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ABSTRACT The advent of social media and technologies augmenting social communication has
dramatically amplified the role of rumor spreading in shaping society, via means of misinformation
and fact distortion. Existing research commonly utilize contagion mechanisms, statistical mechanics frame-
works, or complex-network opinion dynamics models. In this paper, we incorporate information distortion
and polarization effects into an opinion dynamicsmodel based on information entropy, modeling imprecision
in humanmemory and communication, and the consequent progressive drift of information toward subjective
extremes. Simulation results predict a wide variety of possible system behavior, heavily dependent on the
relative trust placed on individuals of differing social connectivity. Mass-polarization toward a positive
or negative consensus occurs when a synergistic mechanism between preferential trust and polarization
tendencies is sustained; a division of the population into segregated groups of different polarity is also
possible under certain conditions. These results may aid in the analysis and prediction of opinion polarization
phenomena on social platforms, and the presented agent-based modeling approach may aid in the simulation
of complex-network information systems.

INDEX TERMS Information theory, behavioral sciences, social dynamics, information propagation,
information polarization, communicative distortion, agent interaction, complex networks.

I. INTRODUCTION
The information age is characterized by a distinct shift
towards computerization and interpersonal networking tech-
nology, with a natural consequence of vastly accelerated
information uptake and sharing by the average individual
[1], [2]. Non-hierarchical content distribution, common on
large-scale unrestricted social network platforms, have vastly
accentuated the role of rumor spreading in social communi-
cation, with potential implications including the skewing of
political alignments and election results [3]–[5], the molding
of public opinion in countries [6], [7], and even the manip-
ulation of financial markets [8], [9]. The pervasiveness of
information propagation has been exploited by companies
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to further commercial interests [10]; rumor mongering has
also led to the development of new algorithms applicable in
computer networking and peer-to-peer file sharing [11], [12].
The dynamics of social communication is an area of active
research [13]–[17], with realistic rumor-spreading models
carrying major theoretical and practical significance.

A standard model of rumor spreading, known as the
Daley-Kendall (DK) model [18], [19], is well-established
and has been used extensively in the study of opinion
dynamics. Various extensions of the model have since been
reported, including the incorporation of complex network
topologies [20]–[22], and the development of the stochas-
tic Maki-Thompson model variant [23], [24], with ana-
lytical solutions derived via means of interacting Markov
chains [25]. The effects of memory-facilitated opinion
contagion have also been investigated [26]–[29]; in the
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Sznajd model, in particular, statistical mechanics models of
ferromagnetic magnetization and phase change phenomena
were successfully utilized to simulate the evolution of binary
opinions [5], [30]–[32]. Many other relevant aspects, such
as confidence levels [33], information density and associated
majority-rule effects [34], [35], social network topology re-
wiring [36]–[38], and the inherent imprecision in interper-
sonal communication, have been considered individually in
numerous studies.

To facilitate the analysis of opinion dynamics in complex
multi-agent networks, rumors can simplistically be inter-
preted as objective descriptions of preceding incidents or
events. Such information can, in general, be categorized into
opposing polarities—for instance, factually correct or incor-
rect, subjectively positive or negative, and agreeing or oppos-
ing to a certain status quo. Rumor propagation can then be
studied with this binary categorization, interlinked closely
with linguistic characteristics; while the underlying interac-
tion mechanisms have received much attention [39]–[42],
the potential polarization of information during the propaga-
tion process and its dynamical effects on social networks have
been largely neglected. Cumulatively, information polariza-
tion may yield significant quantitative effects, including the
division of the population into segregated groups each of like
opinions, or the mass evolution of the population towards a
specific polarity. The effects of information polarization have
indeed been assessed as significant factors in the political and
governance mechanics of democracies [43], social stability
and welfare [44], [45], and the behavior of open economies
[46], [47], especially amidst volatility.

In the present study, we investigate the progressive
polarization of information in the process of dissemination
and its potential implications, via an information-entropic
complex topology framework greatly extended from our
previous study [48]. In addition to the comprehensive model,
we present the full diversity of behavioral regimes in the
framework and elucidate the mechanisms underlying the
different outcomes, thereby providing an understanding
of the combined dynamics of polarization, distortion, and
propagation.

