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ABSTRACT The classification of fresh fruits according to their visual ripeness is typically a subjective and
tedious task; consequently, there is a growing interest in the use of non-contact techniques to automate this
process. Machine learning techniques, such as artificial neural networks, support vector machines (SVMs),
decision trees, and K-nearest neighbor algorithms, have been successfully applied for classification problems
in the literature, particularly for images of fruit. However, the particularities of each classification problem
make it difficult, if not impossible, to select a general technique that is applicable to all types of fruit.
In this paper, the combinations of four machine learning techniques and three color spaces (RGB, HSV,
and L*a*b*) were evaluated with regard to their ability to classify Cape gooseberry fruits. To this end,
925 Cape gooseberry fruit samples were collected, and each fruit was manually classified into one of seven
different classes according to its level of ripeness. The color values of each fruit image in the three color
spaces and their corresponding ripening stages were organized for training and validation following a fivefold
cross-validation strategy in an iterative process repeated 100 times. According to the results, the classification
of Cape gooseberry fruits by their ripeness level was sensitive to both the color space and the classification
technique used. The models based on the L*a*b* color space and the SVM classifier showed the highest
f-measure regardless of the color space, and the principal component analysis combination of color spaces
improved the performance of the models at the expense of increased complexity.

INDEX TERMS Cape gooseberry, artificial neural networks, support vector machines, decision trees,
K-nearest neighbors, color spaces, PCA, multiclass confusion matrix.

I. INTRODUCTION
The Cape gooseberry (Physalis peruviana L.), known as
the goldenberry in English-speaking countries and as aguay-
manto in Peru, is a plant native to the South American
Andes [1], [2]. This plant has attracted the interest of func-
tional food markets (emerging markets of growing economic
importance) due to its medicinal, nutritious, and pharma-
ceutical properties [3]–[5]. Because the food industry needs
to provide fruits with a high and consistent quality, it is
necessary to improve their production methods to ensure that
only high-quality fruits are retained during manufacturing
and commercialization [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhou.

An important step in ensuring a high quality for fresh
fruits such as the Cape gooseberry is sorting, which is cur-
rently based on the visual inspection of color, size, and
shape parameters [7]. However, the visual inspection process
suffers from certain disadvantages: it is subjective, variable,
tedious, laborious, inconsistent and easily influenced by the
environment [8]. Consequently, there is growing interest in
reducing the subjectivity of visual inspection using innova-
tive and non-contact measurements such as artificial vision
systems, which can measure the entire surface of a sam-
ple; as a result, these types of systems are more represen-
tative than colorimeters, which are based on point-to-point
measurements [9]–[12].

Computer vision systems (CVSs) are currently employed
for the classification of horticultural products and for
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monitoring such products for defects and bruising [10].
At present, the development of CVSs is focused on defining
new methods for the evaluation of color and shape parame-
ters. In this context, color is of special interest because it con-
stitutes an important sensory attribute providing necessary
quality information for human perception. In particular, con-
sumers tend to prefer products exhibiting a uniform appear-
ance and vivid colors. Moreover, color has been closely
associated with various quality factors (ripeness, variety, and
desirability) and food safety. Therefore, color is an essential
classification element for most food products [13]–[16].

Each color that humans can recognize in an image is
formed from a combination of the three so-called primary
colors, red, green, and blue, which can be arranged within
a color space to facilitate the specification of colors in a
standardized and widely accepted form. In essence, a color
space is the specification of a three-dimensional coordinate
system and a subspace of this system in which a single point
represents each color. Nevertheless, there is more than one
color space, and each color space can be classified into one of
three spaces according to [16]: hardware-orientated spaces,
human-orientated spaces, and instrumental spaces.

• Hardware-orientated spaces. These color spaces are
defined based on the properties of the hardware devices
used to reproduce the colors. In this category, the most
popular color spaces are RGB, YIQ, and CMYK.

• Human-orientated spaces. These color spaces are based
on hue and saturation. The most popular color spaces
in this category are HSI, HSL, HSV and HSB. These
spaces correspond to the concepts of tint, shade, and
tone, which are specified by an artist based on inherent
color characteristics. However, as with human vision,
human-orientated spaces are not sensitive to small varia-
tions in color and are therefore not suitable for evaluating
changes in the color of a product during processing.

