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ABSTRACT Frequent itemset mining is an important operation to return all itemsets in the transaction table,
which occur as a subset of at least a specified fraction of the transactions. The existing algorithms cannot
compute frequent itemsets on massive data efficiently, since they either require multiple-pass scans on the
table or construct complex data structures which normally exceed the available memory on massive data.
This paper proposes a novel precomputation-based frequent itemset mining (PFIM) algorithm to compute
the frequent itemsets quickly on massive data. PFIM treats the transaction table as two parts: the large old
table storing historical data and the relatively small new table storing newly generated data. PFIM first pre-
constructs the quasi-frequent itemsets on the old table whose supports are above the lower-bound of the
practical support level. Given the specified support threshold, PFIM can quickly return the required frequent
itemsets on the table by utilizing the quasi-frequent itemsets. Three pruning rules are presented to reduce
the size of the involved candidates. An incremental update strategy is devised to efficiently re-construct
the quasi-frequent itemsets when the tables are merged. The extensive experimental results, conducted on
synthetic and real-life data sets, show that PFIM has a significant advantage over the existing algorithms and
runs two orders of magnitude faster than the latest algorithm.

INDEX TERMS Frequent itemset mining, massive data, PFIM algorithm, pruning rule, incremental update.

I. INTRODUCTION
Frequent itemset mining is an important operation that has
been widely studied in many practical applications, such as
data mining [1]–[3], software bug detection [4], spatiotem-
poral data analysis and biological analysis [5]. Given a trans-
action table, in which each transaction contains a set of
items, frequent itemset mining returns all sets of items whose
frequencies (also referred to as support of the set of items) in
the table are above a given threshold.

Due to its practical importance, since firstly proposed
in [6], frequent itemset mining has received extensive atten-
tions and many algorithms are proposed [7]–[9]. The existing
frequent itemset mining algorithms can be classified into
two groups: candidate-generation-based algorithms [10]–[14]
and pattern-growth-based algorithms [15]–[17]. The
candidate-generation-based algorithms first generate can-
didate itemsets and these candidates are validated against
the transaction table to identify frequent itemsets.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xin Luo.

The anti-monotone property is utilized in candidate-
generation-based algorithms to prune search space. But the
candidate-generation-based algorithms require multiple-pass
table scans and this will incur a high I/O cost on massive
data. The pattern-growth-based algorithms do not generate
candidates explicitly. They construct the special tree-based
data structures to keep the essential information about the
frequent itemsets of the transaction table. By use of the
constructed data structures, the frequent itemsets can be com-
puted efficiently. However, pattern-growth-based algorithms
have the problem that the constructed data structures are
complex and usually exceed the availablememory onmassive
data. To sum up, the existing algorithms cannot compute
frequent itemsets on massive data efficiently.

In frequent itemset mining, the number of the frequent
itemsets normally is sensitive to the value of the support
threshold. If the support threshold is small, there will be a
large number of frequent itemsets and it is difficult for the
users to make efficient decisions. On the contrary, if the
support threshold is large, it is possible that no frequent
itemsets can be discovered or the interesting itemsets may
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be missed. Therefore, a proper support threshold is crucial for
the practical frequent itemset mining and the users often need
to perform frequent itemset mining for several times before
the satisfactory support threshold is determined. The process
often is interactive. On massive data, the existing algorithms
often need a long execution time to compute frequent itemsets
and this will affect users’ working efficiency seriously [18].
The focus of this paper is to find a new efficient algorithm to
compute frequent itemsets on massive data quickly.

One useful trick, which is adopted to speed up the exe-
cution in the existing algorithms, is to reuse the work done
in the counting operation of the shorter itemsets for that of
the longer itemsets. In this paper, we want to utilize this
reuse idea to a much larger degree. In typical massive data
applications, with the increasing data volume and the disk
I/O bottleneck, data usually is stored in read/append-only
mode [19]. Therefore, the overall data set can be divided
into two parts: the much larger old data set storing the his-
torical data, and the relative small new data set storing the
newly generated data. Based on the description above, this
paper devises a new PFIM algorithm (Precomputation-based
Frequent Itemset Mining algorithm) on massive data, which
utilizes the pre-constructed frequent itemsets on the old data
set to return the frequent itemsets quickly. Since the too small
value of support threshold will generate too many frequent
itemsets, we assume in this paper that there exists a lower-
bound ω of the support threshold specified by the users in
practical applications. Because of the real/append-onlymode,
given the old table TO, PFIM first pre-constructs the frequent
itemsets (refer to as quasi-frequent itemsets in this paper)
whose supports are no less than ω. The new transactions are
accumulated in the new table T1. Taking advantage of the
pre-constructed quasi-frequent itemsets, given the specified
support threshold, PFIM can compute the frequent itemsets
on TO∪T1 quickly. In the process of execution of PFIM, three
pruning rules are devised in this paper to reduce the number
of candidate frequent itemsets. An incremental update strat-
egy is proposed in this paper to quickly update the quasi-
frequent itemsets when TO and T1 are merged. The extensive
experiments are conducted on synthetic and real-life data
sets. The experimental results show that, PFIM outperforms
the existing algorithms significantly, it runs two orders of
magnitude faster than the latest algorithm.