II. MODEL
In this section, we present a rumor propagation framework
based on information entropy. The formalism is extended
from our previous study [48], with key additions on imperfect
memory and communication, and stochastic bias when con-
veying information. These are important features to enable
more realistic modeling of complex socio-physical phenom-
ena encompassing information distortion and polarization,
as is the focus of this paper.

In the current model, individuals are modeled as nodes
in a Barabási-Albert (BA) scale-free [49], [50] network G
of size N , with the links between nodes represent-
ing a social connection between agents. The spread of
information is considered as occurring in three consecu-
tive phases—information spreading, information acceptance,

and information consolidation. We first detail the relevant
mathematical preliminaries and definitions, followed by a
description of the three-phase propagation of information
adopted in our model. A summary of model parameters is
given in Table 1. Though beyond the scope of the present
study, plausible methods of characterizing these parameters
for application to real-world networks are also discussed in
Section IV.

TABLE 1. List of parameters of the information propagation and
polarization model. Of the six parameters, the first three (N , s and L)
define the size and the per-agent characteristics of the network, and the
last three (K , β and γ ) define the interaction behavior between agents.

A. MODEL PRELIMINARIES
To begin, we define the information representation in our
model (Section II-A.1) and the characteristic behaviors of the
human agents in the network (Section II-A.2–II-A.4).

1) INFORMATION POLARIZATION REPRESENTATION
For simplicity, each packet of information is considered to
be a binary string of length s. For instance, for s = 5,
a candidate binary string might be 11011. In such a binary
representation, there are 2s distinct subtypes of information,
where each subtype is labeled with an integer 0 ≤ i ≤ 2s−1.
These binary strings can be taken to encode any type of real-
world data, including, for instance, opinions being propa-
gated through social platforms, pieces of news, or potentially
distorted or inaccurate facts.

The binary magnitudes of the information strings are taken
as a measure of the associated degree of polarization. In par-
ticular, it is taken that the smaller the value, the more negative
the information is perceived to be; conversely, the larger the
value, themore positive the perception is. Information charac-
terized by 00000 and 11111 bit strings, therefore, correspond
to the two extreme polarization states (most negative andmost
positive). In the present model, we take s to be time-invariant
and homogeneous throughout the network, thus reflecting
the propagation and polarization of a single information
type.

2) MEMORY CAPACITY
Realistically, the human agents involved in the propagation
of information possess some ability to remember and repro-
duce previously-encountered information. We assume that
every individual has the same memory capacity, denoted L,
such that they can remember up to L pieces of information
each.
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3) ENTROPY-DEPENDENT INFORMATION DISTORTION
It is known that there is inherent imprecision in social com-
munication. When information and rumors spread, states
of strong emotional response, in combination with failures
in cognition and transmission, may cause the propagated
information to be distorted. Individuals realistically do not
have perfect control over the reproduction and distribution of
information—a phenomenon termed the ‘‘trembling hand’’
effect [51]. It is therefore important to model the poten-
tial distortion of propagated information pieces within our
information-entropic framework.

In our proposed model, the propensity for each agent to
distort information is taken to be related to the entropy of
the information stored in their memory. The greater the infor-
mation entropy, the more uncertain their memory is, and the
more prone they are to errors in recalling and reproducing
information. Such a relation can be heuristically justified by
noting that information entropy is, in most cases, a measure
of the complexity of the represented content; higher entropy
may thus reasonably be associated with tendencies of confu-
sion or inaccurate reproduction.

We let Hn denote the classical Shannon information
entropy for individual An ∈ V (G), defined as

Hn = −
∑
i

fi log2 fi, (1)

where fi is the frequency of occurrence of the ith subtype of
information within the memory of An. The average infor-
mation entropy of the population H , reflecting the level of
information noise in the entire social network, can be written
as

H =
1
N

N∑
n=1

Hn. (2)

The probability of information distortion by individual An
can now be defined as

Pn =
[
exp

(
Hmax − Hn
Hmax

· K
)
+ 1

]−1
, (3)

where K , termed the conservation factor, represents an antag-
onizing control force against information distortion, and
Hmax is the maximum possible information entropy, reached
when fi = 1/2s. The larger K is, the stronger the ability of
the individual to mitigate information distortion. Suchmay be
presumed to be the result of, say, a more conservative social
culture, or a more well-informed populace. Information
distortion is taken to occur through a bit-wise mechanism,
where a random bit in the information string is flipped, and
the distorted information persists within the memory of the
individual.