• Instrumental spaces. Color spaces such as XYZ, L*a*b*,
and L*u*v* are used for color instruments. Unlike
hardware-orientated spaces, in which various output
media have different coordinates for the same color,
the color coordinates of an instrumental space are the
same on all output media.

The main features of the color parameters based on the
works of [17] and [18] are detailed in Table 1, which shows
that each color space was developed for a particular purpose;
as a result, each color space has certain advantages when used
in classification and identification problems.

Thus, although CVSs directly provide information in the
RGB space, some works, such as that of Du and Sun [19],
have aimed to determine whether any differences in the clas-
sification are caused by the selected color space or by the
utilized segmentation technique.

According to [16], ‘‘In the color measurement of food,
the L*a*b* color space is the most commonly used due to the
uniform distribution of colors and because it is perceptually
uniform.’’

TABLE 1. Color parameters used for classification.

TABLE 2. Fruit/vegetable ripening evaluations using expert system
techniques in different color spaces.

In image analysis, several pattern recognition techniques
can be used; however, supervised methods are the most
popular. Supervised learning is an automatic learning task
that infers a function given labeled training data. In the
fruit inspection industry, the support vector machine (SVM),
k-nearest neighbor (KNN), artificial neural network (ANN),
and decision tree (DT) pattern classification methods are
between the most common [20], [21].

The use ofCVSs to determine the level of ripeness has been
studied for a variety of fruits, including apples, bananas, blue-
berries, dates, mangoes, and tomatoes. Table 2 summarizes
the main findings of investigations on fruit ripening stages
using CVSs. Evidently, distinct approaches have combined
different color spaces with a variety of classification algo-
rithms; in general, however, these techniques have explored
only one or two combinations to select the approach with
the highest accuracy. Additionally, for the Cape gooseberry,
the use of image analysis to classify the ripening stage has not
been reported.

Thus, we present a study for classifying Cape gooseberry
fruits using different color spaces and four of the leading
supervised learning techniques. The principal objective is to
determine which color space and which classification method
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are the most appropriate for classifying Cape gooseberry
fruits according to their ripening stage.

II. MATERIALS AND METHODS
A. CAPE GOOSEBERRY FRUIT SAMPLES
A sample of gooseberry fruits was collected from a plantation
located in the village of El Faro, Celendin Province, Caja-
marca, Peru [UTM: −6.906469, −78.257071]. The sample
consisted of 925 Cape gooseberry fruits with different levels
of ripeness.

B. COMPUTER VISION SYSTEM FOR CLASSIFYING CAPE
GOOSEBERRIES
The hardware and software that constitute this system are
described below.
• Conveyor belt. The conveyor belt is 160 cm long, 25 cm
wide, and 80 cm high. The speed is adjustable, and
the conveyor is operated by an EPLI motor (MS 632-4
60 Hz, 0.18 KW, 0.25 HP, 220 V, 1570 RPM).

• VGA webcam. The utilized webcam has the following
specifications:
– Trademark: Halion
– Model: HA-411
– Resolution: 1280x720 pixels

The webcam was located 35 cm above the sample.
The internal walls of the CVS were painted black
to avoid light leakage and exterior reflections of the
room in a method similar to that realized by Pedreschi
et al. [41].

• Lightning source. A directional lighting system com-
posed of two long fluorescent tubes (Philips TL-D
Super, cold daylight, 80 cm, 36 W) distributed sym-
metrically on both sides of the sample was used, and
a circular fluorescent tube (Philips GX23 PH-T9, cold
daylight, 21.6 cm, 22 W) was located at the top.

• Computer. We used a laptop (Intel(R) Pentium(R)
Dual-Core CPU T4200 @ 2.00 GHz and 3.0 GB RAM).

• Informatics tool for data acquisition. A computer tool
was developed to control the acquisition of the images
and their subsequent analysis. This tool was imple-
mented using Matlab.