The contributions of this paper are listed as follows:
• This paper proposes a novel precomputation-based
PFIM algorithm to compute frequent itemsets on mas-
sive data efficiently.

• Three pruning rules are proposed in this paper to reduce
the number of the candidate frequent itemsets.

• An incremental update strategy is devised to re-construct
the quasi-frequent itemsets quickly.

• The experimental results show that PFIM has a signifi-
cant advantage over the existing algorithms.

The rest of the paper is organized as follows. Section II
surveys the related works. Preliminaries are described in

Section III. PFIM algorithm is introduced in Section IV.
The performance evaluation is provided in Section V.
Section VI concludes the paper.

II. RELATED WORKS
The existing algorithms for frequent itemset mining can
be divided into two groups mainly: candidate-generation-
based algorithms and pattern-growth-based algorithms. This
section will review the two kinds of algorithms respectively.

A. CANDIDATE-GENERATION-BASED ALGORITHMS
The candidate-generation-based algorithms firstly generate
the candidates of the frequent itemsets, then the candidates
are validated against the transaction table, and the frequent
itemsets are discovered.

Apriori algorithm [11], [20] adopts a level-wise execu-
tion mode. It uses the downward closure property, i.e. any
superset of an infrequent itemset must also be infrequent,
to prune the search space. By a pass of scan on the transaction
table, it first counts the item occurrences to find the frequent
1-itemsets F1. Subsequently, the frequent k-itemsets in Fk
are used to generate the candidates Ck+1 of the frequent
(k + 1)-itemsets. Another pass of scan is needed to com-
pute the supports of candidates in Ck+1 to find the frequent
(k + 1)-itemsets Fk+1. This process iterates similarly until
the Fk+1 is empty. Apriori algorithm often needs multiple
passes over table, it will incur a high I/O cost on massive data.

Savasere et al. [12] propose Partition algorithm to gen-
erate frequent itemsets by reading the transaction table at
most two times. The execution of Partition consists of two
stages. In the first stage, Partition algorithm divides the table
into a number of non-overlapping partitions in terms of the
allocated memory, and the local frequent itemsets for each
partition are computed. All the local frequent itemsets are
merged at the end of first stage to generate the candidates
of frequent itemsets. In the second phase, another pass over
table is performed to acquire the support of the candidates and
the global frequent itemsets can be discovered. The useful
property adopted in Partition is that, every global frequent
itemsets must be appeared in local frequent itemsets of at
least one partition. Partition algorithm utilizes vertical table
representation of transaction table and the support counting
is performed by recursive TID (transaction identifier) list
intersection. In the first phase, Partition may generate many
false positives, i.e. the itemsets are frequent locally but not
frequent globally. Therefore, it needs another table scan to
remove the false positives.

Zaki [13] proposes another vertical mining algorithm
Eclat. Eclat decomposes the original search space by a lattice-
theoretic approach into smaller sublattices, each of which is
a group of itemsets with a common prefix (referred to as
prefix-based equivalence class). Depending on the allocated
memory size, Eclat can recursively partition large classes
into smaller ones until each class can be maintained entirely
in the memory. Then, each class is processed independently
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in the breath-first fashion to compute the frequent itemsets.
Eclat processes the sublattices sequentially one by one and
does not need post-processing overhead as Partition algo-
rithms. The main problem of Eclat is that when the inter-
mediate results of vertical TID lists can become too large
for memory, especially in dense database, the performance
of Eclat starts to suffer. In order to solve the problem,
Zaki and Gouda [14] devise a novel vertical data represen-
tation called diffset, which keeps differences in the TIDs
of a candidate pattern from its generating frequent patterns.
A variation (dEclat) of Eclat by diffset is presented in [14],
which performs a depth-first search of the enumeration tree.
By the incorporation of diffset, the memory requirement of
dEclat is cut down drastically.

