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ABSTRACT Recently, many deep models have been proposed in different fields, such as image classifica-
tion, object detection, and speech recognition. However, most of these architectures require a large amount
of training data and employ random initialization. In this paper, we propose to stack feature learning modules
for the design of deep architectures. Specifically, marginal Fisher analysis (MFA) is stacked layer-by-layer
for the initialization and we call the constructed deep architecture marginal deep architecture (MDA). When
implementing the MDA, the weight matrices of MFA are updated layer-by-layer, which is a supervised pre-
training method and does not need a large scale of data. In addition, several deep learning techniques are
applied to this architecture, such as backpropagation, dropout, and denoising, to fine-tune themodel.We have
compared MDA with some feature learning and deep learning models on several practical applications,
such as handwritten digits recognition, speech recognition, historical document understanding, and action
recognition. The extensive experiments show that the performance of MDA is better than not only shallow
feature learning models but also related deep learning models in these tasks.

INDEX TERMS Deep architectures, feature learning, marginal Fisher analysis, marginal deep architecture.

I. INTRODUCTION
Deep learning models have achieved significant results in
many tasks, such as image classification, document analysis
and recognition, natural language processing and video anal-
ysis [1]–[5].Withmultiple hidden layers, deep learningmeth-
ods can explore the internal structure of high dimensional data
and learn data representation with multiple levels of abstrac-
tion [6]. For example, in the face recognition applications,
the learned features of the first layer may be the edges, direc-
tions and some local information. The second layer typically
detects some object parts which are combination of the edges
and directions. Higher layers may further abstract the face
image by combining the features of previous layers (outlines
of the eyes, noses, lips).

The associate editor coordinating the review of this manuscript and
approving it for publication was Choon Ki Ahn.

In recent years, many deep learning models have been
proposed [7]–[10]. Nevertheless, there are several complex
problems to be solved, for example, some parameters need to
be properly initialized, such as the weight matrix of two suc-
cessive layers in deep belief networks (DBNs) and the con-
volution kernels in convolutional neural networks (CNNs).
Furthermore, to get high performance, traditional deep learn-
ing methods need a large scale of data to train them. To the
end, many problems emerge during the training process. If we
don’t initialize the parameters properly, the optimization pro-
cedure might need a long training time and fall into inferior
local minima.

Alternatively, many feature learning methods have been
proposed to learn the low-dimensional representation of high-
dimensional data and avoid the curse of dimensionality.
In particular, most of them can be trained with limited amount
of data and their learning algorithms are generally based on
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closed-form solution or convex optimization. For example,
marginal Fisher analysis (MFA) is one of the feature learning
methods that is supervised and based on the graph embed-
ding framework [11], [12]. It utilizes an intrinsic graph to
characterize the intra-class compactness, and another penalty
graph to characterize the inter-class separability. The optimal
solution of MFA can be learned by generalized eigenvalue
decomposition. Whereas, shallow feature learning models
cannot achieve good performance if the structure of the data is
highly nonlinear; on the other hand, the combinations of these
shallow feature learning models have rarely been exploited to
design deep models.

In order to simultaneously solve the existing problems
in deep learning models and combine the advantages of
feature learning models, we proposed a novel deep learn-
ing method based on stacked feature learning modules.
Specifically, instead of using random initialization, stacked
MFA layers are applied to initialize this deep architecture,
so that the constructed deep learning models are called
marginal deep architecture (MDA). At first, to increase the
capacity of the architecture, we use a random weight matrix
to project the input data to a higher dimensional space.
Next, the stacked MFA layers are applied to learn the lower
dimensional representations of the data layer by layer. At last,
the softmax layer is connected to the final feature layer.
During the implementation of MDA, we add some tricks in
the training process to fine tune it, such as back propaga-
tion, dropout and denoising. We have compared MDA with
some feature learning and deep learning models on different
domains of datasets (including handwritten digits recogni-
tion, speech recognition, historical document understanding,
image classification, action recognition and so on). Experi-
ments show that the performance of MDA is better than not
only shallow feature learning models, but also related deep
learning models.

Please note that, although convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) have played
an important role in many image, video and natural language
applications, feedforward neural networks are still important.
For instance, they can be used to deal with vectorized data
and as the fully connected layers of many deep learning
architectures. Hence, how to design deep feedforward neural
networks is still an important issue for the deep learning
community.

The contributions of this work can be summarized as
follows:

1. We propose a novel deep architecture called MDA.
The neurons in the first hidden layer of MDA are
twice or quadruple of that in the input layer. Next,
several layers of feature learning models are stacked to
learn the low dimensional representations of the input
data. In the end, a softmax classifier is applied.

2. In general, traditional deep learning models require a
large amount of training data to obtain good results.
Whereas, MDA can achieve better performance than
these models with limited amount of training data due

to the supervised pre-training method rather than ran-
dom initialization.

3. Experiments demonstrate that the proposed MDA can
obtain good results in several fields of data sets, such as
natural images, spoken letters and handwritten digits.
These results show that MDA is a general model to
handle data sets with different scales of data. In addi-
tion, for large size images, combining convolutional
operations andMDA, we can obtain competitive results
with existing deep learning methods.

The rest of this paper is organized as follows: In Section II,
we give a brief overview of related work. In Section III,
we present the proposed marginal deep architecture (MDA)
in detail. The experimental settings and results are reported
in Section IV. At last, Section V concludes this paper with
remarks and future work.