C. METHODOLOGY
The research methodology, which was based on [42],
is shown in Figure 1. In general, data were first extracted
from image samples to obtain feature vectors organized by
each class and vector space. Then, four classification models
were trained and tested using a cross-validation strategy with
one hundred iterations. Finally, the results were statistically
evaluated to analyze the effects of the different color spaces
on the performances of the four classifiers.

The methodology employed in this study is described in
detail in the subsequent sections.

1) DATA EXTRACTION
In this step, information on the color parameters in three
color spaces was collected from each fruit in the sample; for

FIGURE 1. Experimental methodology.

FIGURE 2. Ripeness states of Cape gooseberry.

this step, each fruit was visually classified according to its
ripeness level.

a: VISUAL CLASSIFICATION BY COLOR
Fruit images were classified into seven different levels
according to the ripening stage, similar to the method used
by Bravo and Osorio [43]. The surface color was used for
the classification as indicated by the NTC 4580 (Colombian
Technical Normative) standard for Cape gooseberry, and the
visual scale proposed by Fischer et al. [44] was employed
(see Figure 2).

For the visual classification, 5 expert judges labeled each
fruit image, and their decisions were reached by a majority
vote.

b: IMAGE ACQUISITION AND PREPROCESSING
The steps in this stage were based on the image pro-
cessing techniques proposed by Arakeri and Laksmana [8],
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FIGURE 3. Images of the acquisition and preprocessing stages.

as detailed below:
• Locations of samples. Fruits for each class determined in
the previous step were placed on the conveyor belt and
then organized in a grid-like arrangement with four rows
and five to seven columns. The fruits were successively
displayed on the conveyor belt until the entire set was
presented to the system.

• Image acquisition. Fruits were conveyed to the corre-
sponding area for image acquisition. The software com-
ponent discussed in Section II-B was used to capture
the images, and each image was stored (see Figure 3(a))
according to the corresponding class.

• Image enhancement. Sample images were enhanced by
utilizing the Gaussian filter shown in Eq. 1 to smooth
visual artifacts that appeared due to either lighting condi-
tions or fruit deterioration. Figure 3(b) shows the result-
ing images.

g(x, y) =
1

2πσ
e
−(x2+y2)

2σ2 , (1)

where

g = Filtered image,

(x, y) = Position of pixel,

σ = Standard deviation of the Gaussian filter.

• Segmentation. Fruit images were converted into
grayscale images, as shown in Figure 3(c), and the
threshold segmentation approach based on Eq. 2 was
used. In the resulting images, the samples were isolated
from the background, and their pixels were consequently
identified, as shown in Figure 3(d).

h(x, y) =

{
1 if g(x, y) ≥ T
0 if g(x, y) < T

(2)

where

h = Segmented image,

(x, y) = Position of pixel,

T = Threshold value.

c: EXTRACTING COLOR SPACE PARAMETERS
From each region of fruit in the segmented images shown
in Figure 3(d), the mean values of the color parameters in
the RGB color space were determined similar to the work of
Blasco et al. [45]. Then, these mean values were converted
into the HSV and L*a*b* color spaces using standard con-
version methods (e.g., those implemented in packages such
as rgb2hsv and rgb2lab in Matlab). These values, all of which
were linked to each fruit in the different classes, were stored
in a database for subsequent modeling.

2) MODELING
The dataset obtained from the 925 evaluated fruits was used
to construct the models and subsequently validate them. This
dataset was randomly divided into modeling and validation
datasets using a 5-fold cross-validation strategy for each
model and space color combination; this process was per-
formed one hundred times to test its reproducibility.