Wang et al. [21] propose PPV algorithm to integrate the
advantages of vertical mining and FP-growth. PPV utilizes
a coding prefix tree structure PPC-tree to store the table.
Each node in PPC-tree is associated with pre-post code via
the pre-order and post-order traversal on the PPC-tree. Each
frequent item can be represented by a node-list, i.e. the
list of Pre-Post code consisting pre-order code, post-order
code and the count of nodes registering the frequent item.
PPV fully uses candidate generation to discover frequent
itemsets, i.e. the node-lists of the candidate itemsets of
length (k + 1) are generated by intersecting node-lists of
frequent itemsets of length k, then the frequent itemsets can be
reported. PPV can achieve a high execution efficiency since
(1) the node-list is more compact than the vertical structure,
(2) the support counting is transformed into the intersection
of node-lists, (3) the ancestor-descendant relationship of two
nodes can be verified efficiently by their pre-post codes.
Reference [22] proposes PrePost to improve PPV. The core
difference between PrePost and PPV is that PrePost can
directly find frequent itemsets without generating candidates
in some cases by using the single path property of N-list.
Reference [23] points out that node-list and N-list need to
encode each node of PPC-tree with both pre-order code and
post-order code, thus they are memory-consuming. A more
efficient data structure, NodeSet, is adopted in [23], which
only requires the pre-order code (or post-order code) of each
node. And based on NodeSet, an algorithm FIN is devised to
compute frequent itemsets. The algorithm dFIN is presented
in [24] to improve FIN further. The algorithm dFIN uses
an enhanced NodeSet, DiffNodeset, which is combined by
the idea of diffset [14]. Aryabarzan et al. [25] find that the
calculation of the difference between DiffNodeset takes a
long time on some tables. They propose a new data struc-
ture, NegNodeset, which also uses prefix tree. NegNodeset
employs a set-bitmap-representation-based encoding model
for nodes. By using NegNodeset data structure, negFIN
is proposed in [25]. Three key advantages of negFIN are:
(1) employing bitwise operator to generate new sets of nodes,
(2) reducing the time complexity of discovering frequent
itemsets to O(n), (3) using a promotion method to prune
the search space in set-enumeration tree. Because of these
advantages, negFIN rapidly finds all frequent itemsets.

B. PATTERN-GROWTH-BASED ALGORITHMS
Pattern-growth-based algorithms do not generate candidate
itemsets explicitly but compress the required information
for frequent itemsets in specific data structure. The frequent
itemsets can be acquired quickly with the notion of pro-
jected databases, a subset of the original transaction database
relevant to the enumeration node.

Agarwal et al. [26] present DepthProject algorithm to mine
long itemsets in databases. DepthProject examines the nodes
of the lexicographic tree in depth-first order. The examination
process of a node refers to the support counting of the candi-
date extension of the node. During the search, the projected
transaction sets are maintained for some of the nodes on the
path from the root to the node P currently being extended.
Normally, the projected transaction sets only contain the
relevant part of the transaction database for counting the
support at the node P. In the process of depth-first search,
the projected database can be reduced further at the children
of P and DepthProject can reuse the counting work of its
previous exploration. At the lower levels of the lexicographic
tree, a specialized counting technique called bucketing is used
to substantially improve the counting time.

Han et al. [16] propose a FP-tree-based FP-growth algo-
rithm to mine the complete set of frequent patterns by pattern
fragment growth. FP-tree (frequent-pattern tree) is a compact
prefix-based trie structure to store the essential information
about frequent patterns. In each transaction, only frequent
length-1 items, which are sorted with the descending order of
support, are used to construct the FP-tree. Then the FP-growth
algorithm works on FP-tree rather than on the original
database to mine frequent patterns. FP-growth algorithm
starts with a frequent length-1 pattern (initial suffix pattern),
and the set of frequent items co-occurring with the suffix
pattern is extracted as conditional-pattern base, which is then
constructed as conditional FP-tree. With the current suffix
pattern and the conditional FP-tree, if the conditional FP-tree
is not empty, FP-growth performs mining recursively. The
frequent patterns are acquired by concatenating the new ones
generated from the conditional FP-tree and the suffix pattern.
FP-growth transforms the problem of finding long frequent
patterns to looking for shorter ones and then concatenat-
ing the suffix. An additional optimization is proposed for
FP-growth, i.e. if all the nodes of the FP-tree lie on a single
path, the frequent patterns can be generated by enumeration
of all the combinations of the sub-paths with the support
being the minimum support of the itemsets contained in the
sub-path.