II. RELATED WORK
Since 2006, many deep learning models have been proposed.
Primitively, Hinton and Salakhutdinov proposed the deep
autoencoder (AE) that is an effective way to learn the low-
dimensional representations of high-dimensional data [10].
Based on AE, Vincent et al. [13] proposed the denoising
autoencoder (DAE), which made the learned representations
robust to partial corruption of the input data. Subsequently,
Vincent et al. extended DAE to stacked DAE (SDAE), which
works very well on natural images and handwritten dig-
its. To prevent the weights in deep neural networks from
co-adaptation, Hinton et al. [14] introduced the dropout tech-
nique, which delivers new records for many speech and object
recognition applications. However, due to numerous param-
eters, previous deep learning models generally need a large
scale of training data to obtain good learning results.

In recent years, to address many vision problems,
the research on deep convolutional neural networks (CNN)
develops very fast [4], [15]–[18]. Specifically, in the research
of image classification, Krizhevsky, Sutskever and Hin-
ton proposed a large, deep convolutional neural network
(AlexNet) to classify the 1.2 million high-resolution images
in the ImageNet data set. The authors use efficient GPU
to speed AlexNet. The results show that a large, deep con-
volutional neural network is capable of achieving record-
breaking results on a highly challenging data set using
purely supervised learning [4]. In order to transfer a
trained deep convolutional neural network to new tasks,
Donahue et al. [15] proposed the deep convolutional activa-
tion feature (DeCAF), which is extracted from a well trained
deep convolutional neural network on a large object recog-
nition data set. DeCAF provides a uniform framework for
researchers, who can improve and change this framework on
some specific tasks. However, its performance at scene recog-
nition has not attained the same level of success. In order to
alleviate this problem, Zhou et al. [17] introduce a new scene-
centric database called Places with over 7 million labeled
pictures of scenes. Then, they learn the deep features for
scene recognition tasks using deep architectures, and achieve
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excellent results on several scene-centric datasets. However,
these methods based on convolutional operation need very
large scale of training samples and can not work well with
limited amount of data.

In many domains other than computer vision, deep learn-
ing methods also achieve good performances. In [19],
Hinton et al. represent the shared views of four research
groups in using deep neural networks (DNNs) for automatic
speech recognition (ASR). The DNNs that contain many lay-
ers of nonlinear hidden units and a very large output layer can
outperform Gaussian mixture models (GMMs) at acoustic
modeling for speech recognition on a variety of data sets.
In the area of genetics, Xiong et al. [20] use deep learn-
ing algorithms to derive a computational model that takes
DNA sequences as input to predict splicing in human tissues.
It reveals the genetic origins of disease and how strongly
genetic variants affect RNA splicing. In the area of natural
language understanding, deep learning models have deliv-
ered strong results on topic classification, sentiment analysis
and so on. Amongst others, Sutskever et al. [21] proposed
a general approach, multilayered long short-term memory
(LSTM), which can solve the general sequence to sequence
problems better than before.

On the other hand, in the field of feature learning models,
dimensionality reduction plays a crucial role to handle the
problems for visualizing high-dimensional data and avoiding
the ‘‘curse of dimensionality’’ [22], [23]. Traditional dimen-
sionality reduction can mainly be classified by three crite-
ria: linear or nonlinear, e.g., principal components analysis
(PCA) [24] and linearity preserving projection (LPP) [25]
are linear methods, while stochastic neighbor embedding
(SNE) [26] is a nonlinear method; supervised or unsuper-
vised, e.g., marginal Fisher analysis (MFA) [11], [12] and
linear discriminant analysis (LDA) [27] are supervised meth-
ods, and PCA is an unsupervised method; local or global,
e.g., MFA and SNE are local methods, and PCA is a global
method. Many feature learning models provide excellent
solutions for the applications of dimensionality reduction.
However, for large scale complex problems, feature learning
models may not perform well. Considering this situation,
we try to select some well-behaved feature learning mod-
els and combine them to deep architectures. Among others,
MFA is one special formulation of the graph embedding
framework [11]. It utilizes an intrinsic graph to characterize
the intra-class compactness, and another penalty graph to
characterize the inter-class separability. Our motivation of
this work is to combine the advantage ofMFA and deep archi-
tectures and propose a new supervised initialization method
for deep learning algorithms.

There are also some work about feature learning models
based on the deep architectures [28]–[30]. Yuan et al. [28]
proposed an improved multilayer learning model to solve
the scene recognition task. This model learn all features
used for scene recognition in an unsupervised manner.
George et al. [29] proposed the deep semi-Non-negative
matrix factorization (NMF), which is able to learn hidden

representations from different, unknown attributes of a given
dataset. Whereas, this model is proposed for learning low-
dimensional representations that are better suited for clus-
tering. Ngiam [30] proposed a deep architecture, which is
an unsupervised model to learn feature representations over
multiple modalities. They argued that multi-modality feature
learning is better than one modality and achieved good per-
formance on video and audio data sets.

In this work, we combine the advantages of feature learning
models and deep architectures [31], [32], which stack MFA
to initialize the deep architecture as a supervised pre-training
method. Then, we employ some deep learning techniques,
like back propagation, denoising and dropout to fine-tune
the network. The advantage of this deep architecture is that
we can learn the desirable weight matrix even if the training
data is not large enough. And compared with traditional
deep learning models and shallow feature learning models,
the proposed method perform better than them in most cases.