In this step, four supervised machine learning techniques
were used for modeling. Each of these techniques considers
the categorical labels when data entries x1, x2, . . . , xnmust be
assigned to predefined classes C1,C2, . . . ,Cm; in multiclass
classification, the input is to be classified into only one of
n non-overlapping classes. Below, each supervised machine
learning technique is described.

a: ANN
This nonlinear supervised classification method uses math-
ematical models to simulate biological neural networks.
A common type of ANN is the radial basis function ANN
(RBF-ANN), which is used to classify features into differ-
ent classes by finding common characteristics among the
samples of the known feature class. In this type of network,
nonlinearity is embedded within the transfer functions of the
hidden layer neurons, making the optimization of tunable
parameters a linear search [46], [47]. Figure 4(a) shows a
schematic representation of the RBF-ANN, which was pro-
posed by Beale et al. [48]. Matlab’s Neural Network Toolbox
was used to implement the classification models based on the
ANN technique. Particularly, we used the newpnn function
to create and train probabilistic neural networks, which are a
kind of radial basis network, and the sim function was used
for the simulation stage.

b: DT
This technique is a tree-based exemplification of the knowl-
edge used to represent classification rules. The internal nodes
of a tree represent tests of an attribute; each branch repre-
sents the outcome of the test, and the leaf nodes represent
class labels. Traversing a branch from the root node to a
leaf node decodes the information enclosed in the form of
if-then statements, and each branch leads to a single rule.
Figure 4(b) shows a schematic of this technique, which was
proposed by Safavian and Landgrebe [49]. Therefore, DTs
can be exploited to automatically generate the classification
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FIGURE 4. Four supervised machine learning techniques used in this
work for modeling. (a) Generalized RBF-ANN structure; (b) generalized DT
structure; (c) SVM example; and (d) KNN example.

rules without requiring a human expert [37], [49]. To cre-
ate the classifier based on the DT technique, Matlab’s
Machine Learning Toolbox (MLT), which uses the standard

classification and regression trees (CART) algorithm to create
DTs [50], was used. For fitting and training, the multiclass
classifier function fitctree and predict functions were used.

c: SVM
The SVM classifier is a supervised nonparametric statisti-
cal learning technique that is widely used for classification
by constructing a hyperplane or a set of hyperplanes in
a high-dimensional space [22], [30]. Figure 4(c) shows the
support vectors and the hyperplane separating two classes,
which are defined by squares and triangles. In this case,
the fitcecoc fitting function and the predict function were
used; both functions were implemented in Matlab’s MLT.
We also used a linear kernel and tuned the classifier using
Bayesian optimization.

d: KNN
The KNN algorithm is a nonparametric classification tech-
nique cache of all the training data that predicts the response
of a new sample by analyzing a certain number of the near-
est neighbors in the feature space of the sample [28], [51].
Figure 4(d) shows an example of this technique; the element
to be classified is the sun symbol. For k = 3, this object is
classified as the triangle class since only one square and two
triangles are inside the circle that contains them. If k = 9,
this object is classified as the square class since there are four
triangles and five squares inside the outer circle. To create the
classifier based on the KNN technique, Matlab’s MLT was
used; the fitcknn function was used to train the model, and
the predict function was used to predict the labels. Finally,
Bayesian optimization was used to tune KNN classifier.

3) STATISTICAL EVALUATION
After obtaining the class predictions, the performance of each
combination of classifier and color space was determined
using a confusion matrix. This technique, which contains
information about the actual and predicted ratings obtained
by a classification system, is one of the most common
approaches used within the machine learning community.

A confusion matrix has two dimensions (real and predicted
classes). Each row represents the instances of a real class,
whereas each column represents the cases of a predicted
class. Table 3 shows the basic form of the confusion matrix
for a multiclass classification problem. The element Nij of
the confusion matrix represents the number of samples that
belong to class Ci but that are classified as class Cj.
Some performance measures, namely, the accuracy, pre-

cision, recall and f-measure, can be defined from the infor-
mation contained in a confusion matrix. These measures
are determined by the numbers of classification errors and
hits made by the classifier. Table 3b illustrates the intuition
behind these performance measures based on a class-specific
classification for class Ci. In this sense, positive samples cor-
respond to the ith class, and negative samples correspond to
all other classes, whereas true and false terms refer to samples
either correctly or incorrectly classified, respectively.
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TABLE 3. (a) Generalized confusion matrix for several classes.
(b) Class-specific performance measures according to their definitions
based on the confusion matrix.