Grahne and Zhu [15] find out that about 80 percent of the
CPU time in frequent itemset mining is used for traversing
FP-trees. A special data structure, FP-array, is devised. Given
an itemset of m items, FP-array is a (m − 1) × (m − 1)
matrix, where each element of the matrix corresponds to
the counter of an ordered pair of items. By the special data
structure, a new FPgrowth* is proposed, which can reduce the
traversal time on FP-tree and speed up the FP-growth method
significantly.
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Pei et al. [17] devise a novel hyper-linked data structure
H-struct and a new mining algorithm, H-mine, to efficiently
mine databases with different data characteristics. H-mine
has very limited and precisely predictable space overhead,
and can be scaled up to large database by partitioning.
On dense data set, FP-trees can be constructed dynamically
as part of the mining process.

As pointed in Liu et al. [27], it is hard to reduce the traversal
cost and the construction cost of the conditional database in
pattern-growth-based algorithms, [27] proposes the AFOPT
algorithm which uses a compact data structure, ascending
frequency ordered prefix-tree, to represent the conditional
databases. The tree is traversed in top-down depth-first order.
It is shown that the combination of the top-down traversal and
the ascending frequency order is more efficient than FP-tree,
which adopts the combination of the bottom-up traversal and
descending frequency order. AFOPT is improved further by
incorporating the opportunistic projection technique.

III. PRELIMINARIES
Given a transaction table T of n transactions, each of transac-
tions is a subset of the universe of items U = {i1, i2, . . . , id }.
Here, the itemset is a subset of U and a k-itemset is an
itemset with k items. A unique transaction identifier TID
is associated with every transaction. Given an itemset IS,
its support sup(T , IS) is defined as the fraction of transactions
in T which contain IS as a subset, i.e.

sup(T , IS) =
|{t|IS ⊆ t, t ∈ T }|

n

Obviously, the supportmeasures the correlation of the items.
For an itemset IS, its greater support value means that the
items of IS occur together more frequently in T.
Definition 1 (Frequent Itemset Mining): Given a transac-

tion table T and a specified support threshold minsup, fre-
quent itemset mining determines all itemsets whose supports
are no less than minsup.

The frequent itemset mining is defined in Definition 1.
Example 1: In this paper, we use a running example,

depicted in Figure 1, to illustrate the processing of frequent
itemset mining. Given the support threshold minsup = 0.2,
the discovered frequent itemsets in the running example are
listed in Figure 1. For example, the itemset {3, 9} is contained
in 4 transactions in Figure 1, its support is 4

15 = 0.26 and it
is frequent.

Theoretically, the number of all itemsets that need to be
checked is (2d − 1), which is a prohibitively huge search
space. Therefore, downward closure property is normally
used to reduce the search space.
Definition 2 (Downward Closure Property): If IS is a fre-

quent itemset, then all its subsets are also frequent. If IS is an
infrequent itemset, then all its supersets are infrequent.

The downward closure property is provided inDefinition 2.
The rationale under the downward closure property is that,
given an itemset IS, if IS is a subset of a transaction P, then
all the subsets of IS are also contained in P as a subset.

FIGURE 1. The illustration of transaction table in running example.

TABLE 1. Summary of symbols.

The frequently used symbols in this paper are shown
in Table 1.

IV. PFIM ALGORITHM
A. INTUITIVE IDEA
This part describes intuitive idea of PFIM algorithm.

Generally, the number of frequent itemsets is very sensitive
to the value of minsup. If the value of minsup is too small,
the number of frequent itemsets will be so large that the
users can become overwhelmed with too many results and
it is difficult for users to find the really useful information
from them. Therefore, in this paper, we assume that there
exists a lower-bound for the value of minsup in practical
applications. The lower-bound is denoted by ω in this paper.
The value of ω can be determined by some domain experts,
or the lowest value of the support used in the past frequent
itemset mining.

On massive data, the existing algorithms often cannot
meet the users’ requirement, they either need to scan the
table multiple times, or need a complex data structure and
a high memory consumption. This is the motivation of this
paper, i.e. we want to devise a highly efficient algorithm to
mine the frequent itemsets on massive data quickly. Some
of the existing algorithms, such as FP-tree-based methods
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or vertical-representation-based methods, reuse the work that
has already been done previously in the current frequent
itemset mining, so they can discover frequent itemsets faster.
But, when the current frequent itemset mining is done, their
works are lost and the next mining still needs to be executed
from scratch.

