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ABSTRACT Agile Earth Observing Satellite (AEOS) scheduling problem consists of selecting a subset of
tasks and developing observation plans for a set of agile satellite resources with the purpose of maximizing
the total reward of arranged mission observations. This problem has attracted much attention in recent
years since AEOS is a new generation satellite being developed all over the world. Due to its NP-hardness,
heuristic methods are widely adopted when solving the AEOS scheduling problem (AEOSSP). In this paper,
we propose a temporal conflict network-based heuristic algorithm (TBHA), for AEOSSP. The novelty of
TBHA lies in the fact that the heuristics are extracted from a temporal conflict network, which characterizes
the overlaps (conflicts) of the visible time windows of the problem. These heuristics are highly effective since
they well address the time window conflicts which otherwise pose a significant challenge on the choice of the
imaging start time for satellite observations. The extensive simulation experiments with the comparison to
a number of heuristic algorithm variants and sophisticated meta-heuristic algorithms are conducted to show
that the TBHA algorithm performs very well in terms of both solution quality and computational efficiency.

INDEX TERMS Agile satellite scheduling, complex network, heuristic algorithm, time window conflict.

I. INTRODUCTION

Agile Earth Observing Satellite (AEOS) scheduling problem
consists of selecting a subset of tasks and developing obser-
vation plans for a set of agile satellite resources with the
purpose of maximizing the total reward of arranged mission
observations.

Compared to non-agile satellites that have only one degree
of freedom, agile satellites are able to move on three axes:
roll, pitch and yaw. Due to these new agility capabilities,
the azimuth and the starting time of the image acquisition
are now free (within given limits), which leads potentially
infinite number of ways of acquiring an Earth surface target,
giving rise to a better efficiency of the whole satellite system.
Fig. 1 shows the comparison between non-agile and agile
satellites. In this figure, visible time window (VTW) is a spec-
ified time period during which the satellite can take image
of the ground target, while observation time window (OTW)
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FIGURE 1. Comparisons of non-agile and agile satellites.

defines the actual time interval for the execution of the imag-
ing.

AEOS scheduling problem belongs to the NP-hard family,
since it generalizes the EOS scheduling problem which was
proved to be NP-hard in [1]. The complexity is increased
mainly on two aspects. First, the visible time window of the
satellite with respect to a given target is extended, which
means the starting time of the observation can be any time
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within an interval. Second, the transition between two consec-
utive observations is time-dependent, which basically means
the start time of the latter observation depends on the end time
of the former observation.

Due to the NP-hardness of the AEOS scheduling problem,
exact methods are only applicable to small-size instances.
As a result, heuristics and meta-heuristics are often con-
sidered in the literature. Lemaltre [2] provided four meth-
ods including a greedy algorithm, a dynamic programming
procedure, a constraint programming method, and a local
search method, to solve a simplified version of the schedul-
ing problem for AEOSs; Cordeau and Laporte [3] inher-
ited the problem model of [2] and developed a tabu search
method to solve the scheduling problem of a given orbit;
Dilkina and Havens [4] investigated different local optimiza-
tion algorithms (including hill-climbing, simulated annealing
and squeaky wheel optimization) coupled with constraint
propagation for handling image acquisition time windows;
Liao and Yang [5] developed an imaging order scheduler
for the FORMOSAT-2 satellite and pointed out that the
AEOS scheduling problem is characterized by sequence-
dependent setups. They proposed a rolling scheduling frame-
work to deal with weather uncertainty. They used Lagrangian
relaxation and linear search techniques to solve the prob-
lem; Li et al. [6] described a combined genetic algorithm
for selecting and scheduling the AEOS scheduling problem;
Habet et al. [7] formulated the AEOS problem as a con-
strained optimization problem whose main objective func-
tion is to maximize the profit, and the secondary objective
is to minimize the sum of transition durations. They pro-
posed a tabu search algorithm to solve it; Yuning et al. [8],
Guo et al. [9], Yan et al. [10] and Zhang et al. [11] proposed
three different ant colony algorithms for the AEOS schedul-
ing problem; Tangpattanakul ez al. [12] presented a biased
random-key genetic algorithm to solve a multi-objective
optimization problem associated with the management of
AEOSs; Xu et al. [13] proposed priority-based constructive
algorithms with total priority maximization. Liu et al. [14]
proposed an adaptive large neighborhood search meta-
heuristic for AEOS scheduling problem.