4) INFORMATION ACCEPTANCE
Human agents are, in general, not entirely trusting of one
another, especially in large networks. When an individual
Am ∈ G receives a piece of information from another

individual An ∈ G, individual Am will not always believe
the information received. Rather, acceptance of information
depends on how trustworthy individual Am considers indi-
vidual An, which is taken to be related to the relative social
status (as measured by number of connections) ofAm among
the neighbors of An. The more trustworthy An is, the higher
the probability ηmn that individual Am will accept the infor-
mation, as given by

ηmn =
kβn

maxl∈nbd(m) k
β
l

, (4)

in which nbd(m) denotes the neighbor set of Am, kn denotes
the degree of node An (in other words, the number of
social connections that person An has with other individ-
uals), kl denotes the degree of each neighbor Al , and β
is a parameter termed the confidence factor. A range of
β > 0 indicates that individuals will tend to trust neighbors
of a greater network degree, and vice versa for β < 0.
In the former case, information conveyed by individuals of a
greater number of social followers is preferentially accepted
over competing counterparts, reflecting a bandwagon-like
social behavior tendency in individuals, whereas the latter
case reflects an opposite tendency of preferentially accepting
information from low-profile social associates. The special
case of β = 0 reflects equivalent trust amongst all neighbors.

B. THREE-PHASE INFORMATION PROPAGATION
The three consecutive phases of information propagation
in our model—spreading (Section II-B.1), acceptance
(Section II-B.2), and updating (Section II-B.3)—can now be
defined.

1) SPREADING PHASE
All individuals An ∈ G begin to disseminate information.
Out of all the pieces of information currently remembered by
each individual, the most salient subtype (the subtype i that
occurs with the highest frequency fi within thememory ofAn)
is selected for transmission, with random selection should
there be two or more subtypes of information with maximum
saliency. This piece of information, potentially distorted due
to imperfect memory integrity, is spread to all neighbors
of An. In addition, we introduce a probability of polariza-
tion ξ , describing the information polarization tendencies
by individuals during communication. With probability ξ ,
individuals distort rumors by applying an increment operation
(adding a binary value of 00001) on the most salient binary
information string; and with probability (1 − ξ ), individu-
als apply a decrement operation (subtracting a binary value
of 00001) to the most salient information string. When the
information strings have reached the minimum or maximum
extreme states of polarization (00000 and 11111 respec-
tively), no further distortion occurs.
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The probability of positive polarization ξm by individ-
ual Am may be defined as

ξm =
kγm

maxj∈{1,2,...,N } k
γ
j
, (5)

where γ is termed the polarization bias factor, and km and kj
are the degree of node Am and node Aj respectively. With
γ < 0, individuals with few social connections (small-degree
nodes) tends to be positively polarizing, distorting informa-
tion towards the positive extreme, and individuals with a large
number of social connections (large-degree nodes) tends to be
negatively polarizing, distorting information towards the neg-
ative extreme. Conversely, with γ > 0, small-degree nodes
tend to be negatively polarizing, and large-degree nodes tend
to be positively polarizing. In the real-world, these types of
polarization behavior may manifest as a result of intentional
hyperbole, for political reasons or otherwise, or unintentional
bias when communicating.

2) ACCEPTANCE PHASE
Upon the receipt of a piece of information from one of
their neighbors, each agent decides on whether to accept
the information and commit it to memory, as detailed in
Section II-A.4.

3) UPDATING PHASE
The finite memory bank of each individual is modeled as a
first-in-first-out (FIFO) queue, with newly accepted pieces of
information displacing the oldest pieces within memory once
the maximum capacity has been reached. Memory updates
are taken to be synchronous across the network—at every
time-step t of the process, all individuals attempt to spread
the most salient subtype of information currently known to
their neighbors, following which all individuals decide on
information acceptance, and their memories are updated to
reflect a new set of values at time t + 1. The information
propagation cycle then repeats.