On massive data applications, data usually is stored in
read/append-only mode [19]. Therefore, the overall trans-
action table T can be divided into two parts: the large old
transaction table TO and the relative small new transaction
table T1, i.e. T = TO∪T1. Usually T1 keeps the accumulated
new transactions. When the size of T1 reaches to some level,
for example, 5% of the size of TO, the data in T1 will be
merged into TO. Since the size of TO is much larger than that
of T1, we have enough confidence that the time interval of
two consecutive merging operations should be long enough.

During the time interval between two consecutive merg-
ing, TO remains unchanged and only T1 updates frequently.
Under such circumstances, given the frequent itemset mining
with varying support thresholds, why not we keep the pre-
computed itemsets whose support values in TO are no less
than ω and only compute the required frequent itemsets con-
sidering the existence of T1. In this way, the work done for
TO can be reused for all the frequent itemset mining in a long
enough time. This is the motivation why we develop PFIM
algorithm.

In the rest of this section, we first show the pre-
computation operation in Section IV-B, then introduce PFIM
algorithm detailedly in Section IV-C and Section IV-D. The
update operation of the pre-constructed itemsets are pre-
sented in Section IV-E, and some issues are discussed in
Section IV-F.

B. PRE-COMPUTATION OPERATION
This part describes the pre-computation operation to generate
the required itemsets on the large old transaction table TO
whose supports are no less than ω. The required itemsets
here are referred to as quasi-frequent itemsets, distinguishing
from the frequent itemsets with the support threshold minsup
specified by users. Let tno be the number of transactions in TO
and tn1 be the number of transactions in T1. Since the size
of TO is much large, usually exceeds the size of the allocated
memory. Therefore, the process of pre-computing the quasi-
frequent itemsets consists of two stages: candidate generation
and result refinement.

In the stage of candidate generation, we retrieve the trans-
actions in TO sequentially and maintain the retrieved trans-
actions in an in-memory buffer BUF , whose size is set
according to the size of the allocated memory. If BUF is full,
we can compute the local quasi-frequent itemsets in BUF
by the current vertical frequent itemset mining algorithms.
The quasi-frequent itemsets corresponding to current BUF
are kept in a file. Then we empty BUF and continue the
sequential scan for the next iteration. The process is similarly
executed until all transactions in TO is retrieved and all local
quasi-frequent itemsets are generated.

In the stage of result refinement, we first read all the
local quasi-frequent itemsets into the memory. Then another
sequential scan on TO is performed to compute support
count, i.e. the absolute occurrence number, for each local
quasi-frequent itemset. Then the local quasi-frequent item-
sets whose support counts are no less than dtno × ωe are
maintained as the global quasi-frequent itemsets, which are
stored in a file Fqf and will be used for the following frequent
itemset mining. The schema of Fqf is Fqf (IS, SUP), where IS
is the quasi-frequent itemset and SUP is the corresponding
support count of IS in TO. The quasi-frequent itemsets in Fqf
are sorted in the descending order of the support counts. In the
rest of this paper, the support level of an itemset is referred to
as its usual support (relative value) and the support count of
an itemset is used to represent the occurrence number of the
transaction in the table.

Here, it should be noted that, the pre-computation opera-
tion is executed only once. Then, as the more transactions are
accumulated in T1, an incremental strategy (Section IV-E) is
used to update the quasi-frequent itemsets quickly.

FIGURE 2. The illustration of pre-computation operation in running
example.

Example 2: As illustrated in Figure 2, the transaction
table T in the running example is split into two part: TO with
ten transactions and T1 with three transactions. The value of
ω is set to 0.1. Given tno = 12 and ω = 0.1, the support
counts of quasi-frequent itemsets should be at least dtno ×
ωe = 2. The quasi-frequent itemsets in the running example
are depicted in Figure 2 also. There are 55 quasi-frequent
itemsets here, among them 19 quasi-frequent itemsets have
the support count in TO which are no less than 3.

C. BASIC PROCESS
Given the support threshold minsup, this part introduces the
basic process that PFIM discovers the frequent itemsets on
T = TO ∪ T1.

1) THE SPECIAL CASE
First, we discuss a special case. If T1 is empty, i.e. tn1 = 0,
the processing of PFIM is simple. It just needs to read the
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quasi-frequent itemsets in Fqf sequentially. ∀t ∈ Fqf , let t
be the current element retrieved in Fqf . If t.SUP ≥ dtno ×
minsupe, t.IS is reported as a frequent itemset. Since the
elements in Fqf are arranged in descending order of SUP,
if t.SUP < dtno × minsupe, it can be guaranteed that all
frequent itemsets are discovered and the sequential scan on
Fqf terminates.