Compared to common approaches that solve the AEOS
scheduling problem directly based on its mathematical for-
mulation, it is a new point of view to study the problem from
the perspective of complex network. To this end, we can take
each possible observation opportunity as a network node,
and the relationship or connection of them are described
by network edges. Useful information can then be extracted
from the network which helps us to analyze the problem and
develop effective heuristic algorithms. The idea of this work
is inspired by a number of papers applying complex net-
work theory to the field of production scheduling [15]-[18].
However, in the area of AEOS scheduling (or more gen-
erally EOS scheduling), there are very few such works.
A small number of somewhat related works are summarized
below. Zufferey et al. [19] adapted the best ingredients of
the graph coloring techniques to the NP-hard satellite range
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FIGURE 2. Diagrammatic sketch of VTW overlaps.

scheduling problem, called MuRRSP, then a tabu search
and an adaptive memory algorithm were designed to tackle
it. Sarkheyli et al. [20] followed this line in investigating
the scheduling system of low earth orbit (LEO) satellite
operations. Wang et al. [21] firstly introduced the theory of
complex networks and found similarities between AEOS
redundant targets scheduling problem and the node centrality
ranking problem, then proposed a fast approximate schedul-
ing algorithm (FASA) to obtain effective scheduling results.
We note in the above papers that, the edge of the network
models is represented by the order of tasks (two adjacent
tasks are connected by an edge). This modeling method is
no longer effective in the setting of AEOS scheduling prob-
lem since the prolonged visible time window (VTW) is no
longer equal to the observation time window (OTW). Though
Wang et al. [21] tries improving this modeling method by
granulating the original VTW into several candidate OTWs,
but it should be noticed that the solution accuracy highly
depends on the granularity interval. Moreover, they did not
consider the transition time and the observation quality in
their paper. These are in fact two very essential factors and
cannot be ignored in AEOS scheduling problem. Our work
attempts to address the above issues. We recall that the most
prominent characteristic of an agile satellite is its long visible
time window with respect to a ground target. This usually
causes many overlaps between visible time windows of dif-
ferent tasks as Fig. 2, which poses significant challenge on
the choice of starting time for these tasks especially when
the number of tasks is large. Therefore, it is more reasonable
to use the overlaps between visible time windows to reflect
the edge connection relationship. This results in a so-called
temporal conflict network (TCN) which is first proposed in
this work. In addition, our AEOS scheduling problem is a
more realistic model that takes transition time (between two
consecutive observations) and the observation quality into
account.

In this paper, we attempt to extract a set of highly effec-
tive heuristic rules from the TCN of AEOS scheduling
problem. These heuristic rules are then integrated into a
construction algorithm, leading to a TCN based heuristic
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algorithm (TBHA), which is able to produce high quality
solutions for the AEOS scheduling problem. Experimental
results on a set of representative instances show that the
proposed TBHA can achieve better results than construction
algorithms using basic rules, and even the most recent state-
of-the-art meta-heuristic algorithms ALNS in [14].

The remainder of this paper is organized as follows.
Section II provides a formal definition of the AEOS schedul-
ing problem. Section III presents the temporal conflict net-
work (TCN) and its propagation effect. Section IV describes
a TCN based heuristic algorithm for solving the AEOS
scheduling problem. Computational experiments are pre-
sented in Section V, followed by conclusions in Section VI.

Il. PROBLEM DESCRIPTION

The elements of AEOS scheduling problem can be described
as follows: there are a set of satellites and a set of observing
tasks; each task has a priority; each task corresponds to a set
of available visible time windows.

AEOS scheduling problem can be described as under var-
ious constraints, selecting part of observing tasks from a
series of ground targets which need to be observed, and then
arranging observing tasks and observing time according to a
number of continuous orbits for agile satellites, and finally
maximizing the total observation reward.

Before formulating the AEOS scheduling problem,
we made a number of reasonable assumptions:

1) The satellite has only one sensor;
2) All tasks are point targets;
3) Energy and storage are both unlimited;

The main variables and parameters used in this paper are
defined in Section A.

A. VARIABLES

o T = {11, 12,1, dots, t,} : the set of tasks, where n is the
number of tasks to be scheduled.

o p; : the priority level of the task #;, which measures the
benefit earned by fulfilling it.

« 6; : the specified observation angle for task ¢;.

o g; : the observation quality of task #;, which is affected
by the specified observation angle 6; of the task.

o g; : the prospective profit of observing task #;, which
is determined by the priority level and the observation
quality.

o d; : the duration time needed for task #; to get a total
observation.

o« TW; = {tw;1, twp, ..., twi,} : the set of visible time
window for task 7;, where tw;; represents the jth visible
time window for task #;.

o wsjj, we;;: the start time and end time for visible time
window twj;.

e 0; : the observation time window for task ¢;.

e 0s;, oe;: the start time and end time of observation time
window for task ¢;.

61026

o trjj : the transition time needed for the satellite to transit
the posture from the end observing angle 6; to of the
former task #; to the start observing angle 6; of the next
task #.

B. MATHEMATICAL FORMULATION
In this section, we formally describe the AEOS problem.
First, we define a binary decision variable x;;:
1 L C s
xi/':{ , 0i & Iwjj

ey

0, otherwise

Equation (1) shows if visible time window tw;; is selected
to arrange the observation time window for task 7;, then
x;j=1, else x;j= 0. And the symbol C is redefined here as
the affiliation of time window. We write o; € twj; if and only
if wsjj < 0s; < oej<wej;.