III. RESULTS
To provide a sufficient diversity of information subtypes,
the length of the binary information strings was set to
s = 5, giving 25 = 32 subtypes in total. Barabási-Albert
(BA) scale-free networks of size N = 3000 were randomly
generated, on which simulations of the presented information
propagation model were run. The simulation model assumes
a memory capacity of L = 320.
The intrinsic relationship between polarization probabil-

ity ξ and the bias factor γ is first explored in Section III-A,
thereby providing a basis to facilitate the qualitative under-
standing of the various phenomena emergent from the
propagation model. Information polarization phenomena are
then described in Section III-B, with emphasis on the
effects of the confidence factor β and the bias factor γ
on propagation dynamics and polarization behavior in the
network.

A. DISTRIBUTION OF POLARIZATION PROBABILITY ξ
Figure 1 presents the relationship between the propensity of
individuals to information distortion, encoded in the polariza-
tion probability ξ , and the bias factor γ . The mean value and
variance of ξ are denoted E(ξ ) and D(ξ ) respectively.

FIGURE 1. Relationship between the propensity of individuals to
information distortion, encoded in the polarization probability ξ , and the
bias factor γ . E(ξ ) and D(ξ ) denote the mean value and variance of ξ
respectively.

In the range −10 ≤ γ ≤ 0, it is observed that an
increase in γ yields a gradual increase in ξ from an initial
value of approximately 1/2, representing a balanced prob-
ability of polarization towards either extremum, simultane-
ously accompanied by a decrease in variance of ξ . This
indicates that a large number of small-degree nodes in the
population has clustered into a ξ > 1/2 positively-polarizing
group, with a small number of large-degree nodes clustering
into a ξ < 1/2 negatively-polarizing group. Increases in
γ lead to expansions in the size of the positively-polarizing
cluster, due to the continued addition of new nodes aligned
with ξ > 1/2; simultaneously, the average ξ within the
cluster also increases. At γ = 0, all individuals within the
population has ξ = 1, in effect skewed towards positive
polarization with absolute certainty.

When γ > 0, the average ξ within the population decreases
as γ increases, accompanied by a largely decreasing trend
in ξ variance. This reflects that the probability of nega-
tive polarization in small-degree nodes is increasing, leaving
behind very few remaining nodes with a positive polarization
tendency.

B. INFORMATION POLARIZATION
To start the simulation, a node from the network is randomly
selected as the information source, and one piece of informa-
tion is set in its memory. This source information string was
taken to be 01110, and the memories of all other nodes in
the network were initialized to be empty. Simulations of the
presented model are then run, to investigate the information
propagation dynamics and emergent polarization patterns.
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FIGURE 2. Evolution charts for β = 1, γ = −4 and K = 0.1, showing (a) the dynamics of information entropy H , (b) the dynamics of δ0, and (c) the
dynamics of δi where the x-axis denotes time and the y-axis denotes opinion subtype, and the value of δi is represented by color.

FIGURE 3. Evolution charts for β = 1, γ = 0 and K = 0.1, showing (a) the dynamics of information entropy H , (b) the dynamics of δ31, and (c) the
dynamics of δi where the x-axis denotes time and the y-axis denotes opinion subtype, and the value of δi is represented by color.

We consider an individual to hold the opinion i if the most
salient piece of information in their memory, that is, the piece
of information with maximal fi is of subtype i. Let Di be
the total number of individuals with opinion i. Then we can
define

δi = Di/N , i ∈ {0, 1, . . . , 31}, (6)

as the proportion of individuals who hold the opinion i.
By analyzing how δi changes for each opinion over time,
we can study the effects of information polarization across
the population.

1) CONFIDENCE FACTOR β = 1
Figure 2 presents the simulation results obtained, with con-
fidence factor β = 1 and bias factor γ = −4. A cross-
examination with Figure 1 reflects that at γ = −4,
the positively-polarizing cluster comprises primarily of
small-degree nodes and is small in size, and the population
average of the polarizing probability ξ is slightly above 0.5.
Such a result suggests that the distortion driving force towards
a positive polarization extremum of 11111 is weak. At the
same time, due to the negative bias factor, the large-degree
nodes tend towards negative polarization; and with β = 1,
individuals have comparatively greater trust in these large-
degree nodes, thus creating a strong driving force towards a

negative polarization of 00000 within the population. Under
the competition of these antagonistic factors, negative polar-
ization tendencies overwhelm the influence of the small
positively-polarizing clusters, and the final polarization state
of the population is therefore expected to be a negative 00000,
as indeed observed in the presented simulation.

