. We thus implement a keyword-based search for
semantically coherent variations of a POI, which would con-
tain its shortened names, its informal names (if any), and
so forth.3 For a POI formed into a large geographic area,
we include names of famous attractions inside the POI to
increase the search accuracy. The list of search queries for
four POIs shown in Table 2 is summarized in Table 3. There-
fore, the dataset can be divided into two subgroups of geo-
tagged tweets that include and do not include the annotated
POI keywords, which correspond to POI-relevant and POI-
irrelevant geo-tagged tweets, respectively.

IV. PROPOSED METHODOLOGY
To elaborate on the proposed methodology, we first present
the important definitions and analysis that are essential to the
design of our algorithm, and show the analysis that validates
the correctness of our algorithm. Then, we elaborate on our
DBSTexC algorithm.

A. DEFINITIONS
We start by introducing the definition of a query region.
A query region is defined as a geographic area from which

3Note that brown clustering can also be adopted to find semantically
coherent variations of a POI, even if it is not taken into account in our study.
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FIGURE 1. An example of the query region for Hyde Park. The red
rectangle is the administrative bounding box, whose center is denoted by
the red dot, and the blue circle is the query circle that fulfills the
condition in Definition 1.

we collect the geo-tagged tweets for a particular POI. We aim
at finding both POI-relevant and POI-irrelevant tweets inside
the region. Nevertheless, since the relevance of information to
the POI varies according to the geographic distance between
the POI and the locations where the data are generated, tweets
posted at locations far away from the POI are likely to have
little or no textual description for the POI. We thus focus
only on a region that contains almost all relevant tweets but
omit the majority of irrelevant tweets that were posted geo-
graphically far from the POI, which would lead to a reduced
computational complexity. Motivated by this observation,
we define a query region as follows:
Definition 1 (Query Region): Given a POI, a query region

is a circle whose center corresponds to the center point of
the POI’s administrative bounding box provided by Google
Maps. The radius of the circle is then increased stepwise
until Precision of the query region is lower than a threshold
η, where η can be set appropriately based on POI types,
which will specified in Section V-B. Here, Precision of the
query region is the ratio of true positives (the number of POI-
relevant tweets in the query region) to all predicted positives
(the number of all retrieved geo-tagged tweets in the query
region).

In Fig. 1, we illustrate an example of the query region for
Hyde Park. As shown in the figure, starting from the center
of the POI, we continue on expanding the query region until
the condition in Definition 1 is fulfilled.

Similarly as in DBSCAN [10], we exploit the neighbor-
hood of a point (See Definition 2) and a series of density-
connected points (See Definition 6) to find clusters. How-
ever, unlike DBSCAN, we present a new parameter Nmax to
limit the number of POI-irrelevant tweets, resulting in an
improved clustering quality. Hence, we can acquire a core
point which has not only at leastNmin POI-relevant tweets but
also at most Nmax POI-irrelevant tweets inside its neighbor-
hood (See Definition 3). The result of DBSTexC, whose clus-
ters are composed of connected neighborhoods of core points,
would be expected to significantly outperform DBSCAN that
uses only POI-relevant tweets, which is numerically shown in
Section V.

Definition 2 (ε-Neighborhood of a Point): Let X and Y
denote the sets of POI-relevant and POI-irrelevant tweets,
respectively. For a point p ∈ X , the sets of ε-neighborhoods
containing POI-relevant and POI-irrelevant tweets, denoted
by Xε(p) and Yε(p), are defined as the geo-tagged tweets
within a scan circle centered at p with radius ε and are given
by

Xε(p) = {q ∈ X |dist(p, q) ≤ ε}
Yε(p) = {q ∈ Y|dist(p, q) ≤ ε},

respectively, where dist(p, q) is the geographic distance
between coordinates p and q. Note that we focus on the
ε-neighborhood only for POI-relevant tweets while neglect-
ing the neighborhood of POI-irrelevant tweets, since our
DBSTexC algorithm finds clusters based on a series of
ε-neighborhoods of only POI-relevant tweets.
Definition 3 (Core Point): A point p ∈ X is a core point if

it fulfills the following condition:

|Xε(p)| ≥ Nmin and |Yε(p)| ≤ Nmax.

B. ANALYSIS
The analytical part essentially follows the same line as that
in [12], but is modified so that it fits into our clustering
framework. In this subsection, we present fundamental def-
initions that provide the basis for our DBSTexC algorithm
to find clusters according to a density-based approach using
spatio–textual information. Then, we analytically validate the
correctness of our algorithm by introducing two lemmas.
Definition 4 (Directly Density-Reachable): A point p is

directly density-reachable from a core point q with respect
to (w.r.t.) ε, Nmin, and Nmax if

p ∈ Xε(q) or p ∈ Yε(q).

If point p is directly density-reachable from a point q
and is a core point itself, then q is also directly density-
reachable from p. Therefore, it is obvious that ‘‘directly
density-reachable’’ is symmetric for pairs of core points.
Definition 5 (Density-Reachable): A point p is density-

reachable from a point q w.r.t. ε, Nmin, and Nmax if there is
a chain of points p1, · · · , pn, p1 = q, and pn = p such that
pi+1 is directly density-reachable from pi.
The density-reachable relation is not symmetric. For exam-

ple, given a directly density-reachable chain as in Defini-
tion 5, the points p1, · · · , pn−1 are all core points. However,
pn can be either a border point or a core point. If pn is a core
point, then point p1 is also symmetrically density-reachable
from pn. Therefore, if the two points p and q are density-
reachable from each other, then they are core points and
belong to the same cluster.
Definition 6 (Density-Connected): A point p is density-

connected to a point q w.r.t. ε, Nmin, and Nmax if there is a
point o such that both p and q are density-reachable from o
w.r.t. ε, Nmin, and Nmax.
With the above six definitions, we are now ready to define

a new notion of a cluster. In brief, a cluster (See Definition 7)
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is defined as a set of density-connected points. Noise points
(See Definition 8) are defined as the set of points not belong-
ing to any clusters.
Definition 7 (Cluster): Let T denote the dataset of all

retrieved geo-tagged tweets. Then, a cluster C w.r.t. ε, Nmin,
and Nmax is a non-empty subset of the dataset T satisfying
the following conditions:

1) ∀p ∈ X and q ∈ T : if p ∈ C and q is density-reachable
from p w.r.t. ε, Nmin, and Nmax, then q ∈ C .