To better describe sequence-dependent structure of the
AEOS scheduling problem, we define a binary auxiliary vari-
able F;je (0, 1), t;,t; € T, where Fj;j= 1 represents that task
t; and task #; are observed continuously.

The optimization goal of the AEOS scheduling problem is
to maximize the sum of the observation profits, which can be
expressed as follows:

IT| |TWil

Max Z Z Xij&i (2)

i=1 j=1

Subject to:
|TW;
xj <1, VueT (3)
j=1
oe; =osi+d;, vV eT )
wsij < 0s; < oe; < wejj,  x5=1 (5)
oe; + trij < osj, Vi, tj € T A F,'j =1 (6)
g =pi Va4, VieT 7)

Equation (3) requires that each task can be observed at most
once. In other words, for each task we can choose only one
visible time window to fulfill its observation request.

Equation (4) indicates that each observation activity must
be ensured d; time for the completeness of the observation.

Equation (5) requires the observation time window to be
within the visible time window.

Equation (6) requires the time between two adjacent obser-
vations must be sufficient for the maneuver of the satellite.
The time required for maneuver transition is calculated by:

Aeij/vl + A1, Af; < Aby
AOij[va+ Ay, AOy < A0 < A6,  (8)
A@ij/\/3 + A3, Af > Aby,

As common, we adopt a piecewise linear function to rep-
resent the transition time. In equation (8), A6;; represents the
total angle change between two adjacent observation o; and
0j, v represents the transition speed of satellite, A represents
the transition stabilization time which is related to Af;;, and
A0, represents the threshold of Af;;.

trij =

VOLUME 7, 2019



P. Xie et al.: Heuristic Algorithm Based on TCN for AEOS Scheduling Problem

IEEE Access

There is no well recognized revenue model for the AEOS
scheduling problem considering image quality. We define
a rough revenue model as equation (7), showing the actual
profit of the task is determined by the priority of the task
and the quality of the observation. We define the range of
the priority as p; € [1, 10], and the observation quality g; is
calculated as follows:

ositoe;

2
q9i = 10-9 wejji—wsijj ©
2

__ 0ej—os;

wsijt+weij;
2

As g; € [1, 10], the dimension of the observation quality
is the same with p;. According to the characteristics of agile
satellites, the best image quality is achieved with the nadir
pointing of the satellite, i.e, the OTW is exactly in the middle
of the VTW. As can be seen from equation (9), when the OTW
is located in the middle of the VTW, the observation quality
is 10; while the observation quality is 1 when it is on both
sides.

Ill. TEMPORAL CONFLICT NETWORK FOR HEURISTIC
EXTRACTION

Following most of the existing works, we propose to solve
the AEOS scheduling problem using heuristic algorithms,
where heuristic information is extracted from a temporal con-
flict network (TCN) that fully characterizes the ‘“‘conflict”
relationship (overlaps) of all candidate visible time windows
(VTWs).

In the AEOS scheduling problem considered in this paper
(see the problem description of Section II), an AEOS typ-
ically has multiple VTWs (that lie in different tracks) with
respect to a ground target, which usually have many over-
laps (conflicts) with VTWs of nearby ground targets, due to
their extended length provided by the satellite agility. This
makes the selection of VT Ws for a selected task become sig-
nificantly more difficult. We seek to extract useful local and
global information from TCN to guide the VITW selection,
allowing highly informed decisions.

A. BASIC TCN CONSTRUCTION

A temporal conflict network G can be represented by a two-
tuple, thatis G = (V, E), where V represents a set of nodes
and E represents a set of edges. These network elements are
described as follows:

o Node set V: A node corresponds to a visible time win-
dow;

o Edge set E: Two edges exist between two nodes if their
corresponding time windows are overlapped. Each edge
is associated with a specific weight.

Fig. 3 shows the framework of a temporal conflict network
with three tasks. As we can see, corresponding to the running
orbit, the satellite can have multiple VTWs for each obser-
vation task. These VTWs are nodes in the temporal conflict
network, and their overlap relationships are represented by
edges. It should be noted that there is only one undirected
edge between each pair of VI'Ws in this figure, while in
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FIGURE 3. Framework of temporal conflict network (TCN).

the real TCN (as we can see below), the undirected edge is
divided into two directed edges with specific weights.

In this paper, a directed edge from the source node i to the
target node j represents the conflict influence of node i on
the visible window of node j. Since the actual observation
time window (OTW) is just a part of the selected VTW,
there is only one hidden mapping between the VTW and the
actual OTW, so we proposed a rough method to represent the
conflict influence. The weight of the edge is represented by
the product of the overlap proportion of the target node’s total
visible time window with the target node’s task priority:

ey = py - A~ ] (10)
we; — ws;
where A |we;u; — wsiuj‘ denotes the overlap interval between
the VTW i and j.

Based on the TCN, the weighted out-degree of a task
reflects its impact on the neighboring tasks and the weighted
in-degree indicates the influence it suffered from its neigh-
boring tasks.