Next, Figure 3 presents a set of simulation results for
γ = 0. This is an extreme case, in that all nodes are
characterized by a perfect polarizing probability of ξ = 1,
analytically deductible from Eq. (5). There is no antago-
nistic factor present towards positive polarization, and the
final polarization state is therefore 11111, as can be clearly
observed.

Figure 4 presents simulation results for γ = −0.5. In com-
bination with Figure 1, it is observed that at γ = −0.5,
the positive cluster formed by small-degree nodes is signif-
icant, and the population average of polarization probabil-
ity ξ is also large, therefore resulting in the presence of a
strong driving force towards the positive polarization state
of 11111. At the same time, large-degree nodes tend towards
negative polarization, and the preferential trust amongst the
population towards these individuals result in the emergence
of a negative polarization driving force. Under the com-
petition of these two forces, a division of the population
between negative 00000 and positive 11111 polarization
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FIGURE 4. Evolution charts for β = 1, γ = −0.5 and K = 0.1, showing (a) the dynamics of information
entropy H , (b) the dynamics of the number of information subtypes in the network, (c) the dynamics of
δ0 and δ31, and (d) the dynamics of δi .

states is observed. The proportion of the 11111 state remains
significantly smaller than that of the 00000 state, indicating
that the status-dependent acceptance of information plays a
key role in controlling the spread of rumors.

A contrasting set of results is presented in Figure 5, for
a bias factor of γ = 0.5. In such a scenario, the popu-
lation average of ξ is small, reflecting that a large num-
ber of small-degree nodes have positive polarization prob-
abilities close to zero. These small-degree nodes form a
large number of negatively polarizing clusters, resulting
in a driving force towards the 00000 negative polarization
state. Simultaneously, the positive polarization probability ξ
amongst large-degree nodes is relatively large, and β = 1
creates a preferential trust towards these individuals, resulting
in a strong positive driving force. Similar to the γ = −0.5
scenario, a co-existence of negative 00000 and positive 11111
polarization states is observed, but here the proportion of the
latter is significantly greater than the former.

2) CONFIDENCE FACTOR β = −3
We now examine scenarios with the confidence factor set
to β = −3. Figure 6 presents a set of simulation results
with γ = −1. Examined in conjunction with Figure 1,
it is deduced that in such a configuration, the size of the
positive cluster formed by small-degree nodes is relatively
large, with a large average polarization probability ξ within
the population. The population is hence driven towards the
positive polarization state 11111. The low confidence factor

of β = −3 creates preferential trust towards small-degree
nodes, further aiding the propagation of positively-polarized
information, therefore resulting in a final state of positive
11111 polarization as is indeed observed in the simulation
results.

In Figure 7, the bias factor is set to γ = 0.5, and the
mean ξ within the population is small, indicating that a
large number of small-degree nodes tend to be negatively
polarizing. This creates a driving force towards the 00000
negative polarization state. The confidence factor of β = −3
reflects preferential trust towards small-degree nodes, aiding
the propagation of the negatively-polarized information from
the small-degree nodes and resulting in a final state of
00000 polarization, as is observed.

3) FINAL POLARIZATION DISTRIBUTIONS IN β–γ SPACE
The simulation results presented in Sections III-B.1
and III-B.2 indicate that the bias factor γ and confidence
factor β influence the propagation of polarized information
profoundly. In this subsection, we examine the terminal prob-
ability distributions of the two extreme polarization states
(δ0 and δ31) in β–γ parameter space, for a spectrum of
differing conservation factors K .

The simulation results are presented in Figures 8(a)–(h).
In these figures, we present the terminal probability distri-
butions of the two extreme polarization states within the
populations, for differing values of the conservation factor K .
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FIGURE 5. Evolution charts for β = 1, γ = 0.5 and K = 0.1, showing (a) the dynamics of information
entropy H , (b) the dynamics of the number of information subtypes in the network, (c) the dynamics
of δ0 and δ31, and (d) the dynamics of δi .

FIGURE 6. Evolution charts for β = −3, γ = −1 and K = 0.1, showing the dynamics of (a) information entropy H , (b) frequency δ31, and (c) frequency δi .