The performancemeasures derived fromTable 3b that were
employed to evaluate the experimental results are described
below.
TPi True Positives. Amount of samples from class i that

were correctly classified as positives (i.e., i classified
as i); see Eq. 3.

TPi = Nii (3)

TNi True Negatives. Amount of samples from class not-
i that were correctly classified as negatives (i.e., cor-
rectly classified as not i); see Eq. 4.

TNi=
∑
j,k 6=i

Njk=
n∑
j=1

n∑
k=1

Njk−(TPi + FPi + FNi) (4)

FPi False Positives. Amount of samples from class not-i
that were wrongly classified as positives (i.e., incor-
rectly classified as class i); see Eq. 5.

FPi =
∑
k 6=i

Nki =
n∑

k=1

Nki − TPi (5)

FNi False Negatives. Amount of samples from class i that
were wrongly classified as negatives (i.e., classified as
any class except class i); see Eq. 6.

FNi =
∑
k 6=i

Nik =
n∑

k=1

Nik − TPi (6)

The definitions of typical performance measures in terms
of the above descriptions are defined in the literature. Accord-
ing to [52], the accuracy of a multiclass classifier defined

by Eq. 7 is the proportion of the total number of correct
predictions.

Accuracy =

n∑
i=1

TPi

n∑
i=1

n∑
j=1

Nij

(7)

The precision defined by Eq. 8 is the amount of samples
from class Ci that were correctly classified with respect to
the samples that were predicted as positives by the classifier.

Precisioni =
TPi

TPi + FPi
(8)

The recall or true positive rate (tpr) defined by Eq. 9 is
a measure of the ability of a classifier to correctly select
instances of the target class (Ci) related to the positive sam-
ples.

Recalli =
TPi

TPi + FNi
(9)

Finally, the f-measure is the harmonic mean of the preci-
sion and recall and is defined by Eq. 10.

F-Measurei = 2×
Precisioni × Recalli
Precisioni + Recalli

(10)

These four performance measures were computed after
classifying the degree of ripening for each Cape gooseberry
fruit to measure the influence of the color space on the
classification. The color spaces employed for the comparison
using principal component analysis (PCA) included the RGB,
HSV, and L*a*b* color spaces in addition to a fusion of all
three. Four classification techniques were employed, namely,
the ANN, DT, SVM, and KNN classifiers, and each of the
sixteen combinations of color parameters and classifiers were
compared by employing the performancemeasures defined in
Eqs. 7-10. However, in this work, the f-measurewas regarded
as the main performance measure for the analysis due to its
capacity to summarize the positive precision and recall in a
single number; nevertheless, the accuracy was also reported
to facilitate a comparison with the results reported in the
literature.

III. RESULTS
A. CAPE GOOSEBERRY COLOR DURING RIPENING
Figure 5 shows the distribution of pixels for each class using
the median color parameter values in all fruit images for each
color space. As observed in Figure 5(a), the parameter R
presents an upward trend throughout the ripening process
with a starting value of 75 that increases to a maximum value
of 150. In contrast, the parameter G begins at 89 and ends
at 63, and the parameter B shows slight variability between
0 and 45.

For theHSV color space, Figure 5(b) shows that the param-
eter H exhibits a downward trend starting at 73 and ending at
24. The parameter S shows little variability with mean values
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FIGURE 5. Median color parameter values of Cape gooseberry fruits at
seven different ripening stages. (a) RGB; (b) HSV ; and (c) L∗a∗b∗.

fluctuating between 98 and 100. Finally, the parameter V
exhibits an upward trend throughout the maturation process
with a minimum value of 34 and a maximum of 59.

TABLE 4. Mean color parameters for the L*a*b* color space at different
ripening stages.

Concerning the L*a*b* color space, Figure 5(c) shows
that the parameter L* presents slight variability with values
oscillating between 34 and 38. The parameter a* exhibits an
upward trend that starts at−15 and reaches a maximum of 34.
Finally, the parameter b* fluctuates between 38 and 51.

As explained in [23] and [53], changes in the parameters
L*, a* and b* are associated with increases in carotenoid
levels and a loss of chlorophyll in the pericarp. Table 4
shows a comparison of the mean values for the L*a*b* space
obtained in this work with those reported by Vásquez-Parra
et al. [5] and Puente et al. [54].