2) ∀p, q ∈ C : p is density-connected to q w.r.t. ε, Nmin,
and Nmax.

Definition 8 (Noise): Let C1, · · · ,Ck be the clusters in the
dataset T . Then, noise is defined as the set of points in T not
belonging to any cluster Ci, i.e., {p ∈ T |p /∈ Ci,∀i}.
Given the above eight definitions, our DBSTexC algorithm

can then be intuitively stated as a two-step clustering algo-
rithm using spatio–textual information. The first step is to
choose an arbitrary POI-relevant tweet satisfying the core
point condition as a seed. The second step is to retrieve all
points that are density-reachable from the seed, thus obtaining
the corresponding cluster containing the seed. To formally
justify the credibility of our algorithm, we establish the fol-
lowing two lemmas.
Lemma 1: Let p be a point in X , |Xε(p)| ≥ Nmin, and
|Yε(p)| ≤ Nmax. Then, the set O = {o|o ∈ T and o is density-
reachable from p w.r.t. ε, Nmin, and Nmax } is a cluster w.r.t.
ε, Nmin, and Nmax.

Proof: Since p ∈ X , |Xε(p)| ≥ Nmin and |Yε(p)| ≤
Nmax, p is a core point and thus is contained in some cluster
C . We need to show thatO ⊆ C . Definition 7-1 indicates that
all points that belong to O should also belong to C , resulting
in O ⊆ C . This completes the proof of this lemma. �
Lemma 2: Let C be a cluster w.r.t. ε, Nmin, and Nmax.

Let p be any point in C ∩ X with |Xε(p)| ≥ Nmin and
|Yε(p)| ≤ Nmax. Then, C is equal to the set O = {o|o is
density-reachable from p w.r.t. ε, Nmin, and Nmax}.

Proof: We need to show that C = O. Similarly as in the
proof for Lemma 1, we have

O ⊆ C . (1)

Therefore, to show thatC = O, we need to prove thatC ⊆ O.
Let q be an arbitrary point in C . Since p ∈ C , q is density-
connected to p from Definition 7-2. It implies that there is
a core point m ∈ C such that p and q are density-reachable
from m (see Definition 6). However, p and m are both core
points, which represents that p is density-reachable from m
if and only if m is density-reachable from p. This shows that
q is density-reachable from p, which indicates that q ∈ O.
Therefore, it follows that

C ⊆ O. (2)

From (1) and (2), we finally have

C = O,

which completes the proof of this lemma. �

Algorithm 1 DBSTexC(X ,Y , ε, Nmin, Nmax)
Input: X ,Y , ε, Nmin, Nmax
Output: Clusters with different labels C
Initialization: C ← 0; n← |X |; m← |Y|; pi is a point in

the set X
1: for each pi do
2: if pi is not visited then
3: Mark pi as visited
4: [Xε(pi),Yε(pi)] = RangeQuery(pi)
5: if |Xε(pi)| ≥ Nmin & |Yε(pi)| ≤ Nmax then
6: C ← C + 1
7: ExpandCluster(pi,Xε(pi),Yε(pi))

Algorithm 2 ExpandCluster(pi,Xε(pi),Yε(pi))
Input: pi,Xε(pi),Yε(pi)
Output: Cluster C with all of its members
1: Add pi to the current cluster
2: for each point pj in the set Xε(pi) do
3: if pj is not visited then
4: Mark pj as visited
5: [Xε(pj),Yε(pj)] = RangeQuery(pj)
6: if |Xε(pj)| ≥ Nmin & |Yε(pj)| ≤ Nmax then
7: Xε(pi) = Xε(pi) ∪ Xε(pj)
8: Yε(pi) = Yε(pi) ∪ Yε(pj)
9: if pj does not have a label then
10: Add pj to the current cluster

11: if |Yε(pi)| 6= 0 then
12: for each point qj in the set Yε(pi) do
13: if qj is not visited then
14: Mark qj as visited
15: if qj does not have a label then
16: Add qj to the current cluster

C. DBSTEXC Algorithm
In this subsection, we describe our DBSTexC algorithm that
makes use of both POI-relevant and POI-irrelevant tweets.
In the clustering process,DBSTexC starts with a randompoint
pi inX (i.e., the set of POI-relevant tweets) for i ∈ {1, ..., |X |}
and retrieves all points that are density-reachable from pi with
respect to ε, Nmin, and Nmax (See Algorithm 1). If pi is a core
point, then a cluster is formed and expanded until all points
that belong to the cluster are included (See Algorithm 2).
Otherwise, DBSTexC moves on to the next point in the set
of POI-relevant tweets.

In Algorithm 1, RangeQuery() in line 4 is a function that
returns points in an ε-neighborhood, where it can be imple-
mented using spatial access methods, i.e., R-trees and k-d
trees. By searching for both POI-relevant and POI-irrelevant
points along with two parametersNmin andNmax to determine
whether to create a new cluster and/or expand the current
cluster (see line 5 of Algorithm 1), our proposed algorithm
effectively excludes noisy areas from its clusters.
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In Algorithm 2, for every point pj ∈ Xε(pi), we explore the
ε-neighborhood of pj. If pj is a core point, then pj is added to
the current cluster and the algorithm continues by appending
its neighbors to the neighbor setsXε(pi) andYε(pi).We repeat
this process until all the points in the setXε(pi) are examined.
Eventually, when the process is terminated, the points in the
set Yε(pi) are included in our current cluster.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, to evaluate performance of the proposed
DBSTexC algorithm in Section IV-C, we present our perfor-
mance metric, illustrate experimental results, and analyze the
overall average computational complexity.