2) THE GENERAL CASE
Of course, usually, T1 is not empty. Due to the existence of
new transactions, wemay find new frequent itemsets from T1

and TO which are not contained in Fqf .
In the rest of this part, we describe the processing of PFIM

given that T1 is not empty. An itemset is frequent, if there are
at least dn × minsupe transactions in T containing it, where
n = tno+ tn1 and T = TO∪T1. The execution in the general
case consists of four steps.
Step 1 (Sequential Scan on T1): PFIM first retrieves the

transactions in T1. ∀t1 ∈ T1, let t1 be the currently retrieved
transaction. ∀i ∈ t1, i is an item in t1, we increase the count
of i, whose initial value is 0, by 1. Due to its relative small size
of T1 and the simple computation, this sequential scan can be
executed quickly. We use an array cnt1 to keep these counts.
∀i ∈ U , cnt1[i] is the count of item i in T1, cnt1[i] = 0 if i
does not appear in any transaction in T1. The value of mas1
is the maximum support count for all items in T1.

FIGURE 3. The illustration of cnt1 in running example.

Example 3: The array cnt1 of the running example is
depicted in Figure 3 and the value of mas1 is 2.
Step 2 (Sequential Scan on Fqf ): Then, PFIM begins to

retrieve Fqf . ∀t ∈ Fqf , let t be the currently retrieved quasi-
frequent itemset in Fqf . The quasi-frequent itemsets in Fqf
can be divided into three classes: (1) definitely belonging
to the frequent itemsets, (2) definitely not belonging to the
frequent itemsets, (3) possibly belonging to the frequent item-
sets. Given |t.IS| = 1 and t.IS = {i}, if t.SUP + cnt1[i] ≥
dn×minsupe, t.IS is frequent, otherwise, t.IS is not frequent.
Given |t.IS| ≥ 2, if t.SUP ≥ dn × minsupe, t.IS is frequent
obviously, otherwise, if t.SUP+mas1 < dn×minsupe, t.IS
certainly not a frequent itemset. In other cases, t may be a
frequent itemset, depending on the transactions in T1, and
PFIM maintains t in a set STCAD.
Example 4: In the running example, given the support

threshold minsup = 0.2 and the total transaction number
n = 15, the support count of any frequent itemset should be at
least 3. As depicted in Figure 2, the quasi-frequent itemsets
(19 in total) in Fqf whose support counts are at least three
can be reported as frequent itemsets directly. The other quasi-
frequent itemsets (36 in total), whose support counts are 2, are
stored in STCAD.

Step 3 (Increase Supports for Itemsets in STCAD): When
all quasi-frequent itemsets are retrieved already, PFIM needs
to increase the support counts of quasi-frequent itemsets in
STCAD by their counts in T1, this can be done by a sequential
scan on T1. Of course, if STCAD is empty, the sequential
scan on T1 is unnecessary. Since T1 may be large also,
FPIM retrieves B transactions from T1 at most in BUF1

every iteration. For the current iteration, the transactions
maintained in memory are transformed into vertical repre-
sentation, i.e. each item is associated with the list of iden-
tifiers (TID) of transactions containing the item. ∀t ∈ STCAD
and t.IS = {ij1 , ij2 , . . . , ija}, the number of transactions in
BUF1 containing t.IS is |

⋂a
b=1 ijb .tlist|, where ijb .tlist is the

TID list corresponding to the item ijb . Therefore, in this iter-
ation, the support count of t is increased by |

⋂a
b=1 ijb .tlist|,

i.e. t.SUP + = |
⋂a

b=1 ijb .tlist|. The similar iteration contin-
ues until all transactions in T1 are processed already. Then,
the itemsets in STCAD are traversed and the itemsets whose
support counts are no less than dn× minsupe are reported as
frequent itemsets.

FIGURE 4. The illustration of execution of step 3 in running example.