It can be observed that with a low conservation factor K ,
the propagated information can be polarized into the negative
00000 state; the conditions for this to occur can be divided
into two regimes. The first regime is of confidence factor
β > 0 and bias factor γ < 0; the second regime is of
confidence factor β < 0 and bias factor γ > 0. The
qualitative principles for these conditions can be deduced.
In the first regime, β > 0 and γ < 0 reflects preferential trust
and negatively-polarizing tendency on large-degree nodes
respectively, and these circumstances are clearly synergistic
in driving negative polarization throughout the population;

and in the second regime, β < 0 and γ > 0 reflects pref-
erential trust and negatively-polarizing tendency on small-
degree nodes respectively, again conducive for the spread of
negatively-polarized information.

In contrast, the necessary conditions for the propagated
information to be polarized into the positive 11111 state is
encompassed within a narrow strip in β–γ parameter space,
primarily in proximity around γ = 0. In very limited regions
of γ < 0 and β < 0, and γ > 0 and β > 0, positive polariza-
tion of the majority of the population is possible, via means
of an analogous synergistic mechanism responsible for the
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FIGURE 7. Evolution charts for β = −3, γ = 0.5 and K = 0.1, showing the dynamics of (a) information entropy H , (b) frequency δ0, and (c) frequency δi .

previously-discussed negative polarization phenomenon; but
outside of these narrow regions, there is essentially negligible
polarization.

It is also observed that mass polarization of the population
becomes increasingly difficult as the conservation factor K
increases. This is fully expected, asK suppresses information
distortion in individuals (Section II-A.3).

IV. DISCUSSION
In the present study, the semantics of propagated information
is taken to be categorizable into binary opposing extrema,
in particular, a negative polarization extreme represented
as an information bit string of minimal value, and a pos-
itive polarization extreme represented as one of maximal
value. The mapping of propagated data as information strings
enables much generality—the strings may, for instance, rep-
resent opinions shared on social media or news pieces. A bias
factor γ has been introduced to characterize relations between
the degree size of a node, analogously the size of an individ-
ual’s social circle, and its polarizing tendencies. The mechan-
ics of information acceptance are also considered, which are
assumed to be dependent on the social standing of the infor-
mation source in our model; a confidence factor β character-
izes such aspects. In this manner, the dynamics of information
propagation and polarization have been analyzed.

A diversity of phenomena have been observed in our pro-
posed model. At a low conservation factor of K = 0.1,
numerous behavioral regimes may be observed. Firstly, when
there is preferential trust towards large-degree nodes (β = 1)
and the bias factor is low (γ = −4), the entire popula-
tion is swayed towards the negative polarization extremum
due to the strong influence of large-degree nodes. In con-
trast, an intermediate bias factor of −0.5 ≤ γ ≤ 0.5
in general divides into clusters of differing polarizations,
resulting in a long-term co-existence of both polarization
extrema. Secondly, when there is preferential trust towards
small-degree nodes (β = −3), the large number of small-
degree nodes within the population become overwhelmingly
important in the dissemination of information. As such, when
γ = −1, the positive polarizing tendencies of the small-
degree nodes drive the entire population towards the 11111

polarization state; and when γ = 0.5, their negative polariz-
ing tendencies drive the population towards the 00000 state.
These cases illustrate the antagonistic, competitive nature of
information sources in driving polarization, and the synergis-
tic mechanism between polarization tendencies and preferen-
tial trust in aiding the propagation of polarized information.

In light of the profound effects of the confidence factor β
and bias factor γ on information polarization phenomena,
the terminal polarization distributions had been investigated
in β–γ parameter space, across a spectrum of conservation
factor K values. The population exhibits mass negative polar-
ization in two regimes, of β > 0, γ < 0, and β < 0, γ > 0;
in contrast, mass positive polarization is only observed within
a narrow strip of β–γ space close to γ = 0, with either
β > 0, γ > 0 or β < 0, γ < 0. In the remaining regions,
polarization effects are insignificant. In addition, the polar-
ization of information is suppressed when K increases. When
K > 10, the system no longer exhibits appreciable polar-
ization phenomena. These presented results span the range
of realizable phenomena in the model comprehensively, and
model sensitivity to remaining parameters has been found to
be weak.