B. MODEL EVALUATION
Figure 6 depicts the confusion matrices that summarize the
average performance of each model (i.e., each pair of a
classifier with a color space). A high prediction percentage
for class Ci as class Cj is represented as a light gray, where
i is the correct label and j is the predicted class. The white
color in cell Ni,j indicates that 100% of the predictions for
class Ci are presented as class Cj. On the other hand, dark
cells represent a lower percentage of predictions for class Ci
as class Cj (black indicates a 0% prediction level).
In general, Figure 6 provides evidence that classes C1

through C4 are correctly classified by almost all the classi-
fiers, while most of the errors appear in classes C5 − C7.
This suggests that the classification of fruits with low levels
of ripeness (one through four) is easier than that of fruits at a
later ripening stage.

In the case of the ANN classifier, Figures 6(a-c) show that
classes C2−C4 are correctly classified in most cases (lighter
colors in the diagonal), and only a few misclassifications are
observed for classes C1 and C5−C7. However, in the L*a*b*
color space, classC1 is also correctly classified. This suggests
that the L*a*b* color space facilitates the classification of
class C1 with the ANN classifier.
The confusion matrices for the DT and KNN classifiers

shown in Figures 6(d-f) and (j-i) illustrate that it is con-
sistently difficult for these two techniques to discriminate
between classes C5 and C7 in any of the color spaces. In con-
trast, a relatively constant accuracy over all levels of ripeness
is retrieved by the different combinations of the SVM classi-
fier with the three color spaces.

Figure 7 summarizes the performance of each of the twelve
classification models in terms of the f-measure. According
to Figure 7, the SVM classifier exhibited the best results
(f-measure = 70.14 ± 1.27%) in the L*a*b* color space,
while the ANN classifier achieved the worst performance
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FIGURE 6. Confusion matrices. (a-c) ANN; (d-f) DT; (g-i) SVM; and
(j-l) KNN.

FIGURE 7. Average f-measure for each classifier tested on the three color
spaces.

(f-measure = 48.25 ± 1.07%) in the RGB color space.
Likewise, for all the combinations, the effect of a different
color space on the model performance was more evident for
the ANN classifier. The models based on the KNN and DT
techniques yielded good results regardless of the color space
used (f-measure > 60%); between these two techniques,
the DT model obtained slightly better results.
From these results, it is evident that every color space

poses a distinct classification problem to each classifier.

FIGURE 8. Amount of variance explained by each PC. CEV stands for
cumulative explained variance.

Some classifiers (i.e., the ANN, SVM and KNN) perform
better in the L*a*b* color space, whereas others (i.e., the DT
algorithm) take advantage of the sample distribution in the
HSV color space. A further improvement in the performance
was explored using a strategy of information fusion to com-
bine the color parameters from all color spaces through
(PCA). This strategy allows the parameters from the three
color spaces to be projected over n < m principal components
(PCs), where m = 9 is the number of color parameters
following the concatenation of parameters from all three color
spaces.

According to the PCA performed over the three color
spaces, the first three PCs can explain 99.339% of the vari-
ance. However, additional information useful for the classifi-
cation is still provided by components 4 through 9, as shown
in Figure 8 and demonstrated by the performance analysis.

Table 5 presents the performance of each classifier with
respect to their combinations with the three distinct color
spaces using PCA in terms of both the accuracy and the
f-measure. Although the SVM classifier exhibits the best per-
formance in the L*a*b* color space, the PCA-based classifier
shows a performance increase close to 2% in terms of the
f-measure with an accuracy of 93.02% ± 0.19%. The ANN,
SVM and KNN classifiers also display consistent increases in
their performance in terms of either the f-measure or the accu-
racy as the PCs are augmented. However, the DT classifier
exhibits a decrease in terms of the f-measure; this reduction
may be due to the suboptimal tuning of hyperparameters,
and thus, other optimization strategies may be suitable for
the classification of Cape gooseberry fruits according to their
level of ripeness.