III. MARGINAL DEEP ARCHITECTURE (MDA)
In this section, we present an innovative architecture of deep
learning models first; After that, we introduce the proposed
marginal deep architecture (MDA) in detail. In addition,
some deep learning techniques used for the training of MDA,
including back propagation, denoising and dropout, are also
presented.

A. A NOVEL FRAMEWORK OF DEEP ARCHITECTURE
The target of feature learning can be described as follows.
If there are n input data, X = {xT1 , . . . , x

T
n } ∈ R

D, where D is
the dimensionality of the data space. The learning objective
is to search for the compact representations of these data, i.e.
Y = {yT1 , . . . , y

T
n } ∈ R

d , where d is the dimensionality of the
low dimensional embeddings.

In this paper, we consider the feature learning problems
from the perspective of deep learning, and stack shallow
feature learning modules to build deep networks [31], [32].
In this case, the data maps from the original D-dimensional
space to the d-dimensional space layer by layer. This deep
architecture can be seen as a general framework for data
representation learning. The data flow in the deep architecture
can be abstracted as

D H⇒ D1 H⇒ · · · H⇒ Di H⇒ · · · H⇒ Dp−1 H⇒ d, (1)

where D1 is the dimensionality of a high dimensional space
mapped from the original space. In order to increase the
capacity of the network, it is twice or quadruple as many as
those neurons in the input layer. Di stands for the dimen-
sionality of the i-th intermediate representation space, and
p is the total stages of mappings. In this framework, feature
learning modules with various output dimensions are applied
to learn the representations of data in each layer. Themapping
functions between consecutive layers are obtained by the
layer by layer optimization of the feature learning models.
The framework of the proposed deep architectures is briefly
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FIGURE 1. The uniform framework of the proposed deep architectures. Wr1 represents the first layer random weight matrix, while WF2
and WF3

represent the weight matrices learned by feature learning models. For simplicity, the bias terms are omitted.

presented in Fig. 1. In this figure, the first hidden layer is ran-
domly initialized by matrix Wr1, and the new representation
of an input x can be written as

a1 = g(WT
r1x+ b), (2)

where g(.) is a non-linear activation function. After that,
MFA or other feature learning models are used to initialize
the subsequent layers. The outputs of the subsequent hidden
layers are

ak = g(WT
Fk−1a

k−1
+ b). (3)

For example, in Fig. 1, WF2 and WF3 are the weight
matrices of the second layer and third layer learned from
feature learning models. In the end, softmax regression is
adopted as the last layer for the classification tasks. In the
first hidden layer, the higher dimensional representations of
input data can be learned. Afterwards, the following feature
learning models can learn the lower dimensional embeddings
step by step. The key point of this network is that the weight
matrices of the hidden layers are initialized by feature learn-
ing modules except the matrix in the first hidden layer, which
may deliver a better performance than other deep learning
models initialized by random matrices.

B. MARGINAL FISHER ANALYSIS (MFA)
Based on our novel framework of deep architecture,
we employ marginal Fisher analysis (MFA) to construct
MDA. There are several advantages to use MFA. Compared
with many traditional feature learning models, such as linear
discriminant analysis (LDA), there is no assumption about
the data distribution of each class, so that MFA is more
general for discriminant analysis. In addition, the margins
between classes can properly characterize the separability of

the classes. Therefore, we apply MFA as the building blocks
of MDA.

MFA follows the graph embedding framework to con-
struct an intrinsic graph that characterizes the intra-class
compactness and another penalty graph that characterizes the
inter-class separability [11]. Suppose the input data is X =
{x1, . . . , xn} and the projection matrix isW = {ω1, . . . , ωd }.
The intrinsic graph aims to connect each sample to its
k-nearest neighbors in the same class. Suppose that we use
N (i) to denote the k-nearest neighbors of xi in its class. The
intra-class compactness can be described as

S̃w =
∑
i

∑
j∈N (i)∨i∈N (j)

∥∥∥ωT xi − ωT xj∥∥∥2 (4)

=

∑
i

∑
j

∥∥∥ωT xi − ωT xj∥∥∥2 Aij (5)

= 2ωTX(D− A)XTω, (6)

where D is a diagonal matrix with elements Dii =
∑

j Aij.
The adjacency matrix A is given by

Aij =

{
1, if j ∈ N (i) or i ∈ N (j),
0, otherwise.

(7)

The penalty graph connects the marginal point pairs of differ-
ent classes. We use M(C) to denote a set of input pairs that
are k-nearest pairs among the set {(i, j)|i ∈ C ∧ j /∈ C}, where
C is class of an input xi. The inter-class separability can be
defined as

S̃b =
∑
i

∑
(i,j)∈M(Ci)∨(j,i)∈M(Cj)

∥∥∥ωT xi − ωT xj∥∥∥2 (8)

=

∑
i

∑
j

∥∥∥ωT xi − ωT xj∥∥∥2Ap
ij (9)

= 2ωTX(Dp
− Ap)XTω, (10)
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FIGURE 2. A brief representation of MDA. Wr1 stands for the first layer random weight matrix, while WMFA2
and WMFA3

represent the weight
matrices learned by MFA. The dotted red lines represent the dropout operation, the dotted red circle is the dropout node, and the cross nodes are
corrupted. The denoising and dropout operation are completely random. For simplicity, the bias terms are omitted.

where Dp is a diagonal matrix with elements Dp
ii =

∑
j A

p
ij.