Wous)i = Y _ ey (11)
J

(Windi = Y _ e (12)
J

where (W,,;); represents the weighted out-degree of VIW i,
and (W;,,); represents the weighted in-degree of it.

To maximize the total reward, the nodes having high
weighted in-degree should be considered first because they
are likely to have high priority and high conflicts (over-
laps) with other nodes. On the other hand, the nodes having
low weighted out-degree should be considered first when it
comes to the VTW selection for a ground target. Based on
the out-degree and in-degree of nodes, we define the time
window sensitivity (TWS) and time window influence (TWI)
as follows:

(Wout>i
Z(Wout)i

i=1

TWS; = (13)
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(Win)i

TWI; = ————
O (Wi
=1

(14)

TWS and TWI are further used to define an indicator called

target priority (7P):

ITWil
2. TWS;
TPi= —— (15)
count (|[TW;])

where count (|[TW ;|) denotes the number of VTWs associated
with target i. TP is used to sort tasks in our proposed heuristic
algorithm (see Section IV), which determines the order in
which tasks are considered.

In the heuristic algorithm proposed in Section IV, the TP
value is used to determine a task processing order and the
nodes out-degree value is used to decide a VTW considera-
tion order. VTWs with lower out-degrees have smaller impact
on others, leaving more opportunities for other tasks to be
included in the final solution.

B. TCN STRUCTURE IMPROVEMENT

The basic TCN models the conflicts among VTWs of differ-
ent tasks. However, it does not consider the mutually exclu-
sive relationship of the different VTWs of the same task. The
improved TCN includes additional edges to describe such
relationship. Compared to the overlaps of VTWs that belong
to different tasks, the overlaps of the mutually exclusive
VTWs are more pronounced, whose corresponding edges
should be given a higher weight:

ejj = ap; (16)

where « denotes the weight coefficient, and VTW iand VTW
Jj belong to the same task.

Fig. 4 and Fig. 5 (based on the 50-target scenario in
Section V) show the structural difference between the basic
TCN and the improved TCN.

As we can see from Fig. 4 and Fig. 5, the basic TCN
has several isolated parts corresponding to different satel-
lite tracks while the improved TCN is a fully connected
graph. And this difference will affect the propagation effect
in Section C.

C. PROPAGATION EFFECT OF TCN

While we arrange the observation time window according to
the timeline, it is obvious that the influence of time window
conflict is a cumulative process. A task may be not only
influenced by its neighboring tasks, but also other tasks that
have a path in connection with it. In other words, the impact
of a node may propagate to another node via some immediate
nodes in between. Thus, the time window sensitivity (TWS)
and time window influence (TWI) should be calculated by
considering not only the neighboring nodes (out-degree and
in-degree), but also nodes along path. In this section, we put
forward a proper way to consider the propagation effect in
our temporal conflict network.
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FIGURE 5. The improved temporal conflict network.

As we mentioned in Section I, the AEOS scheduling prob-
lem is similar to the node centrality ranking problem [21].
In the field of complex network, the propagation effect
between nodes is usually an unignorably factor while per-
forming node centrality ranking. To consider this effect in our
TCN, we propose to use a well-known node centrality ranking
algorithm called PageRank (PR) [22].

PR algorithm is firstly used in web page ranking for
Google, which mainly includes two rules: First, when a web
page is linked by more web pages, its ranking will be higher;
second, when a web page is linked by a high-ranking web
page, its importance should be enhanced. Based on these two
rules, the ranking of a web page is equal to the weighted
ranking of all pages linked to the web page. In other words,
the standard for ranking is changed from the basic linking
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number to the sum of weighted linking number. This is how
PR algorithm considers the propagation effect of the linked
web pages.

We draw lessons from the PR algorithm to handle the prop-
agation effect of the TCN and then re-calculate the TWS and
TWI . To better use the PR model, we use TW to collectively
denote both TWS and TWI and define the initial importance
of the node as follows:

P =TwW; (17)
The iterative formula for PR value is:
P =d-E.-p"+ (1 —d)-p° (18)

where p" represents the PR value matrix after the nth
iteration, E. represents the edge weight matrix after col-
umn normalized (for TWS) or row normalized (for TWI),
PO = { p?, pg, ey pg} represents the node initial importance
matrix, d represents damping coefficient, and d - E - A rep-
resents that the node in the random model will own a certain
share of the PR value by the weight matrix to each outside the
chain.

The framework of the PR algorithm is shown below:

Step 1: Calculate the initial importance matrix of nodes
and the column weight matrix after normalization;

Step 2: Calculate the PR value after iteration;

Step 3: Normalize the PR value;

Step 4: Terminate the algorithm if the maximum number
of iterations has been reached, turn to Step 2 otherwise.

The PR algorithm terminates when a maximum number of
iterations are reached.