Figure 9 illustrates the average performances of the four
classifiers combined with the three color spaces in terms of
the f-measure through PCA considering n = {1 . . .m} PCs.
As expected, a single PC provides the worst average perfor-
mance (with an f-measure close to 41%). However, as the
feature space increased with the addition of PCs, the perfor-
mance also increased, showing a simultaneous increase in the
variability (as evidenced by the large error bars). This vari-
ability was generated by the differences in the performance
between distinct classifiers, as shown in Table 5.

Finally, to complete the performance analysis, the receiver
operating characteristic (ROC) curve was computed for each
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TABLE 5. Average performance of each model in terms of the (a) accuracy and (b) f-measure. Bold numbers represent the highest performance achieved
by each classifier.

FIGURE 9. Values of the f-measure computed for the combined features
for all color spaces using PCA.

class (i.e., each ripeness level) by employing the classifier
that presented the highest performance with regard to the
accuracy and f-measure. Class-specific true positives of crisp
responses from each multiclass classifier were averaged over
the 100 independent experimental trials; then, this average
was employed as an approximation of the classification score
for each class. The resulting class-specific ROC curves are
shown in Figure 10.
According to Figure 10, the classification of the first four

levels of ripeness (i.e., levels 1 through 4) seems to be
easier than that of levels 5 through 7, as is evidenced by
the higher ROC curves corresponding to the former. Par-
ticularly, the ROC curve for level 1 reaches its maximum
tpr of approximately 85% faster than those for all the other
levels. This suggests that level 1 is easier to classify up to a
certain ripening stage that reaches a class overlap region in
the feature space with a false positive rate (fpr) close to 3%
and higher. On the other hand, the SVM classifier reached a
higher tpr around 95% with a fpr of approximately 6% for

FIGURE 10. Class-specific ROC curves of the proposed system for the
classification of the ripeness level of Cape gooseberry fruits using 7 PCs
with the SVM classifier.

level 2. These findings are consistent with the observations
obtained from the confusion matrices shown in Figure 6, and
similar trends were acquired for all the classifiers employed
in the experiments.

IV. DISCUSSION
As explained in [23] and [53], changes in the parameters
L*, a* and b* are associated with increases in carotenoid
levels and a loss of chlorophyll in the pericarp. In this regard,
Table 4 compares the mean parameter values in the L*a*b*
color space obtained in this work with those reported by
Vásquez-Parra et al. [5] and Puente et al. [54]. The dif-
ferences between the L*a*b* parameters obtained in this
research and those shown by previous studies are because
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the cultivar, ripening stage or cultivation procedure for each
sample was different among these studies, as was suggested
by Oliveira et al. [14].

To evaluate the accuracy of each technique according to the
color space used for a classifier, it is necessary to understand
that changes in different color parameters are related to the
ripening stage.
• ANN. This technique has already been successfully used
to classify fruits according to their level of ripeness;
examples of these successes can be found in the follow-
ing works: Paulraj et al. [26], Damiri and Slamet [29],
Fadilah et al. [33], and Shah Rizam et al. [40]. As shown
in Table 5, the accuracies of the ANN models were
significantly influenced by the chosen color space. The
ANN model based on the L*a*b* color space obtained
a suitable Cape gooseberry fruit classification accu-
racy (89.85% ± 0.24%), which agrees with the results
obtained by Fadilah et al. [33].

• DT. The DT technique was successfully used by Goel
and Sehgal [37] to classify tomatoes according to their
ripening stage using the RGB color space; this approach
was capable of classifying the tomatoes with an accuracy
of 94.29%. In our case, in addition to the RGB color
space-based model, we built models for the HSV and
L*a*b* color spaces as well as models for their combi-
nations with PCA, and we observed that the color space
only slightly influences the quality of the results in terms
of the accuracy. However, we noted an impact on the
f-measure, which did not improve with the addition of
PCs to the feature space. Thus, the performance of the
DT classifier may be further improved by employing a
better strategy for the tuning of hyperparameters.