A. PERFORMANCE METRIC
We choose the F1 score as a key component of our perfor-
mance metric, since it is a popular measure in machine learn-
ing and statistical analysis for a test’s accuracy and thus can be
a useful tool to assess the clustering quality. The F1 score is
expressed as F1 = 2 · Precision·Recall

Precision+Recall , which is the harmonic
mean of Precision and Recall. In our work, Precision is the
ratio of true positives (the number of POI-relevant tweets in
clusters) to all predicted positives (the number of all geo-
tagged tweets in clusters), that is, True Positives (TP)

TP+False Positives (FP) ; and
Recall is the ratio of true positives to actual positives that
should have been returned (the total number of POI-relevant
tweets), that is, TP

TP+False Negatives (FN) .
In the process of discovering clusters from geo-tagged

tweets relevant to a POI, the area covered by the clusters
can be a matter of great interest, since several applications
such as geo-marketing may desire a widespread geographic
area. To illustrate this point, in Fig. 2, we plot the F1 score
according to the area of the resulting clusters (in km2) for
four chosen POIs. One can observe that the highest F1 score
tends to be found when the area of the resulting clusters is
very small. Therefore, although it is good to find clusters
with the highestF1 score, it is more preferred to considerably
extend the area of the resulting clusters at the expense of a
slightly reduced value of F1 in some applications. To this
end, we would like to formulate a following new performance
metric expressed as the product of a power law in the area of
the resulting clusters A (in km2) normalized to the area of the
query region, denoted by Ā = Area covered by the clusters

Area of the query region , and the
F1 score:

ĀαF1, (3)

where α ≥ 0 is the area exponent, which balances between
different levels of geographic coverage. When α is small,
clusters with almost the highest F1 score are returned. As a
special case, when α = 0, our performance metric becomes
the F1 score. On the other hand, as α increases, clusters
covering a wide area are obtained at the cost of a reduced
F1. Hence, given parameters for the two algorithms (i.e.,
(ε,Nmin) for DBSCAN and (ε,Nmin,Nmax) for DBSTexC),
we are able to calculate the performance metric in (3) along

FIGURE 2. The F1 score according to the area of the resulting clusters.
(a) Hyde Park. (b) Regent’s Park. (c) Edinburgh Castle. (d) University of
Oxford.

with the corresponding F1 score and the normalized area Ā
in each case.

B. EXPERIMENTAL EVALUATION
We exhibit the experimental results for various values of
α ≥ 0. In regard to the query region, for all chosen POIs,
we assume that η = 0.07, which can also be set to other
values to control the clustering quality constraint. For the
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TABLE 4. Experimental results for DBSCAN and DBSTexC .

parameter set (ε,Nmin,Nmax), since there is no well-known
method to determine the best combination with respect to
our performance metric in (3), we stepwise test the param-
eter combinations via exhaustive search. We summarize and
compare the performance of both DBSTexC and DBSCAN
for four POIs in Table 4, where α ∈ {0, 0.5, 0.75, 1}. From
the table, it is evident thatDBSTexC consistently outperforms
DBSCAN in terms of our performance metric in (3) by up to
60.09% for all four chosen POIs. The performance improve-
ment is manifest especially for Hyde Park, which is one of
the biggest and themost visited parks in London. In Figs. 3–6,
we illustrate the clustering results of DBSCAN andDBSTexC
for the four POIs when α = 0.5. To emphasize the perfor-
mance gap between the two algorithms, we depict the geo-
graphic cluster region with the distribution of POI-irrelevant
tweets. From Fig. 3, one can see that in the Hyde Park
case,DBSTexC dramatically excludes a huge number of POI-
irrelevant tweets from its clusters, while covering a much big-
ger geographic area in comparisonwith DBSCAN. This high-
lights the robustness of DBSTexC to discover high-quality
clusters in terms of the proposed performance metric ĀαF1.

On the other hand, for a special case where α = 0,
we notice from Table 4 that the DBSTexC algorithm has
almost the same performance as that of DBSCAN.While both
algorithms are able to find clusters with the highF1 score, it is
revealed from Fig. 7 that the clusters cover remarkably small
geographic areas, which do not provide any insight or useful
information about the regions where people are interested in
the POIs. As a result, to obtain high-quality clusters covering
large geographic areas, it is needed to incorporate the area of
clusters into the performance metric.

C. COMPUTATIONAL COMPLEXITY
We hereby analyze the computational complexity of the
DBSCAN andDBSTexC algorithms. The runtime complexity
of both algorithms is calculated as the input size (the number

FIGURE 3. The results of DBSCAN and DBSTexC for Hyde Park when
α = 0.5. (a) DBSCAN. (b) DBSTexC.

FIGURE 4. The results of DBSCAN and DBSTexC for Regent’s Park when
α = 0.5. (a) DBSCAN. (b) DBSTexC.

of tweets) times the basic operation ε-neighborhood query
(range query), which indeed dominates the complexity.

In the case of DBSTexC, from Algorithms 1 and 2, we can
clearly see that the RangeQuery() function is invoked only
for POI-relevant tweets that have not yet been visited, and the
DBSTexC algorithm will visit every POI-relevant tweet in the
dataset once. Therefore, we execute exactly one range query
for every POI-relevant tweet in the dataset. For analysis, letQ
denote the complexity of the function range query, and n and
m denote the number of POI-relevant and irrelevant tweets,
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FIGURE 5. The results of DBSCAN and DBSTexC for University of Oxford
when α = 0.5. (a) DBSCAN. (b) DBSTexC.