The adjacency matrix Ap is given by

Ap
ij =

{
1, if (i, j) ∈M(Ci) or (j, i) ∈M(Cj),
0, otherwise.

(11)

The target of MFA is to minimize the intra-class compactness
and maximize the inter-class separability simultaneously.
Therefore, the marginal Fisher criterion is defined as

WMFA = argmin
W

tr(WTX(D− A)XTW)
tr(WTX(Dp − Ap)XTW)

. (12)

In [11], to apply MFA for face recognition applications,
the faces are firstly projected into a PCA subspace by the
transformation matrix WPCA to reduce noise. Since the fea-
tures are learned by multiple layers in MDA and the whole
deep architecture is fine-tuned by back propagation, it is
not necessary to reduce the dimension of data by PCA at
first. Hence, we compute the projectionmatrixWMFA directly
using Eq. (12) at each layer.

Here, MFA is used as the initialization method of the
weight matrices in MDA. For different layers of MDA,
the input X of WMFA in Eq. (12) is the output of its previous
layer. For example, in Fig. 2, WMFA2 and WMFA3 are com-
puted using the output of their previous layers. In addition,
the weight matrices calculated by MFA are only applied to
initialize the weight matrices of MDA at the first iteration.
Then, we apply back propagation to fine-tune these matrices.

C. MARGINAL DEEP ARCHITECTURE (MDA)
Based on the novel deep architecture framework and the ben-
efits of MFA, we present MDA in the following. As depicted
in Fig. 2, MDA is constructed by integrating MFA into the

novel framework. Given an input vector x ∈ [0, 1]d , it is
firstly mapped to a higher dimensional space by a random
weight matrix Wr1. The activation output of the first hidden
layer can be written as

a1 = s(WT
r1x+ b), (13)

where s(.) is the sigmoid function s(x) = 1
1+e−x , b is the bias

terms, and a1 is the output of the first hidden layer. From
the second layer to the (n − 1)-th layer, the weight matrices
are learned by MFA to initialize MDA layer by layer.

ak = s(WT
MFAk−1a

k−1
+ b). (14)

We use the softmax regression as the last layer of MDA for
classification tasks, so that the number of neurons is the same
as the number of classes. The cost function can be defined as

J (w) = −
1
N
(
N∑
i=1

K∑
j=1

I(yi = j) log
exp(wT

j a
n−1
i )∑K

l=1 exp(w
T
l a

n−1
i )

),

(15)

where N and K are the total number and class number of the
input data, respectively. I(x) is the indicator function. If x is
true, I(x) = 1, else I(x) = 0. yi is the label of xi. wj and
wl are weight vectors corresponding to class j and l. Hence,
the probability that xi is correctly categorized to class j is

p(yi = j|xi,w) =
exp(wT

j a
n−1
i )∑K

l=1 exp(w
T
l a

n−1
i )

. (16)

From the (n − 1)-th layer to the last layer, we continue to
use MFA to map it. To then end, we can consider that the
MDA is initialized with a supervised pre-training method.
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D. DEEP LEARNING TECHNIQUES APPLIED TO MDA
In order to improve the performance of MDA, we adopt some
deep learning techniques to fine-tune MDA, including back
propagation, denoising and dropout.

1) BACK PROPAGATION
Back propagation [33] is an efficient optimization algorithm
to optimizeMDA, which employs stochastic gradient descent
to learn the weight matrices and the bias terms layer by layer.
For every neuron i in the output layer (n-th layer), the error
term can be described as

δni =
∂J (w)
∂ani

=−
1
N

N∑
i=1

[(I(yi= j)−p(yi= j|xi,w)] (17)

where J (w) is the cost function computed from (15), and
ani is the output of neuron i in the output layer. For every
neuron i from the (n−1)-th layer to the second layer, the cal-
culation of the error term is

δki = (
k+1∑
j=1

wk
jiδ

k+1
j )s′(aki ). (18)

Then, the ∂J (w)
∂wkij

and ∂J (w)
∂bki

are calculated as,

∂J (w)

∂wk
ij

= akj δ
k+1
i , (19)

∂J (w)

∂bki
= δk+1i . (20)

By calculating the gradient of the cost function of MDA
with respect to the parameters, the back propagation algo-
rithm can update the weight matrices and bias terms in the
layers of MDA. It starts from the output layer at the top and
ends with the input layer at the bottom.

2) DENOISING OPERATION
Denoising is proposed in the denoising autoencoder to
improve its robustness [13]. It can be viewed as a regular-
ization method and avoids the ‘‘overfitting’’ problem. The
main idea of it is that we can set the required proportion of ν
‘‘destruction’’ and corrupt partial input data. We can select a
fixed percentage ν randomly for every input x. The value of
these inputs is fixed at 0, while the others remain unchanged.
A partially destroyed version x̃ of an initial input x can be
obtained through a stochastic mapping,

x̃ ∼ qD(x̃|x), (21)

where qD(x̃|x) is the unknown data distribution. Hence, a hid-
den representation h can be computed as

h = s(WT x̃+ b). (22)

In MDA, we use denoising to improve its performance.
A concrete illustration can be seen in Fig. 2. With the denois-
ing operation, the output of the first hidden layer is computed
as

a2 = s(WT
r1 x̃+ b1), (23)

whereWr1 and b1 are the random weight matrix and the bias
term in the first hidden layer. The ‘‘denoising’’ method is pro-
posed based on a hypothetical criterion for network design:
robust to partial destruction of the input data. This criterion
implies that good internal representations can be learned from
an unidentified distribution of the input data. Therefore, this
method is a benefit to learn more robust structure and avoids
the overfitting problems in most cases.