While the presented model differs from existing statistical
mechanics-based approaches, for instance the Sznajd model
and generalizations [5], [30]–[32], certain important simi-
larities in results are observed. In the Sznajd model and its
generalizations to higher-dimensional topologies, agents are
typically assumed to be arranged in lattices; whereas in the
current model, more realistic scale-free network topologies
are used [52], [53]. Furthermore, in the generalized Sznajd
and contagion models [28], interactions between agents are
typically very simplified, in contrast to the current modeling
incorporating effects of agent memory, varying confidence
towards other agents, and information distortion tendencies.
Yet, the special-case phenomenon of the eventual division
of a populace into distinct sectors of opposing opinions is
observed in both these models and in the current study,
and the mechanism for reaching these outcomes, in which
small ‘seed’ regions expand and compete with neighboring
domains for influence, are likewise qualitatively similar. This
suggests a sort of universal behavior across topologies and
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FIGURE 8. Final probability distributions of positive and negative extreme polarization states for different values of K in
β–γ parameter space.

varying degrees of model complexity, and also serves as a
form of validation for the presented model. Outside of this
common regime, model behavior diverges between these var-
ious works, as is expected from the fundamentally different
degrees of freedom conferred.

The behavioral regimes of the current model may be
linked with corresponding analogues in the real world.
In particular, in contexts where sources of a large social
connectivity are preferentially trusted by the public, the accu-

racy and agency of information spread by them become
of vital importance. Such sources may typically include
news agencies and celebrities, the latter encompassing both
professional artistes and ‘self-made’ counterparts on social
media, or individuals with highly-rated personas on trust-
driven forum platforms such as StackOverflow [54] orReddit.
On the other hand, in situations where small-degree
connectivity is preferentially trusted, the chain propagation
of distorted information can lead to the eventual polarization
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of a majority of the population. Balanced influence between
large-degree and small-degree connectivities carry elevated
risks of population division between different opinions.
Relevance of the model to the real-world is hence established,
with a wide variety of scenarios encompassed within the
present framework.

To enable the application of the presented framework on
real-world networks, it is imperative that the various inde-
pendent model parameters (summarized in Table 1) be mea-
surable. Here, we provide a plausible methodology. N can be
straightforwardly determined from the size of the examined
network, s can be taken as the average size of messages
exchanged, and L can either be adapted fromwell-established
human cognition studies [55]–[58] or characterized from the
shift of trends in the history of exchanged messages. The
remaining conservation factor K , confidence factor β, and
polarization bias factor γ are most easily characterized by
calibration on the examined system, with appropriate β and γ
determined by regression over node degree, and K deter-
mined by regression over all agents. The characterization of
these parameters then allows the model to be used to predict
the future evolution of the social system, or to be applied
to another network reasonably assumed to be described by
similar parameter values.

This study represents a significant development over the
previously reported information-entropic model for rumor
propagation, in which polarization effects were not examined.
The structure of the proposed information-entropic
framework is intrinsically conducive for the addition of
polarization effects, with natural means of modeling the
imprecision of human-to-human communication, polariza-
tion evolution, memory depth, and the probabilistic tenden-
cies for individuals to reject information based on subjective
confidence. The proposed model provides a realistic,
generalizable framework for research into propagative and
polarization dynamics in networked information systems,
with the fundamental mechanisms and the emergent dynam-
ics being of potential relevance to social platform design,
policy-making, and sociophysics.

V. METHODS & MATERIALS
The proposed information-entropic model had been pro-
grammatically implemented, and all presented results were
obtained from the implemented numerical simulations.
The simulation process begins with the construction of a
Barabási-Albert (BA) scale-free network [49], [50] model-
ing the inter-agent connectivity, with the polarization bias
factor γ and confidence factor β specified. The agent char-
acteristics in the information spreading and information
acceptance phases (Sections II-B.1 and II-B.2) are then
calculated, in particular the agent-specific constants ξm and
ηmn. The propagation of information can then be initiated at
time t = 0—a random node is picked and seeded with a spec-
ified source information string. A synchronous three-phrase
information propagation process (Section II-B), entailing
information spreading, information acceptance, and memory

updating in order, is then iteratively executed, incrementing t
each cycle. In each iteration, the entropy-dependent prob-
ability of information distortion Pn is computed for each
individual, and the distortion outcome is stochastic, imple-
mented programmatically via a pseudorandomnumber gener-
ator. Individuals not yet exposed to information from adjacent
neighbors are taken to be idle and do not partake in the
propagation process, until first exposure occurs. Statistical
indicators such as δi (Section III-B) are also evaluated at each
iteration to aid in data visualization.
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