FIGURE 6. The results of DBSCAN and DBSTexC for Edinburgh Castle
when α = 0.5. (a) DBSCAN. (b) DBSTexC.

respectively. It then follows that the complexity is expressed
as O(n · Q). Based on how the function RangeQuery() is
implemented, its complexity analysis can be divided into the
following two cases:

• If the range query is implemented using a linear scan,
then we have Q = O((n + m) · D), where D indicates
the cost of computing the distance between two points.
Because each geo-tagged tweet in our dataset has a two-
dimensional coordinate and is represented by a 64-bit
data type in the database, the cost D can be treated as a

FIGURE 7. The results of DBSTexC when α = 0. (a) Hyde Park. (b) Regent’s
Park. (c) University of Oxford. (d) Edinburgh Castle.

constant, independent of n andm. Hence, the complexity
of the range query and DBSTexC are O(n + m) and
O(n2 + nm), respectively.

• If the range query is implemented using a spatial index,
then we can calculate the worst-case runtime complexity
by analyzing both the cost of building the index and
the worst-case complexity of the function RangeQuery()
used alongwith the spatial index. For example, for a two-
dimensional tree, the worst-case complexity of Range-
Query() is O(n + m), and the cost of building a two-
dimensional tree from n+ m geo-tagged points is

O((n+ m) · log(n+ m))

= O
(
(n+ m) ·

(
log n+ log

(
1+

m
n

)))
= O((n+ m) · log n),
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where the last equality holds under the assumption that
m = nβ for β ≥ 1. Therefore, it follows that the time
complexity of DBSTexC is O(n · (n + m) + (n + m) ·
log n) = O(n2 + nm).

For the DBSCAN algorithm, it has recently been proved
in [40] that the worst-case complexity is O(n · Q). Based on
the arguments above, when the range query is implemented
using a linear scan, the complexity becomes O(n2 · D) =
O(n2). On the contrary, if the range query is accelerated using
a spatial index such as a two-dimensional tree, the worst-
case runtime complexity of DBSCAN is O(n2) since it takes
O(n log n) to build the tree from n geo-tagged points and the
range query has the worst-case complexity of O(n).
To summarize the aforementioned analysis, the worst-case

time complexity of DBSTexC and DBSCAN is O(n2 + nm)
and O(n2), respectively. If we focus on a region where m =
c · n for a constant c > 0, then the complexity of DBSTexC
is O(n2). In the other region where m = nβ for β > 1,
the complexity of DBSTexC is O(n1+β ).
To numerically validate our complexity analysis, we first

plot the number of tweets according to different radii of
the query region. From Fig. 8, we observe a common trend
that the numbers of POI-relevant and POI-irrelevant tweets,
denoted by n andm, respectively, increase with the increasing
radius of the query region. However, their rates of growth
are different; up to a certain radius of the query region,
the numbers of POI-relevant and the POI-irrelevant tweets
grow at a similar rate, but beyond such a radius (depicted in
the figurewith a red star), the number of POI-irrelevant tweets
grows faster than the number of POI-relevant tweets. This
observation is basically consistent with our prior assump-
tion: there is a region where the number of POI-irrelevant
tweets is a constant times the number of POI-relevant tweets,
having the complexity of O(n2) for DBSTexC; and there is
another region where the rate of growth of the number of
POI-irrelevant tweets is higher than that of the POI-relevant
tweets, having the complexity of O(n1+β ) for β > 1 for
DBSTexC.

We further validate our complexity analysis by plotting the
actual runtime complexity of the DBSTexC and DBSCAN
algorithms for the worst case. It is easily seen that the
worst case takes place when the parameters of DBSTexC
and DBSCAN are set to extreme values corresponding to
(ε,Nmin) = (radius of the query region, 1) for DBSCAN and
(ε,Nmin,Nmax)= (radius of the query region, 1, total number
of POI-irrelevant tweets) for DBSTexC. Under this parameter
setting, Fig. 9 numerically shows the runtime complexity
of the DBSTexC and DBSCAN algorithms in log-log scale
according to four different POIs. From Fig. 9, we clearly see
that up to a certain value of the number of geo-tagged tweets,
DBSTexC and DBSCAN have a similar rate of growth main-
taining a constant gap between these two. Beyond the point
(depicted in the figure with a red star), the runtime complexity
of DBSTexC is higher than that of DBSCAN. Compared
with Fig. 8, these transition points exactly match the ones
dividing our query region into two sub-regions corresponding

FIGURE 8. The number of tweets according to the radius of the query
region.(a) Hyde Park. (b) Regent’s Park. (c) Edinburgh Castle.
(d) University of Oxford.

tom = c ·n for a constant c andm = nβ for β > 1. Therefore,
from Figs. 8 and 9, it is possible to adequately substantiate our
analysis on the complexity of the DBSTexC and DBSCAN
algorithms.