3) DROPOUT
Similar with denoising operation, dropout is an efficient
method to prevent overfitting [14]. Dropout has a dramatic
effect on the test set when a deep learning model is trained
on a small training set. It is a regularization technique to
prevent the complex co-adaptations on the training data. The
key point of dropout is that each neuron in the hidden layers
is randomly excluded from the model with a probability of β.
Besides, dropout can be seen as an efficient way of perform-
ingmodel averagingwith deep learningmodels. Fig. 2 depicts
the dropout operation in MDA.

IV. EXPERIMENTS AND DISCUSSIONS
To evaluate MDA, we performed several experiments on
different sizes of data sets. We designed MDA in different
structures in order to explore the optimal architecture of it.
At first, we tested the MDA on five benchmark data sets
to explore the best architecture of MDA and compared it
with other feature learning and deep learning models. Then,
in order to show the performance of MDA initialized by the
supervised initialization method on different sizes of data
sets, we applied MDA to a specific dataset with extremely
limited data, CMU mocap, and a relatively large data set,
CIFAR-10. In addition, we combined MDA with convolu-
tional neural network (CNN) for addressing image classifi-
cation tasks, and used the supervised initialization method in
the pre-training phrase of deep CNNs on the CIFAR-10 data
set.

A. DATE SET DESCRIPTIONS
We first evaluated the MDA on five benchmark datasets.
Table 1 illustrates some characteristics of these data sets. The
USPS1 data set is composed of handwritten digits images,
which contains 7291 training samples and 2007 test sam-
ples from 10 classes and each sample is represented with a
256 dimensional vector. The task is to identify the digits from
0 to 9. The Isolet2 data set contains 6238 training samples
and 1559 test samples from 26 classes with 614 dimensional
features. It collects audio feature vectors of spoken letters
from the English alphabet. Based on the recorded (and pre-
processed) audio signals, the task aims to identify the exact
letter which is spoken. Sensor3 is a sensorless drive diagnosis
data set, including 46816 training samples and 11693 test

1http://www.gaussianprocess.org/gpml/data/
2http://archive.ics.uci.edu/ml/datasets/ISOLET
3http://archive.ics.uci.edu/ml/datasets/Dataset+for+Sensorless+Drive+

Diagnosis#
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TABLE 1. Characteristics of the used data sets.

samples from 11 classes. Each one of the samples contains
48 dimensional features, which are extracted from electric
current drive signals. The target is to classify the specific
category through different conditions of the drive and its
intact and faulty components. Covertype4 is a geological
and map-based data set chosen from four wilderness areas
located in the Roosevelt National Forest of northern Col-
orado. It contains 15120 training samples and 565892 test
samples from 7 classes with 54 dimensional features. The
target is to recognize the categories of forest cover from
cartographic variables. IbnSina5 is an ancient Arabic doc-
ument data set, we select 50 pages of the manuscript for
training (17543 training samples) and 10 pages for testing
(3125 test samples). There are 174 classes of subwords with
200 dimensions in this dataset.

In addition, we also tested MDA on a specific task, which
uses the CMU motion capture (CMU mocap) data set.6

The CMU mocap data set includes three categories, namely,
jumping, running and walking. We chose 49 video sequences
from four subjects. For each sequence, the features are gener-
ated using Lawrence’s method,7 with dimensionality 93 [34].
By reason of the few samples of this data set, we adopt 10-
fold cross-validation in our experiments and use the average
error rate and standard deviation to evaluate the performance.
At last, we test MDA on a classic data set CIFAR-108 to
test the performance of MDA on image classification appli-
cations. Furthermore, we combined MDA with CNN, and
evaluated this model on CIFAR-10. The CIFAR-10 data set
includes 60000 32 × 32 color images in 10 classes, with
6000 images per class. There are 50000 training images
and 10000 test images. Fig. 5 shows some examples of the
CIFAR-10 data set from the 10 categories.

B. CLASSIFICATION ON FIVE BENCHMARK DATA SETS
In this experiments, we compare MDA with several related
deep learning models on the 5 benchmark data sets. These
deep learning models include autoencoder (AE) [10], stacked
autoencoders (SAE), denoising autoencoders (DAE) [13],
stacked denoising autoencoders (SDAE) [35] and denoising

4http://archive.ics.uci.edu/ml/datasets/Covertype
5http://www.causality.inf.ethz.ch/al_data/IBN_SINA.html
6http://http://mocap.cs.cmu.edu/
7http://is6.cs.man.ac.uk/∼neill/mocap/
8http://www.cs.toronto.edu/ kriz/cifar.html

autoencoders with dropout (DAE(dropout)) and a variant of
MDA, PDA. Note that the architecture of PDA is the same as
MDA but the feature learning module of PDA is PCA [24]
instead of MFA [11], [12].