Example 5: The vertical representation of T1 in the
running example is illustrated in Figure 4. There are 36 quasi-
frequent itemsets in STCAD, among them only 10 quasi-
frequent itemsets can increase their support counts in T1.
Since the support count of any quasi-frequent itemset in
STCAD is 2, the 10 quasi-frequent itemsets have the support
counts of 3 and can be reported as frequent itemsets, while
other 26 quasi-frequent itemsets can be discarded.
Step 4 (Compute NewFrequent Itemsets in T1 if Required):
It is known that Fqf contains the quasi-frequent itemsets

whose support counts in TO are at least dtno×ωe. Therefore,
for any itemset which is not contained inFqf , its support count
in TO is at most (dtno × ωe − 1). Besides, we have already
acquired the value of mas1, the maximum count for all items
in T1. This means that the maximum support count of any
itemset in T1 cannot exceed max1. If (dtno × ωe − 1) +
mas1 < dn × minsupe, there are no new frequent itemsets
generated from T1 that are not contained in Fqf , and PFIM
does not need to compute new itemsets in T1. Conversely,
if (dtno × ωe − 1) + mas1 >= dn × minsupe, PFIM still
needs to discover required frequent itemsets from T1 whose
support counts in T1 are at least dn × minsupe − (dtno ×
ωe − 1). This corresponds to a new frequent itemset mining
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on T1 with the specified support threshold minsup1 =
dn×minsupe−(dtno×ωe−1)

tn1
.

Example 6: In the running example, the value of ω is
0.1 and tno = 12, the maximum possible support count of any
itemset not in Fqf is (dtno × ωe − 1) = 1. Since mas1 = 2,
(dtno × ωe − 1) + mas1 ≥ 3, it is possible that T1 can
generate new frequent itemsets. Step 4 should be executed
in the running example. Here, the specified support threshold
minsup1 = 0.67 ( 23 ) in T1.
Since T1 could be large also, PFIM retrievesB transactions

at most from T1 in BUF1 every iteration, computes the
local frequent itemsets in BUF1 with the support threshold
minsup1. The transactions in BUF1 first are transformed
into vertical representation format and the local frequent
1-itemsets LF1,1 can be determined. In the following opera-
tion, suppose that we have acquired local frequent k-itemsets
LFk,1 (k ≥ 1). By use of LFk,1, the local frequent (k +
1)-itemsets LFk+1,1 can be generated. ∀IS1, IS2 ∈ LFk,1,
the items in IS1 (or IS2) are arranged in the ascending order,
if IS1 ≺ IS2, where ≺ is an operator of lexicographically
smaller relation, and ∀1 ≤ b ≤ k − 1, IS1[b] == IS2[b],
i.e. the first (k − 1) itemsets of IS1 and IS2 are equal, a new
(k + 1)-itemset can be generated: ISk+1 = {IS1[1], . . . ,
IS1[k − 1], IS1[k], IS2[k]}. Here, if IS1 and IS2 are two
1-itemsets, we consider that their first (k − 1) itemsets are
equal, although their first (k − 1) itemsets are empty. Given
itemset IS, we denote by IS.tlist the corresponding TID lists
of IS. If |IS1.tlist∩IS2.tlist|

|BUF1|
< minsup1, ISk+1 is discarded.

Otherwise, ISk+1 is added into LFk+1,1. If LFk+1,1 is empty,
the current iteration terminates and PFIM outputs all of the
local frequent itemsets. Then PFIM clears BUF1 and con-
tinues retrieving the transactions in T1 for the next iteration.
This iteration continues until all transactions in T1 have been
retrieved and processed. All the local frequent itemsets LF1

are the candidates of the global frequent itemsets in T1.
Note that for any frequent itemset computed in T1, if it
is contained in Fqf , it has been considered in the previous
processing. Therefore, before computing the support counts
of itemsets in LF1, PFIM removes the local frequent item-
sets in LF1 that have appeared in Fqf . This can reduce the
counting cost for local frequent itemset in T1 considerably.
The support counts of the local frequent itemsets in LF1 can
be computed by another scan on T1, which is in a similar
way as in the description of step 3. The global frequent
itemsets in T1, denoted by GF1, are the local frequent item-
sets whose support counts are no less than dn × minsupe −
(dtno × ωe − 1). The itemsets in GF1 needs another scan
on TO to compute their support counts in T = TO ∪ T1.
Then, only the itemsets in GF1, whose support counts are
no less than dn × minsupe, are reported as the frequent
itemsets.
Example 7: The frequent itemsets with minsup1 = 0.67

in T1 are shown in Figure 5. Since {4}, {7}, {9}, {4, 9} are
contained in Fqf , they can be removed. And PFIM has dis-
covered all the frequent itemsets.

FIGURE 5. The illustration of execution of step 4 in running example.