VI. EXTENSION TO F-DBSTEXC
Thus far, the DBSTexC algorithm has been designed
by finding clusters with strict boundaries. For further
analysis, we study the geographic distribution of tweets
(i.e., two-dimensional coordinates) by using the sorted
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FIGURE 9. The runtime complexity of DBSTexC and DBSCAN. (a) Hyde
Park. (b) Regent’s Park. (c) Edinburgh Castle. (d) University of Oxford.

k-nearest neighbor (k-NN) distance plot, which shows the
distance from geo-tagged points to their k-nearest neighbors
sorted in ascending order. If there exists a sudden and sharp
increase in the distances between geo-tagged points, then it
indicates that clusters and noise points are clearly separated.
On the other hand, if we observe a smooth increase in the
distances between tweets, then it may not be clear which
tweets should be grouped as clusters and which tweets should
be treated as noise. In other words, decision boundaries for
clusters would be fuzzy. In Fig. 10, the k-NN distance for the
four POIs is plotted when k = 4. From the figure, we observe

FIGURE 10. The k-NN distance (in km) for different POIs when k = 4.
(a) Hyde Park. (b) Regent’s Park. (c) Edinburgh Castle. (d) University of
Oxford.

that the geographic distribution of tweets is generally smooth.
For this reason, using crisp boundaries to separate clusters
may not exploit the entire geographic features of the data.
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To overcome this problem, we hereby propose an extension
of DBSTexC, called Fuzzy DBSTexC (F-DBSTexC), which
incorporates the notion of fuzzy clustering into DBSTexC
with a view to fully capturing the geographic characteristics
of tweets that tend to be smoothly distributed in space.

A. F-DBSTEXC Algorithm
To design a new algorithmwith the notion of fuzzy clustering,
we relax the constraints on a point’s neighborhood density.
That is, we replace the parameters Nmin and Nmax by two
new sets of parameters (Nmin1 , Nmin2 ) and (Nmax1 , Nmax2 ),
respectively, which specify the soft constraints on a point’s
neighborhood density. For example, in an ε-neighborhood of
a POI-relevant tweet, if the number of POI-relevant tweets is
larger than Nmin1 and the number of POI-irrelevant tweets is
smaller than Nmax2 , then a fuzzy neighborhood is generated.
To determine the neighborhood cardinality, we introduce
monotonically non-decreasing membership functions JRe(p)
and JIrre(p) for the POI-relevant tweets and POI-irrelevant
tweets, respectively, as follows [36]:4

JRe(p) =


1 if |Xε(p)| ≥ Nmin2
|Xε(p)| − Nmin1

Nmin2 − Nmin1
if Nmin1 ≤ |Xε(p)| ≤ Nmin2

0 if |Xε(p)| ≤ Nmin1 ,

(4)

JIrre(p) =


1 if |Yε(p)| ≤ Nmax1
Nmax2 − |Yε(p)|
Nmax2 − Nmax1

if Nmax1 ≤ |Yε(p)| ≤ Nmax2

0 if |Yε(p)| ≥ Nmax2 ,

(5)

where |Xε(p)| and |Yε(p)| denote the number of POI-relevant
and POI-irrelevant tweets, respectively, in a neighborhood of
point p. These membership functions in (4) and (5) quantify
the level of ‘‘fuzziness’’ of a point with respect to clustering.
The higher the value of those functions is, the more certain
that a point belongs to a cluster. The final cardinality of the
ε-neighborhood of a point p, µp, is then given by5

µp =
1
2
[JRe(p)+ JIrre(p)]. (6)

Based on this notation, the definition of a core point in
Definition 3 is revised as below.
Definition 9 (Core Point): A point p ∈ X is a core point if

it fulfills the following condition:

|Xε(p)| ≥ Nmin1 and |Yε(p)| ≤ Nmax2 .

Next, the F-DBSTexC algorithm is specified in Algo-
rithms 3 and 4. Compared to the original DBSTexC, modified
parts correspond to line 5 of Algorithm 3 and line 6 of

4Other types of membership functions such as the exponential member-
ship function [34] can also be applicable.

5To further improve the performance of F-DBSTexC, the cardinality µp
can also be given in a different way (e.g., the max argument or the geometric
mean).

Algorithm 3 F-DBSTexC(X ,Y , ε, Nmin1 , Nmin2 , Nmax1 ,
Nmax2 )
Input: X ,Y , ε, Nmin1 , Nmin2 , Nmax1 , Nmax2
Output: Clusters with different labels C
Initialization: C ← 0; n← |X |; m← |Y|; pi is a point in

the set X
1: for each pi do
2: if pi is not visited then
3: Mark pi as visited
4: [Xε(pi),Yε(pi)] = RangeQuery(pi)
5: if |Xε(pi)| ≥ Nmin1 & |Yε(pi)| ≤ Nmax2 then
6: C ← C + 1
7: ExpandCluster(pi,Xε(pi),Yε(pi))

Algorithm 4 ExpandCluster(pi,Xε(pi),Yε(pi))
Input: pi,Xε(pi),Yε(pi)
Output: Cluster C with all of its members
1: Add pi to the current cluster with fuzzy score µpi
2: for each point pj in the set Xε(pi) do
3: if pj is not visited then
4: Mark pj as visited
5: [Xε(pj),Yε(pj)] = RangeQuery(pj)
6: if |Xε(pj)| ≥ Nmin1 & |Yε(pj)| ≤ Nmax2 then
7: Xε(pi) = Xε(pi) ∪ Xε(pj)
8: Yε(pi) = Yε(pi) ∪ Yε(pj).
9: Add pj to the current cluster with fuzzy score
µpj

10: if pj does not have a label then
11: Add pj to the current cluster

12: if |Yε(pi)| 6= 0 then
13: for each point qj in the set Yε(pi) do
14: if qj is not visited then
15: Mark qj as visited
16: if qj does not have a label then
17: Add qj to the current cluster

Algorithm 4, which serve to relax the constraints on a point’s
neighborhood density. The F-DBSTexC algorithm adds points
to the clusters with their distinct fuzzy score µp, as expressed
in line 9 of Algorithm 4.

B. EXPERIMENTAL EVALUATION
We summarize the experimental results in Table 5 accord-
ing to different values of α ≥ 0. Similarly as
in the original DBSTexC case, for the parameter set
(ε,Nmin1 ,Nmin2 ,Nmax1 ,Nmax2 ), we stepwise test the param-
eter combinations via exhaustive search. From the table, one
can make the following insightful observations:

• The clustering quality of F-DBSTexC is higher than or at
least equal to that of DBSTexC for all chosen POIs,
showing the performance gain over DBSTexC by up to
27.33%.
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TABLE 5. Experimental results for DBSTexC and F-DBSTexC .