IV. A TCN BASED HEURISTIC ALGORITHM FOR AEOS
SCHEDULING PROBLEM

In this section, we present a TCN based heuristic algo-
rithm (TBHA) for solving AEOS scheduling problem. TBHA
is essentially a multi-start construction algorithm, which
relies on heuristics extracted from the TCN for the guidance
of solution construction. The pseudo-code of the TBHA algo-
rithm is shown in Algorithm 1.

TBHA basically iterates for four runs, each run using a
different network. We recall in Section III that the basic
TCN can be improved by two strategies: ST1) Establishing
connections between VTWs of the same task; ST2) Leverag-
ing propagation effect. This leads to four types of networks,
which are named N1 (basic TCN), N2 (basic TCN+ST1), N3
(basic TCN+-ST2), and N4 (basic TCN +ST1+ST2). Based
on our preliminary experiments, none of the four networks
has a dominant performance over others in any case. The
proposed TBHA thus integrates all four networks to obtain
high quality solutions and to enhance its generality.

The inputs of TBHA are: a network set N, a task set 7T,
and a visible time window set W. Based on equation (15),
we use function RankT (7, st) to rank the task set T and keep
the new sorted task list in 7’. According to the task order in
T’', we try to insert the tasks into the solution S one by one.
And for each task ¢, we use function RankW(W;) to rank all
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Algorithm 1 Pseudo-code of the TBHA algorithm
Input:
Strategy set: N = {Ni, Na, N3, Ng}; Task set: T =
{t1,t, ..., t,}; VIWsset: W = {wy, wp, ..., wy};
/Mnitialization:
Shest < @;
fbest < 0;
//Main Loop:
for tcnin N
S <~ 0
T’ < RankT (T, tcn); /* Rank the task list basing on TP
value from TCN x/
for ¢ in T'/xW, is the VTW list corresponding to task 7/
W/ < RankW (W;); /« Rank the VTW list basing on
TWI value from TCN =/
fbest < 0;
for win W/
if (the observation time window can be arranged in w)
if (fbest < f(w)) /+ Comparison of VTW profit =/

fbest< f(w);
Whest <— W,
end
end
end
if(fbest 1=0)
S <« S Whest; /#Wpest 18 the arranged VTW with
ProfitTbest x/
end
end
if( fbest < £(S)) /+ Comparison of scheduling plan profit */
Sbest < S;
end
end
ReturnSbest

its VTWs according to equation (14). The resulting VTWs
are stored in W/. Then we try to arrange the starting time in
each VTW according to W/, and find the best choice w,s for
the specific task with function f(w) (see equation (7)). The
Wpes 18 also included into the solution S. The best of the four
resulting solutions under four different networks is the output
of the TBHA.

V. COMPUTATIONAL EXPERIMENTS

In order to assess the effectiveness of the proposed algorithm,
we carried out extensive numerical experiments on a set of
well-designed scenarios, whose results will be presented and
discussed in this section.

A. DESIGN OF TESTED SCENARIOS

The algorithm was coded in C#, and the experiments were
conducted using Intel (R) Core (TM) i7-6700HQ CPU
2.60 GHz under Windows 10 with 8 GB RAM.
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TABLE 1. Orbit parameters of the satellite.

TABLE 2. Computational Results of the TBHA algorithm.

Satellite a e i w n m

Scenario VTWs T, Ts Ry P, Py Ry Seconds

AS-01 7141701.7 0.000627 98.5964 95.5069 342.307 125.2658

The configurations of the tested scenarios are illustrated
below. Due to the differences of the associated mission,
design and adopted technologies, the satellites used in dif-
ferent countries differ significantly in terms of capabilities,
constraints and management. It is therefore unreasonable to
use a common benchmark to test a scheduling algorithm
designed for a specific satellite. No comparative data and
no competing heuristic exist for this problem and optimal
solutions are not available.

In the paper, requests are generated by a random uniform
distribution on China’s territory. Each request is associated
with five factors: priority, geographical position, duration of
observation, image due time, and specified image angle for
some tasks. The position of each task is defined by latitude,
longitude and altitude. Targets are distributed in a predefined
region, within mainland China, and are defined by the area
corresponding to 3° N-53° N and 74° E-133° E. Under this
mode, 15 scenarios were generated, and the number of targets
contained in these scenarios varies from 50 to 400, with an
increment step of 25.

We used the same satellite AS-O1 as in [14], whose
largest pitch degree is 45°, roll degree being 45° and yaw
degree being 90°. The time horizon of the scheduling is
24 h, from 2017/07/20 00:00:00 to 2017/07/20 24:00:00,
where the satellite is allowed to fly for multiple tracks. The
satellite’s location in space is characterized by six orbital
parameters which are the length of semi-major axis (a),
eccentricity (e), inclination (7), argument of perigee (w), right
ascension of the ascending node (£2), and mean anomaly
(m). The initial orbital parameters for AS-01 are shown
in Table 1.