• SVM. The SVM technique has been used by Xiaobo
et al. [22] to classify apples using the HSI color
space. In combination with the RGB color space, Nandi
et al. [30] used the SVM to classify pieces of mango
fruit. In both studies, it was possible to classify the fruits
with an accuracy exceeding 95%. In our case, the best
accuracies were 92.65% for the L*a*b* color space
model and 92.47% for the RGB color space. Further
improvement was obtained by combining information
from the three color spaces using 7 PCs with a final
accuracy of 93.02% ± 0.19, representing the best per-
formance obtained over all the approaches employed in
this paper.

• KNN.Many studies have achieved results with excellent
levels of accuracy; for example, Unay and Gosselin [51]
classified apple stems with an accuracy reaching 99%.
Regarding the problems related to the classification of
fruits according to their ripening stage, Li et al. [27]
studied the identification of blueberries at different
stages of growth. Among the classification models con-
structed in their work, the model based on the KNN
technique obtained the best accuracy (86%) using the
RGB color space. Our results using the L*a*b* color
space showed the best accuracy (89.97% ± 0.24%),

and similar results were obtained for RGB and HSV
(RGB = 89.55%±0.26% andHSV = 89.81%±0.27%).
A slight improvement was obtained using 7 PCs with an
accuracy of 90.02%± 0.26%.

As shown in Table 5, the classification of Cape gooseberry
fruits by their degree of ripeness is sensitive to both the color
space and the classification technique used. Accordingly,
the mean accuracies obtained for the RGB, HSV, and L*a*b*
color spaceswere 89.46%, 90.62%, and 90.65%, respectively.
These results are similar to those reported by Vélez-Rivera
et al. [31], who used the linear discriminant analysis (LDA)
classifier and found that the RGB and L*a*b* color spaces
present similar accuracies that are slightly higher than that
obtained in the L*u*v* color space.
Although similar techniques appear in the literature for

distinct fruit classification problems, the main contributions
of the paper are related to the applications of distinct pairs
of color spaces and classification algorithms; the model
consisting of the combination of the L*a*b* color space
with the SVM classifier provided the highest performance.
To the best of the authors’ knowledge, such a comparison
of classifiers and color spaces is not available in the litera-
ture regarding a classification of the ripening stage of Cape
gooseberry. Furthermore, information from three color spaces
was fused by employing PCA on the nine components of the
three color spaces; a superior performance was obtained with
seven principal components at the expense of an increased
complexity.
The proposed system was applied to real images; never-

theless, various factors, including the speed of the conveyor
belt, the position of the fruit (i.e., a rotation that exposes the
pedicle) and the variability of the lighting environment, which
could complicate the capture of such images should be con-
sidered. Other technologies such as hyperspectral imagery
may be used to identify the ripening stages of fruits. Their
better discriminatory capacities notwithstanding, the applica-
tion of hyperspectral imagery usually requires an increased
computational complexity due to the number of bands, and
thus, it may be difficult to generate the real-time responses
required by production lines.

V. CONCLUSIONS
The purpose of this research was to develop a non-intrusive
system for the classification of gooseberry fruits according to
their degree of ripeness. Twelve classification models were
developed by combining four machine learning techniques
(the ANN, KNN, DT, and SVM classifiers) with three color
spaces (RGB, HSV, and L*a*b*). Additionally, a PCA strat-
egy to combine the three color spaces was proposed, demon-
strating a performance increase using 7 PCs.
The color space utilized for the classification clearly influ-

enced the accuracy of the sorting system; this dynamic was
observed mainly in the models based on the ANN and
SVM techniques. Meanwhile, the models based on the KNN
and DT techniques yielded good results regardless of the
color space used. On the other hand, the models based on
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the L*a*b* color space produced good results regardless
of the machine learning technique employed. However, the
classifier developed from the combination of the SVM tech-
nique and L*a*b* color space gave the best performance in
terms of the accuracy and f-measure.

Future works should evaluate the use of different strategies
(i.e., other than PCA) to combine information from color
spaces. Information fusion techniques may involve combina-
tions of the feature space (as PCA), the fusion of scores or
the decisions of classifiers. These combinations may provide
a better performance in the classification of fruits according
to their ripeness level.
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