• Although F-DBSTexC has slightly better performance
than that of DBSTexC for the two POIs located in Lon-
don (i.e., Hyde Park and Regent’s Park), it remarkably
outperforms DBSTexC for POIs in smaller cities such as
University of Oxford and Edinburgh Castle.

The first observation can be easily understood because
F-DBSTexC is a fuzzy extension of DBSTexC; therefore, its
performance is guaranteed to be at least as good as that
of DBSTexC. On the other hand, the second observation
may not be straightforward. We scrutinize the geographic
distribution of tweets in various locations and notice that in
general, POIs in crowded cities like London are surrounded
by a significant number of POI-irrelevant tweets. As a result,
further extension of the area covered by the clusters would
not be beneficial. However, for POIs in smaller cities such as
Oxford and Edinburgh, the geographic distribution of POI-
irrelevant tweets around a POI tends to be much more sparse,
enabling fuzzy extension of DBSTexC to work effectively.
This remark highlights our proposition that F-DBSTexC is a
dynamic extension ofDBSTexC, allowing DBSTexC to apply
in different situations with diverse types of POIs.

C. COMPUTATIONAL COMPLEXITY
Compared to DBSTexC, F-DBSTexC relaxes the constraints
on a point’s neighborhood density. However, the computa-
tional complexity of F-DBSTexC is still dominated by the
function RangeQuery(), and F-DBSTexC invokes the function
exactly once for every POI-relevant data point. Therefore,
the computational complexity of F-DBSTexC is of the same
order as that of DBSTexC, which isO(n2+nm). More specif-
ically, the complexity of F-DBSTexC is O(n2) in a region
where m = c × n for a constant c, and it follows O(n1+β )
in another region where m = nβ for β > 1.

VII. CONCLUDING REMARKS
As an extended version of DBSCAN, we introduced
DBSTexC, a new spatial clustering algorithm that fur-
ther leverages textual information on Twitter, composed of

n POI-relevant tweets andm POI-irrelevant tweets. The algo-
rithm is beneficial when we aim to find clusters from geo-
tagged tweets which are heterogeneous in terms of textual
description since DBSTexC effectively excludes regions con-
taining a huge number of undesired POI-irrelevant tweets.
The computational complexity of DBSTexC was shown to be
O(n2) in a region where m = c · n for a constant c > 0,
and O(n1+β ) in the other region where m = nβ for β > 1.
We demonstrated the performance of DBSTexC to be far
superior to that of DBSCAN in terms of our performance
metric ĀαF1, where α ≥ 0 is the area exponent. As a further
extension, we introduced F-DBSTexC, which incorporates
the notion of fuzzy clustering into DBSTexC. By fully cap-
turing their geographic features, the F-DBSTexC algorithm
was shown to outperform the original DBSTexC for the POIs
located especially in sparsely-populated cities. The design
methodology that DBSTexC and F-DBSTexC provide takes
an important step towards a better understanding of jointly
utilizing spatial and textual information in designing density-
based clustering and towards a broad range of applications
from geo-marketing to location-based services such as geo-
targeting, geo-fencing, and Beacons.

ACKNOWLEDGMENT
This paper was presented in part at the IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis
andMining, Sydney, Australia, July/August 2017. This paper
has been significantly extended based on the prior work [41].

REFERENCES
[1] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques,

3rd ed. Amsterdam, The Netherlands: Elsevier, 2011.
[2] J. A. Hartigan andM. A.Wong, ‘‘Algorithm AS 136: A k-means clustering

algorithm,’’ Appl. Statist., vol. 28, no. 1, pp. 100–108, 1979.
[3] R. T. Ng and J. Han, ‘‘CLARANS: A method for clustering objects for

spatial data mining,’’ IEEE Trans. Knowl. Data Eng., vol. 14, no. 5,
pp. 1003–1016, Sep. 2002.

[4] C. Fraley and A. E. Raftery, ‘‘Model-based clustering, discriminant anal-
ysis, and density estimation,’’ J. Amer. Statist. Assoc., vol. 97, no. 458,
pp. 611–631, Jun. 2002.

[5] D. H. Fisher, ‘‘Improving inference through conceptual clustering,’’ in
Proc. 6th Nat. Conf. Artif. Intell. (AAAI), Seattle, WA, USA, Jul. 1987,
pp. 461–465.

[6] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction
to Cluster Analysis. Hoboken, NJ, USA: Wiley, 1990.

[7] T. Zhang, R. Ramakrishnan, and M. Livny, ‘‘BIRCH: An efficient data
clustering method for very large databases,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data (SIGMOD), Montreal, QC, Canada, Jun. 1996,
pp. 103–114.

[8] W. Wang, J. Yang, and R. R. Muntz, ‘‘STING: A statistical information
grid approach to spatial data mining,’’ in Proc. 23rd Int. Conf. Very Large
Data Bases (VLDB), Athens, Greece, Aug. 1997, pp. 186–195.

[9] R. Agrawal, J. E. Gehrke, D. Gunopulos, and P. Raghavan, ‘‘Automatic
subspace clustering of high dimensional data for datamining applications,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), Seattle, WA,
USA, Jun. 1998, pp. 94–105.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’DataMining
Knowl. Discovery, vol. 96, no. 34, pp. 226–231, Aug. 1996.

[11] M. Ankerst,M.M. Breunig, H.-P. Kriegel, and J. Sander, ‘‘OPTICS: Order-
ing points to identify the clustering structure,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD), Philadelphia, PA, USA, May/Jun. 1999,
pp. 49–60.