Recall that there are a number of parameters associated
with the proposed temporal conflict network (TCN). Their
settings are as follows:

o The transition speed of satellite (°/s): vi = v, = v3 = 2;

o The transition stabilization time (s): Ay = 0; A» = 5;
A3 = 10;

o The threshold of angle transition (° ):Af1 = 10; A6, =
20;

o The weight coefficient of the mutually exclusive
VIWs.x = 1.7,

o The max iteration of PageRank value: 2;

o The damping coefficient of PageRank value:d = 0.85;

B. EXPERIMENTAL RESULTS OF TBHA

Table 2 shows the results obtained for the scenarios obtained
with different annealing parameters. The columns VTWs and
T, show the number of visible time windows and tasks of each
scenario. The column T shows the number of tasks arranged
by the TBHA algorithm. R; is the ratio of arranged tasks over
all tasks. Similarly, R, is the ratio of the sum profit of arranged
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50 93 49 48 0.979592 279 261.16 0.936067 0.043

75 144 74 63 0.851351 378 335.61 0.886926 0.08195
100 176 98 78 0.795918 576 480.54 0.829852 0.139
125 237 124 95 0.766129 656 523.32 0.797743 0.184
150 276 148 97 0.655405 849 617.62 0.727473 0.313
175 330 174 110 0.632184 1007 708.45 0.703529 0.3785
200 360 194 108 0.556701 1097 678.42 0.618432 0.4545
225 411 223 126 0.565022 1337 784.73 0.586934 0.5365
250 453 247 127 0.51417 1460 832.23 0.570019 0.6455
275 494 271 132 0.487085 1578 805.58 0.510506 0.733
300 551 296 141 0.476351 1690 858.33 0.507885 0.898
325 606 319 145 0.454545 1864 953.57 0.511573 1.0805
350 642 350 139 0.397143 1792 867.23 0.483947 1.2055
375 704 372 149 0.400538 2108 967.82 0.459118 1.4345
400 730 394 150 0.380711 2135 955.97 0.447762 1.61

TABLE 3. Comparative results of TBHA with other rule-based heuristic
algorithms.

Scenario R LPT SPT G E G-LPT G-SPT TBHA
50 248.00  242.62 231.90 256.58 249.31 257.77 258.32 261.16
75 264.31 295.08 287.05 326.48 301.87 326.60 334.55 335.61

100 436.88 389.87 408.91 445.68 378.36 457.67 466.82 480.54
125 413.48 377.09 409.66 501.34 396.65 503.79 515.90 523.32
150 495.13 504.47 486.41 569.80 483.20 580.49 594.80 617.62
175 546.36 538.80 552.52 650.16 531.35 661.61 651.11 708.45
200 560.14 46593 538.84 663.51 499.47 679.69 684.85 678.42
225 624.83 584.67 612.89 736.65 614.09 733.99 753.83 784.73
250 612.30 607.62 636.28 774.50 621.12 797.24 790.57 832.23
275 580.54 579.99 609.13 747.43 566.07 761.18 779.49 805.58
300 628.07 637.09 729.37 852.80 651.22 848.39 872.06 858.33
325 679.22 641.35 723.49 889.59 703.72 884.77 895.55 953.57
350 596.79 582.90 644.43 850.12 603.66 842.12 853.38 867.23
375 682.65 702.97 685.67 955.84 643.50 974.78 963.91 967.82
400 691.65 644.53 663.60 908.79 649.43 942.75 935.15 955.97
Total 8060.35  7794.98  8220.14 10129.26  7893.02 10252.83  10350.30 10627.70

TABLE 4. Different ranking indicators for the seven rule-based heuristic
algorithm (HA).

Algorithm R LPT SPT G E G-LPT G-SPT
TP; — d; 1/d; i pi/d; pi—d;

pi
—1/d

tasks over all tasks. The column P, is the total profit of all
tasks and Py is the total profit of arranged tasks. We also report
the CPU time in the column “Seconds™.

From these results, we can see that in general the number
of acquired tasks grows as the increase of the number of user
requests. The growth slows down in the last five scenarios
(from 300 to 400) where we find that the number of scheduled
tasks changes slightly. This is because the available imaging
time is highly constrained by the trajectory of the satellite.
It is the bottleneck of the satellites service capacity that is
most constrained. Another phenomenon we observe is that
the profit ratio is always larger than the completion ratio
except for the 50 tasks scenario, which can be explained by
the fact that the algorithm first schedules tasks with higher
priorities.

C. COMPARISON WITH RULE-BASED HEURISTIC
ALGORITHM VARIANTS

Table 3 compares the results of the proposed TBHA algorithm
with 7 widely used rule-based heuristic algorithm, including
random (R) algorithm, longest processing time first (LPT)
algorithm, shortest processing time first (SPT) algorithm,
greedy (G) algorithm, efficiency first (E) algorithm, greedy
with longest processing time first (G-LPT) algorithm, and
greedy with shortest processing time first (G-SPT) algorithm.
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FIGURE 6. Comparison with rule-based heuristic algorithms.