1) EXPERIMENTAL CONFIGURATIONS
All of these deep learning models have the same structure
and configurations. The size of minibatch was set to 100,
the learning rate and momentum were set to the default value
1 and 0.5, the number of epoch was set to 400, while the
dropout rate β and the denoising rate ν were set to 0.1. In AE
and SAE, the weight penalty of the L2 norm was set to 10−4.
For MFA, the number of nearest neighbors for constructing
the intrinsic graph was set to 5, while that for constructing
the penalty graph was set to 20. The target dimensions of
data representations in MDA and PDA on these data sets are
shown in the last column of Table 1.

2) CLASSIFICATION RESULTS
From the experimental results shown in Table 2, we can see
that MDA performs best on four data sets except the Sensor
data set, compared with other models. Meanwhile, it obtained
the second best result on the Sensor dataset. Furthermore,
PDA achieved the best result on the Sensor data set and
the second best results on the other data sets. These results
demonstrate that in most cases, the proposed deep learning
models can achieve good performances on data sets with
limited amount of training data. We can also conclude that
the performance of MDA is better than not only the related
deep learning models, but also some shallow feature learning
methods, such as PCA and MFA as shown in Table 2. These
results demonstrate that MDA and PDA based on stacked
some feature learning models can learn better representations
of the input data than shallow feature learning methods.
However, it is not always true that deep learning models
perform better than the feature learning models. For instance,
the performance of MFA is better than AE, DAE, DAE with
dropout and SDAE on the Sensor data set. This indicates that
training with a limited amount of data, some feature learning
methods may learn the representations of the input data better
than deep learning models. MDA possesses the advantages of
both deep learning and feature learningmodels. Experimental
results show the advantages of MDA on data sets with limited
amount of training data.

3) TIME CONSUMPTION
The time consumption on training and test process for 7 dif-
ferent deep architectures are shown in Table 3. Each exper-
iment was carried out 5 times and the averaged results are
reported. Note that all the experiments were performed on a
4-core intel(R) Core(TM)2 Quad Q9550 CPU with 2.83GHz
clock frequency. We can see that the training times of PDA
and MDA are similar with AE, DAE and DAE with dropout.
However, they are much faster than SAE and SDAE. On the
Isolet data set, the time consumptions of PDA and MDA
are less than other deep architectures. This demonstrates that
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TABLE 2. The classification accuracy on five benchmark data sets. ‘‘ORIG’’ represents the results obtained by applying softmax directly to the original
data space. The best result is highlighted with boldface.

TABLE 3. Time consumption of 7 compared deep architectures. The test time is on all the test samples.

TABLE 4. The structures of MDA on the 5 benchmark data sets. ‘‘None’’ represents without second layer in MDA. ‘‘Twice’’ means the second layer’s nodes
are as twice as the input layer. ‘‘Quadruple’’ represents the second layer’s nodes are as quadruple as the input layer. ‘‘Octuple’’ represents the second
layer’s nodes are as octuple as the input layer.

PDA and MDA can sometimes achieve good results with
short training time because of their efficient weights initial-
ization. The training periods of SAE and SDAE are very slow
because every layer in SAE and SDAE is an autoencoder
layer, and it requires a long optimization time for initial-
izing the weight matrix. During the test procedure, all the
methods have similar efficiency as their architectures are the
same. These results show the efficiency of MDA. It’s mainly
because of that it can achieve good initial weight matrices by
a short time and perform well on the learning tasks.

4) THE DENOISING AND DROPOUT RATIOS
In order to evaluate the influence of the denoising and dropout
operations on MDA, we designed an experiment on the
5 benchmark data sets with different denoising ratios and
dropout ratios. Firstly, we fixed the dropout ratio at 0.1, then
adjusted the denoising ratio from 0.1 to 0.5. Next, we fixed
the denoising ratio at 0.1, and modified the dropout ratio from
0.1 to 0.5. These experimental results are shown in Fig. 3.
We can see that MDA achieved minimum error on all data
sets when denoising ratio and dropout ratio are 0.1. The error
was increasing with the increasing of denoising ratio and
dropout ratio in most cases. For the USPS data set, the error
decreased when dropout ratio was changed from 0.2 to 0.3.

For the Sensor data set, the error decreased slightly when
denoising ratio was changed from 0.2 to 0.3. The experimen-
tal results demonstrate that denoising and dropout operations
can improve the performance of MDA when selecting appro-
priate values for them. Without the denoising and dropout
operations, the experimental results is not as good as adopting
these operations. In the following experiments, we set both of
them to 0.1.

5) DIFFERENT STRUCTURES FOR MDA
In order to explore better structures of MDA, we constructed
different structures of it by changing the number of nodes in
each layer. For theUSPS data set, we first got rid of the second
layer, the structure of the model was 256 − 128 − 64 − 32.
Then, we set the number of the nodes in the second layer
to twice of that in the input layer, so that the architecture
changed to 256 − 512 − 128 − 64 − 32. Next, the nodes
in the second layer were quadruple as many as those in the
input layer, and the architecture became to 256 − 1024 −
512− 256− 128− 64− 32. Finally, the nodes were octuple
as many as those in the input layer, so that the architecture
was 256− 2048− 1024− 512− 256− 128− 64− 32. The
structures of MDA on other data sets were changed similarly,
as shown in Table 4.
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FIGURE 3. Error rates on 5 data sets with respect to different denoising ratios and dropout ratios. (a) USPS. (b) Isolet. (c) Sensor. (d) Covertype. (e) Ibnsina.