VOLUME 7, 2019 27229



M. D. Nguyen, W.-Y. Shin: Improved Density-Based Approach to Spatio-Textual Clustering on Social Media

[12] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, ‘‘Density-based clustering in
spatial databases: The algorithm GDBSCAN and its applications,’’ Data
Mining Knowl. Discovery, vol. 2, no. 2, pp. 169–194, Jun. 1998.

[13] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, ‘‘Density-based cluster-
ing,’’ WIREs Data Mining Knowl. Discovery, vol. 1, no. 3, pp. 231–240,
May/Jun. 2011.

[14] D. Birant and A. Kut, ‘‘ST-DBSCAN: An algorithm for clustering spatial–
temporal data,’’ Data Knowl. Eng., vol. 60, no. 1, pp. 208–221, Jan. 2007.

[15] R. J. G. B. Campello, D. Moulavi, and J. Sander, ‘‘Density-based cluster-
ing based on hierarchical density estimates,’’ in Proc. Pacific-Asia Conf.
Knowl. Discovery Data Mining (PAKDD), Gold Coast, QLD, Australia,
Apr. 2013, pp. 160–172.

[16] H. Kwak, C. Lee, H. Park, and S. Moon, ‘‘What is Twitter, a social network
or a news media?’’ in Proc. 19th Int. Conf. World Wide Web (WWW),
Raleigh, NC, USA, Apr. 2010, pp. 591–600.

[17] F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley, ‘‘Is the sample good
enough? Comparing data from Twitter’s streaming API with Twitter’s
Firehose,’’ in Proc. 7th Int. AAAI Conf. Weblogs Social Media (ICWSM),
Boston, MA, USA, Jul. 2013, pp. 400–408.

[18] I. De Felipe, V. Hristidis, and N. Rishe, ‘‘Keyword search on spatial
databases,’’ in Proc. 24th IEEE Int. Conf. Data Eng. (ICDE), Cancun,
Mexico, Apr. 2008, pp. 656–665.

[19] G. Cong, C. S. Jensen, and D. Wu, ‘‘Efficient retrieval of the top-k
most relevant spatial Web objects,’’ Proc. VLDB Endowment, vol. 2,
pp. 337–348, Aug. 2009.

[20] B. Yao, F. Li,M. Hadjieleftheriou, andK. Hou, ‘‘Approximate string search
in spatial databases,’’ in Proc. 26th IEEE Int. Conf. Data Eng. (ICDE),
Long Beach, CA, USA, Mar. 2010, pp. 545–556.

[21] Y. Tao and C. Sheng, ‘‘Fast nearest neighbor search with keywords,’’ IEEE
Trans. Knowl. Data Eng., vol. 26, no. 4, pp. 878–888, Apr. 2014.

[22] D.-W. Choi and C.-W. Chung, ‘‘A K-partitioning algorithm for clustering
large-scale spatio-textual data,’’ Inf. Syst., vol. 64, pp. 1–11, Mar. 2017.

[23] D.Wu andC. S. Jensen, ‘‘A density-based approach to the retrieval of top-K
spatial textual clusters,’’ in Proc. 25th ACM Int. Conf. Inf. Knowl. Manage.
(CIKM), Indianapolis, IN, USA, Oct. 2016, pp. 2095–2100.

[24] D. D. Vu, H. To, W.-Y. Shin, and C. Shahabi, ‘‘GeoSocialBound: An effi-
cient framework for estimating social POI boundaries using spatio–
textual information,’’ in Proc. 3rd Int. ACM SIGMOD Worksh. Manag.
Min. Enriched Geo-Spatial Data (GeoRich), San Francisco, CA, USA,
Jun. 2016, Art. no. 3.

[25] W.-Y. Shin, B. C. Singh, J. Cho, and A. M. Everett, ‘‘A new understanding
of friendships in space: Complex networks meet Twitter,’’ J. Inf. Sci.,
vol. 41, no. 6, pp. 751–764, 2015.

[26] H.-S. Park and C.-H. Jun, ‘‘A simple and fast algorithm for
k-medoids clustering,’’ Expert Syst. Appl., vol. 36, no. 2, pp. 3336–3341,
Mar. 2009.

[27] Y. van Gennip et al., ‘‘Community detection using spectral clustering on
sparse geosocial data,’’ SIAM J. Appl. Math., vol. 73, no. 1, pp. 67–83,
Jan. 2013.

[28] B. Wang and X. Wang, ‘‘Spatial entropy-based clustering for mining data
with spatial correlation,’’ in Proc. Pacific-Asia Conf. Knowl. Discovery
Data Mining (PAKDD), Shenzhen, China, May 2011, pp. 196–208.

[29] J. C. Bezdek,W. Full, and R. Ehrlich, ‘‘FCM: The fuzzy c-means clustering
algorithm,’’ Comput. & Geosci., vol. 10, nos. 2–3, pp. 191–203, 1984.

[30] S. Miyamoto, H. Ichihashi, and K. Honda, Algorithms for Fuzzy Cluster-
ing. Berlin, Germany: Springer, 2008.

[31] M. J. Li, M. K. Ng, Y.-M. Cheung, and J. Z. Huang, ‘‘Agglomerative fuzzy
K-means clustering algorithm with selection of number of clusters,’’ IEEE
Trans. Knowl. Data Eng., vol. 20, no. 11, pp. 1519–1534, Nov. 2008.

[32] A. Smiti and Z. Eloudi, ‘‘Soft DBSCAN: Improving DBSCAN clustering
method using fuzzy set theory,’’ in Proc. 6th Int. Conf. Human Syst.
Interact. (HSI), Sopot, Poland, Jun. 2013, pp. 380–385.