The main difference of those algorithm lies in the strategy
used to rank the task set (Line 10 of Algorithm 1). In Table 4,
we show the ranking indicator, that is the target priority (7P)
and symbol ‘““-” connects two indicators, e.g., for G-LPT,
we first sort tasks by priority (p;) and then sort tasks with
the same priority with their duration time (d;).

As we can see in Fig. 6, it is clear that the results of
R, SPT, LPT and E algorithm are much worse than G,
G-LPT, and G-SPT algorithm. This means heuristic algo-
rithms based on priority first rule can achieve good results for
AEOS scheduling problem. Also, it is worth noting that the
E algorithm doesn’t obtain good result as opposed to G-LPT
and G-SPT. This is because the dimension of the task priority
and processing time is not consistent, in which case it is not
appropriate to use the ratio of the priority and processing time
to evaluate the algorithm efficiency, and that is why we don’t
consider the task processing time as a heuristic factor in the
TBHA algorithm.

For these results, we can see that TBHA heuristic algorithm
obtains 12 best results out of 15 scenarios, and the remaining
3 best results are shared by G-SPT and G-LPT. Compared to
the commonly used heuristic algorithms, TBHA appears to
have a clear advantage. THBA achieves a nearly 4.92 % of
improvement over basic greedy algorithm in terms of total
profit (10627.70 v.s.10129.26).

D. COMPARISON WITH TWO SOPHISTICATED
METAHEURISTIC ALGORITHMS

In order to further verify the performance of the algorithm,
we compare the results of TBHA with two metaheuristic
algorithms, including the basic ACO algorithm [10] and a
more brilliant ALNS algorithm [16]. Each algorithm was run
10 times, and we calculated the maximum, the minimum, and
the average of the results. The detail results of each scenario
are show in Table 5.

To provide a clear picture of the comparative results of
TBHA with ACO and ALNS, we plotted their average results
in Fig. 7. We can see that when the task number of scenar-
ios is small, the results of the metaheuristic algorithms are
superior to TBHA algorithm. However, when the problem
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TABLE 5. Comparative results of TBHA with two metaheuristic algorithms.

Scenario TBHA ACO ALNS
best worst average best worst average
50 261.16 262.14 260.96 261.74 265.64 259.54 262.72
75 335.61 347.44 341.95 344.03 358.52 353.58 355.87
100 480.54 490.86 473.93 483.38 521.10 497.97 511.32
125 523.32 541.35 517.82 525.93 584.18 53335 558.64
150 617.62 640.95 608.95 623.17 725.57 672.66 700.14
175 708.45 707.69 683.92 695.12 747.47 670.89 700.47
200 678.42 693.66 672.09 683.23 729.48 609.31 683.97
225 784.73 778.10 735.72 761.74 797.81 750.87 775.88
250 832.23 842.44 825.18 833.61 846.76 785.68 823.94
275 805.58 808.40 756.11 784.59 796.97 648.13 739.11
300 858.33 877.74 841.02 860.99 881.83 836.94 858.33
325 953.57 948.80 896.15 921.25 791.54 719.10 752.58
350 867.23 879.47 837.76 857.58 809.86 680.58 740.07
375 967.82 960.82 935.19 952.23 808.52 707.75 750.86
400 955.97 945.11 890.59 909.78 850.55 729.05 780.77
1000 T T T T
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FIGURE 7. Comparison with metaheuristic algorithms.

TABLE 6. Results of the improved ACO with TBHA.

Scenario ACO ACO- TBHA Gap (%)
best worst average best worst average
50 262.14 260.96 261.74 262.45 262.18 262.30 0.2148
75 347.44 341.95 344.03 347.30 344.10 346.15 0.6155
100 490.86 473.93 483.38 486.00 483.03 484.40 0.2120
125 541.35 517.82 525.93 53235 52332 531.26 1.0142
150 640.95 608.95 623.17 635.38 623.29 628.00 0.7741
175 707.69 683.92 695.12 723.07 711.08 716.39 3.0595
200 693.66 672.09 683.23 706.55 698.99 702.51 2.8227
225 778.10 735.72 761.74 798.42 789.81 794.25 4.2669
250 842.44 825.18 833.61 848.59 836.78 841.14 0.9044
275 808.40 756.11 784.59 821.95 814.46 818.45 43161
300 871.74 841.02 860.99 903.71 886.79 895.75 4.0379
325 948.80 896.15 921.25 961.11 957.65 959.48 4.1489
350 879.47 837.76 857.58 905.04 875.22 890.25 3.8102
375 960.82 935.19 952.23 986.43 969.33 978.19 2.7264
400 945.11 890.59 909.78 985.09 966.81 976.04 7.2833

size is large (see those scenarios with over 300 tasks),
TBHA shows a dominating performance. This is because,
according to our experimental observation, their initial solu-
tions are of poor quality and moreover they have no effec-
tive diversification mechanism to jump out of local traps.
From this experiment, we conclude that TBHA is highly
scalable, showing an excellent performance for large-sized
problems.