TABLE 5. The classification error with different structures of MDA on the
5 benchmark data sets. The best result (minimum error) is highlighted
with boldface.

The experimental results with these different structures
of MDA are shown in Table 5. We can see that MDA
achieved the minimum classification error on all the data sets
except the Covertype data set when the nodes in the sec-
ond layer are twice of that in the input layer. Besides,
MDA obtained the best performance on the Covertype data
set when the nodes of the second layer are quadruple of that
in the input layer. We can conclude that MDA can work well
when the nodes in the second layer are twice or quadru-
ple as many as the nodes in the input layer. Then we
employed these structures that achieved best results to com-
pare the performance of MDA with its related models on
these data sets. In addition, except on the Covertype data
set, when the nodes in the second layer increase from
doubled nodes gradually, the errors increase at the same
time.

6) DIFFERENT NUMBERS OF HIDDEN LAYERS FOR MDA
As a deep learning model, the depth of MDA is very
important. With the architecture getting deeper and deeper,
the training of the deep learning models may become more
and more difficult. It means that we shall spend more com-
puting resources if the architecture is very deep. In order to
evaluate how many hidden layers are appropriate to different
tasks, we designed different structures on the 5 benchmark
data sets. We applied MDA with from 1 to 7 hidden layers
on the USPS and Isolet data sets and from 1 to 5 hidden
layers on the Covertype, Sensor and Ibnsina datasets. Other
experimental settings are the same as previous experiments.

Table 6 shows the classification error on the 5 benchmark
data sets with different numbers of hidden layers for MDA.
All the data sets achieved the best results when the number of
hidden layers is 3 except the USPS data set. On the USPS data
set, MDA achieved the best result when the number of hidden
layers was 5.When the number of hidden layers is from 1 to 3,
with the increasing number of hidden layers, the classification
error decreased on all the data sets. With limited amount of
data, we don’t need very deep architectures to handle them.

7) EFFECTS OF INITIALIZATION METHODS
To evaluate the effect of MFA as an effective network
initialization method, we applied different network ini-
tialization methods to the same deep architecture on the
5 benchmark data sets. These initialization methods included
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TABLE 6. The classification error on the 5 benchmark data sets with different structures of MDA.

FIGURE 4. The test accuracies of MDA with different initialization methods on the 5 benchmark data sets. On each data set, the deep models have the
same structure and hyperparameters. The classification results are evaluated only with initialization and after training the same epochs, respectively.
(a) USPS dataset. (b) Isolet dataset. (c) Sensor dataset. (d) Covertype dataset. (e) Ibnsina dataset.

random initialization, SAE as the unsupervised pre-training
method and MFA as the supervised pre-training method.
Firstly, the deep architectures initialized by these methods are
evaluated on the 5 benchmark data sets before the training
phase. Then, we tested these models after the same training
epochs on the same data sets. On each data set, the structures
and experiment settings of these deep models were kept the
same. The structures were 256−128−64−32 for the USPS
data set, 617−308 for the Isolet data set, 48−24 for the Sensor
data set, 54−27 for the Covertype data set and 200−100 for
the Ibnsina data set, respectively.

Fig. 4 illustrates the test accuracies of these models before
and after the training period on the 5 benchmark data sets.
NN is the neural network initialized by random initializa-
tion. SAE and MDA are the same neural network initial-
ized by SAE and MFA, respectively. It is easy to see that,
MDA achieved the best results in the pre-training period

of the deep models without back propagation training and
after the same training period. These experimental results
demonstrate that compared with other initialization methods,
the stacked MFA in MDA can initialize the deep architecture
more effectively and obtain better performance after the same
training epochs.

C. CLASSIFICATION ON THE CMU MOCAP DATASET
To test the performance of MDA on real world applications,
we evaluated it on a specific data set, CMU mocap. CMU
mocap is a very small data set including only 49 samples.
Traditional deep learning methods cannot work well in this
application. We compared MDA and PDA with PCA, MFA
and other 5 deep learning models. The architectures of all the
deep models (except the PDA) are 93− 186− 93− 47− 24.
Specially, since the CMU mocap data set only has 49 sam-
ples, the PCA method can only reduce the dimensionality
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TABLE 7. The classification accuracy with standard deviation on the CMU
mocap data set. The best results are highlighted with boldface.

to 49 at most, so that the architecture of PDA was set to
93−186−49. The denoising ratio and dropout ratio were set
to 0.1 on all the deep learning models, including AE, DAE,
DAE with dropout, SDAE, SAE, PDA andMDA. The weight
penalty of AE was set to 10−4. The learning rate was set
to 0.01, the momentum was set to 0.5 and the number of
epoch was set to 600. The experiment was tested based on
10-fold cross validation. The experimental results are shown
in Table 7.

In Table 7, we can see that PDA and MDA achieved
the best and second best results on this dataset and have
lower standard deviation than other deep learning models.
This demonstrates that PDA and MDA are more stable than
other deep learning models. Moreover, deep learning models
perform better than shallow feature learning models, such
as PCA and MFA. Through these results, we can see that
in applications with limited amount of training data, our
proposed methods can achieve desired and stable results
compared with other deep learning and feature learning
models.

D. CLASSIFICATION ON THE CIFAR-10 DATA SET
In order to assess MDA on image classification applications,
we chose CIFAR-10 as a relatively large scale data set to
evaluate the performance of MDA.