[33] N. Zahid, O. Abouelala, M. Limouri, and A. Essaid, ‘‘Fuzzy clustering
based on K-nearest-neighbours rule,’’ Fuzzy Sets Syst., vol. 120, no. 2,
pp. 239–247, Jun. 2001.

[34] E. N. Nasibov and G. Ulutagay, ‘‘Robustness of density-based clustering
methods with various neighborhood relations,’’ Fuzzy Sets Syst., vol. 160,
no. 24, pp. 3601–3615, Dec. 2009.

[35] H.-P. Kriegel andM. Pfeifle, ‘‘Density-based clustering of uncertain data,’’
in Proc. 11th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), Chicago, IL, USA, Aug. 2005, pp. 672–677.

[36] D. Ienco and G. Bordogna, ‘‘Fuzzy extensions of the DBSCAN clustering
algorithm,’’ Soft Comput., vol. 22, no. 5, pp. 1719–1730, Mar. 2018.

[37] G. Ulutagay and E. Nasibov, ‘‘Fuzzy and crisp clustering methods based
on the neighborhood concept: A comprehensive review,’’ J. Intell. Fuzzy
Syst., Appl. Eng. Technol., vol. 23, no. 6, pp. 271–281, Nov. 2012.

[38] M. Mathioudakis and N. Koudas, ‘‘TwitterMonitor: Trend detection over
the Twitter stream,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data
(SIGMOD), Indianapolis, IN, USA, Jun. 2010, pp. 1155–1158.

[39] S. Reis et al., ‘‘UK gridded population based on Census 2011 and Land
Cover Map 2007,’’ NERC Environ. Inf. Data Centre, Tech. Rep., 2016.

[40] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, ‘‘DBSCAN
revisited, revisited: Why and how you should (still) use DBSCAN,’’ ACM
Trans. Database Syst., vol. 42, no. 3, pp. 19:1–19:21, Aug. 2017.

[41] M. D. Nguyen and W.-Y. Shin, ‘‘DBSTexC: Density-based spatio-textual
clustering on Twitter,’’ in Proc. IEEE/ACM Int. Conf. Adv. Social Netw.
Anal. Mining (ASONAM), Sydney, NSW, Australia, Jul./Aug. 2017,
pp. 23–26.

MINH D. NGUYEN was born in Hanoi, Vietnam.
He received the B.Eng. degree in mobile systems
engineering from Dankook University, Yongin,
South Korea, in 2018. He is currently pursuing
the master’s degree with the Electrical Engineer-
ing Department, King Abdullah University of Sci-
ence and Technology, Thuwal, Saudi Arabia. His
research interests include social network analysis,
data mining, and machine learning.

WON-YONG SHIN (S’02–M’08–SM’16)
received the B.S. degree in electrical engineer-
ing from Yonsei University, Seoul, South Korea,
in 2002, and the M.S. and Ph.D. degrees in elec-
trical engineering and computer science from the
Korea Advanced Institute of Science and Technol-
ogy (KAIST), Daejeon, South Korea, in 2004 and
2008, respectively.

From 2008 to 2009, he was with the Brain Korea
Institute and CHiPS, KAIST, as a Postdoctoral

Fellow. In 2009, he joined the School of Engineering of Engineering
and Applied Sciences, Harvard University, Cambridge, MA, USA, as a
Postdoctoral Fellow. He was promoted to Research Associate, in 2011. From
2012 to 2019, he was a Faculty Member with the Department of Computer
Science and Engineering, Dankook University, Yongin, South Korea. Since
2019, he has been with the Department of Computational Science and
Engineering, Yonsei University, where he is currently anAssociate Professor.
His research interests include information theory, communication, signal
processing, mobile computing, big data analytics, and online social networks
analysis. He served as an Organizing Committee Member of the 2015 IEEE
Information Theory Workshop, the 2017/2018 International Conference on
ICT Convergence, and the 2018 International Conference on Information
Networking. He received the Bronze Prize of the Samsung Humantech
Paper Contest, in 2008, and the KICS Haedong Young Scholar Award,
in 2016. He has served as an Associate Editor for the IEIE Transactions
on Smart Processing and Computing and the Journal of Korea Information
and Communications Society. From 2014 to 2018, he served as an Asso-
ciate Editor for the IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences. He has served as a Guest Editor
for the Energies—Special Issue on Green Radio, Energy Harvesting, and
Wireless-Powered Communications for Beyond-5G Wireless Systems, The
Scientific World Journal—Special Issue on Challenges towards 5G Mobile
and Wireless Communications, and the International Journal of Distributed
Sensor Networks—Special Issue on Cloud Computing and Communication
Protocols for IoT Applications.

27230 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND
	MOTIVATION AND MAIN CONTRIBUTIONS
	ORGANIZATION
	NOTATIONS

	PREVIOUS WORK
	SPATIAL CLUSTERING
	SPATIO–TEXTUAL SIMILARITY SEARCH
	CLUSTERING BASED ON SPATIAL AND NON-SPATIAL ATTRIBUTES
	FUZZY CLUSTERING

	DATA ACQUISITION AND PROCESSING
	COLLECTING TWITTER DATA
	COLLECTING POIS
	SEARCHING POI-RELEVANT TWEETS

	PROPOSED METHODOLOGY
	DEFINITIONS
	ANALYSIS
	DBSTEXC Algorithm

	EXPERIMENTAL RESULTS AND DISCUSSION
	PERFORMANCE METRIC
	EXPERIMENTAL EVALUATION
	COMPUTATIONAL COMPLEXITY

	EXTENSION TO F-DBSTEXC
	F-DBSTEXC Algorithm
	EXPERIMENTAL EVALUATION
	COMPUTATIONAL COMPLEXITY

	CONCLUDING REMARKS
	REFERENCES
	Biographies
	MINH D. NGUYEN
	WON-YONG SHIN