E. IMPROVE ACO WITH TBHA

Since TBHA is a construction algorithm in nature, its out-
come can be used as a starting point (initial solution) of
metaheuristic algorithm. It is interesting to know whether
TBHA can help to improve the performance of existing
metaheuristic algorithms, we tested the ACO algorithm [10]
with its initial solution replaced by the one provided by
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FIGURE 8. Improvement in the ACO.

TABLE 7. Comparative results of TBHA variants with four different
strategies.

Scenario TBHA N1 N2 N3 N4
50 261.16 261.16 261.16 260.24 258.67
75 335.61 335.61 333.98 335.26 332.96
100 480.54 480.54 477.89 478.00 455.43
125 523.32 507.72 508.01 521.37 523.32
150 617.62 610.58 611.22 617.62 603.43
175 708.45 701.65 708.45 693.88 684.46
200 678.42 670.17 671.38 676.33 678.42
225 784.73 767.11 784.73 774.33 771.92
250 832.23 830.72 832.23 830.61 825.13
275 805.58 804.93 805.58 805.58 804.73
300 858.33 821.58 828.19 828.30 858.33
325 953.57 925.33 925.95 928.34 953.57
350 867.23 825.19 835.07 854.96 867.23
375 967.82 921.97 940.83 937.94 967.82
400 955.97 921.07 914.71 916.31 955.97
Total 10627.70 10385.33 10439.38 10459.06 10541.40

TBHA, leading to a new ACO named ACO-TBHA. The
detailed comparative results of ACO and ACO-TBHA are
shown in Table 6 and the improvement gaps are plotted
in Fig. 8. It can be seen that ACO-TBHA is able to improve
over ACO. From Fig. 8, we can see that the improvement
is relatively small (around 1%) when the problem size is
small (with less than 150 tasks), and it increases to about
4% when the problem size grows larger. In particular, for
the largest 400-task scenario, the improvement jumps up
to 7.28%.

F. COMPARISON WITH FOUR SIMPLIFIED TBHAS

The TBHA algorithm is essentially a combination of four
different solutions strategies in the framework of the net-
work model. Table 7 compares the results of different strate-
gies. As we defined in Section IV, N1 represents the basic
TCN, N2 represents the basic TCN with ST1, N3 repre-
sents the basic TCN with ST2, and N4 represents the basic
TCN with ST1 and ST2. As can be seen from the results,
the algorithm performance of N4 is most excellent, especially
after the task number reaches an enough large scale. And
from the total profit of those 15 scenarios, we can see that
considering the mutually exclusive relations of meta-tasks
is better than without it and considering the propagation
of time windows overlap effect is better than no consid-
eration, which proves the effectiveness of the improved
TCN.
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TABLE 8. Comparative results of computational time.

Algorithm HA TBHA ACO ALNS
Total time (s) 0.8659 9.73745 19018.2 14839.54
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FIGURE 9. Comparison of computational time.

G. COMPARISON OF COMPUTATIONAL TIME

Finally, Table 8 summarizes the total computational time of
TBHA algorithm with ACO and ALNS algorithms with all
scenarios and Fig. 9 shows the growth trend of computational
time across 15 scenarios in the logarithmic coordinate system.
As we can see, though TBHA is 9 to 13 times slower than the
most basic rule-based heuristic algorithm, but this efficiency
dominance is even larger when compared to complicated
ACO and ALNS algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied agile earth observation satellite
scheduling problem and developed a TBHA heuristic algo-
rithm to solve it. The main idea of TBHA is to extract
heuristics from a temporal conflict network that features the
overlaps of visible time windows, where tasks are taken as
network nodes, and the overlaps of their time windows are
described by network edges. The weights of edges are based
on the priority of tasks and the proportion of the intersection
with respect to the overlapped visible time windows. Since a
ground target may have more than one visible time window,
and only one of them can be selected, special weighted edges
are added between nodes in the network. A task may be not
only influenced by its neighboring tasks, but also other tasks
that have a path in connection with it. Thus, the weights of
edges should be calculated by considering not only the two
neighboring nodes, but also nodes along path. We use PageR-
ank algorithm to handle this propagation effect and then
calculate an improved weighted out-degree and in-degree,
which are used as heuristic information to sort tasks in our
proposed TBHA.

In simulation experiments, a number of heuristic algo-
rithm variants and two sophisticated meta-heuristic algo-
rithms (ACO and ALNS) are compared to demonstrate the
effectiveness of the proposed TBHA algorithm. The results
show that THBA easily dominates the heuristic algorithm
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variants and competes very well with ACO and ALNS. In par-
ticular, TBHA shows a clear advantage over ACO and ALNS
in large scale scenarios.

Future work should involve additional constraints, such as
power supply and memory constrain to the problem model.
In addition, data download should also be taken into account.
As to the solution method, we would like to investigate
dynamic temporal conflict network which may change over
time after tasks have been added into the partial solution.
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