In this section, we performed two experiments. In the
first experiment, we tested MDA on the CIFAR-10 data
set to test its performance on image classification appli-
cations. In the Second experiment, because MDA is a
fully-connected network, we selected a CNN and replaced
its fully-connected layers with MDA. This new model
was named CNN-MDA. In this case, we tested the
effect of MDA as a supervised initialization method
in CNNs.

1) PERFORMANCE OF MDA ON THE CIFAR-10 DATA SET
In this experiment, we first transformed the color images
in the CIFAR-10 data set to gray level images and named
them grayCIFAR-10, so that the dimensionality of the images
reduced to 32 × 32 × 1. Fig. 5 shows some example images
in the CIFAR-10 data set. Fig. 6 shows the corresponding

FIGURE 5. Example images in the CIFAR-10 data set. Each column
corresponds to one category.

FIGURE 6. Gray level images corresponding to those shown in Fig. 5.

TABLE 8. Classification accuracy obtained on the CIFAR-10 data set.

gray level images. Then, we flattened each sample as a
1024 dimensional vector, which can be input to MDA. Based
on the previous experiments, the architecture of MDA was
designed as 1024 − 2048 − 1024 − 512 − 256 − 128 − 64.
The size of minibatch was set to 100. The dropout ratio and
denoising ratio were set to 0.1, respectively. The number of
epoch was set to 400. The learning rate was set to 1 and
the momentum was set to 0.5. We compared MDA with
8 previous methods.

Table 8 shows the classification accuracy on gray
CIFAR-10. Due to the high dimensionality and high com-
plexity of the problem, PCA and MFA did not perform
well. Furthermore, MDA achieved the best results in all the
compared methods. However, due to working on gray level
images and loss of the color and spatial information of the
images, we didn’t get the state-of-the-art result on this data
set.
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FIGURE 7. The architecture of CNN-MDA. The fully-connected part is
replaced with MDA.

2) PERFORMANCE OF CNN-MDA ON THE CIFAR-10
DATA SET
In this experiment, we combinedMDAandCNNby replacing
the fully-connected part of CNN with MDA, which can be
initialized by the supervised pre-training method. This model
is named CNN-MDA and its structure is shown in Fig. 7.
Compared with the original CNN, its fully connected part
is initialized by MDA. Typically, we chose a classic CNN
model, LeNet-5, and replaced its fully-connected part with
MDA and named it LeNet-5-MDA. Note that the structures
of CNN-MDA and LeNet-5-MDA remained the same as
their original models. Then, we tested these CNNs on the
CIFAR-10 data set without fine-tuning.

The performance of these models can be seen in Table 9.
On the one hand, LeNet-5 and LeNet-5-MDA did not
achieve good results on this data set, mainly because of
their limited number of parameters. On the other hand, com-
pared with their original architectures, both CNN-MDA and
LeNet-5-MDA can optimize the original networks better and
achieve higher accuracy by replacing the fully-connected
parts with MDA. It can be concluded that the fully-connected
parts of CNNs can be initialized effectively by MDAwith the
supervised pre-training method.

E. COMPARISON BETWEEN MDA AND DEEP JOINTLY
INFORMED NEURAL NETWORKS (DJINN)
Deep jointly informed neural networks (DJINN) is an effec-
tive model, which can automatically construct feedforward
neural networks based on decision trees [36]. Furthermore,
it can initialize the constructed model by its tree-informed
initialization method as a warm-start to the training process.

TABLE 9. Comparison between CNNs and CNN-MDA on the
CIFAR-10 data set.

TABLE 10. Accuracy and computational cost of DJINN and MDA.

DJINN has shown its high predictive performance for a vari-
ety of regression and classification tasks. Here, we construct
these two models by the same number of layers and compare
the test accuracies and computational cost of DJINN and the
proposed MDA on the same data sets.

The initialization period of DJINN is to determine the
architecture and weight utilizing the dependency structure of
a decision tree trained on the data. At the same time, the ini-
tialization period of MDA is to compute the weight matri-
ces using MFA. Since the main difference between DJINN
and MDA is their initialization methods, the computational
cost of the two models is evaluated with the time consump-
tion of their initialization period under the same experiment
conditions.

The experiment results are shown in Table 10.
MDA achieved better results than DJINN on all the 5 bench-
mark data sets. In addition, the computational cost of MDA
is much less than DJINN on these data sets. This is because
MDA only needs to compute the weight matrices between
different layers in the pre-training phase. It can be concluded
that the performance of MDA is better than DJINN with less
time consumption.

V. CONCLUSION
In this paper, we propose a novel deep learning architec-
ture by stacking feature learning methods. We apply the
feature learning method MFA to this framework and name
it MDA. In this case, MDA can be initialized by a super-
vised pre-training method. Furthermore, some deep learning
techniques, such as back propagation, denosing and dropout
operation, are employed onMDA to improve its performance.
Extensive experiments demonstrate that on data sets with
limited amount of data, the performance of MDA is better
than both shallow feature learning models and relevant deep
learningmodels. Experiments on the CIFAR-10 data set show
that MDA can be used in CNNs for the supervised initial-
ization of their fully-connected layers. In the future work,
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we intend to exploit some other feature learning methods for
the deep architecture construction and explore the different
structures of this novel deep learning framework.
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