D. PRUNING OPERATION
In terms of the description in Section IV-C, PFIM can reuse
the pre-computation result of TO and reduce the execution
cost significantly. In this part, we discuss how to improve
PFIM further to speed up its execution by pruning operation.

1) PRUNING IN STEP 2
One main part of the cost in PFIM is to compute the sup-
port counts of the itemsets of STCAD in T1, i.e. step 3 in
Section IV-C.2. Therefore, if we can reduce the number of
itemsets in STCAD in step 2, the counting cost in T1 can be
decreased.

In Section IV-C.2, ∀t ∈ STCAD, it satisfies:

dn× minsupe − mas1 ≤ t.SUP < dn× minsupe

That is, we use the maximum count mas1 of the single item
in T1 to determine the support count range of the possible
frequent itemsets. Obviously, if we can narrow down the
support count range, the size of STCAD can be reduced.
As described in the process of step 2, PFIM can determine

directly whether the quasi-frequent 1-itemsets in Fqf are
frequent itemsets. Therefore, STCAD only needs to maintain
the quasi-frequent itemsets which contain at least two items.

At the end of step 2, PFIM maintains the possible frequent
itemsets in STCAD. Before entering the step 3, we wonder
whether the size of STCAD can be decreased further. But,
it should be noted that, the reason to prune the itemsets in
STCAD is that the execution cost in step 3 can be high if
STCAD contains many itemsets, the cost of pruning operation
should keep low also. Otherwise, the overall cost in step 2 and
step 3 can still be large, which can affect the high efficiency
of PFIM.

In order to prune itemsets in STCAD as many as possible
with a low cost, PFIM first chooses two items of each quasi-
frequent itemset in STCAD which have the smallest support
counts in cnt1. ∀t ∈ STCAD, we keep an item pair (it,1, it,2)
in t.IS in PIP (Pruning Item Pair), (it,1, it,2) are two items
with the smallest support counts in cnt1 among all items in
t.IS and it,1 ≺ it,2. PFIM computes the support counts of
the item pairs in PIP in the similar operation as step 3 in
Section IV-C.2. Let SUP

(
T1, {it1 , it2}

)
be the support count

of (it,1, it,2) in T1. Then the pruning rule 1 (PR1) listed below
is performed.

PR1: ∀(it,1, it,2) ∈ PIP, we can determine the quasi-
frequent itemset t.IS corresponding to (it,1, it,2)
in STCAD, (1) if SUP

(
T1, {it1 , it2}

)
+ t.SUP <

dn×minsupe, t can be removed from STCAD, (2) if
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|t.IS| == 2 and SUP
(
T1, {it1 , it2}

)
+ t.SUP >=

dn × minsupe, t can be removed from STCAD and
t.IS is reported as a frequent itemset.

Since the support count of 2-itemset is usually lower than
the support count of any item in the 2-itemset, the pruning
operation can reduce the size of STCAD further. Furthermore,
because the support counts of the quasi-frequent 2-itemsets
in STCAD have been computed, the quasi-frequent 2-itemsets
can be removed from STCAD.

FIGURE 6. The illustration of execution of PR1 in running example.

Example 8: The PIP structure in the running example is
depicted in Figure 6. There are 14 item pairs used for PR1.
After counting the occurrence number of these item pairs,
the support counts of these item pairs in T1 are obtained. Ini-
tially, STCAD keeps 36 quasi-frequent itemsets, whose support
counts in TO are 2. The support counts of all quasi-frequent
2-itemsets (14 in total) in T can be determined and they can
be removed from STCAD. For other quasi-frequent itemsets
(22 in total), their corresponding item pairs can be used to
perform PR1 pruning. By use of PR1, the number of quasi-
frequent itemsets in STCAD can be reduced from 36 to 5. Only
the quasi-frequent itemsets in Figure 6 with red color are
remained after PR1 pruning.

Three aspects, i.e. the reason why we utilize item pairs to
perform PR1 pruning, are considered below. The first aspect
is that, ∀t ∈ STCAD, |t.IS| ≥ 2, since the 1-itemsets have
been processed by use of cnt1. If we use itemsets whose
sizes are more than two to prune STCAD, then the itemsets
whose sizes are equal to two cannot be pruned. The second
aspect is that the cost to compute the information used for
pruning should be low. Thus, we only utilize the item pairs
in each quasi-frequent itemset of STCAD. The computation
of the support counts for these item pairs can be executed
relatively fast because the number of item pairs to count is
small and the item pair is short (only contain two items). The
third aspect is that, the pruning effect is supposed to be good.
We select two items in each quasi-frequent itemset of STCAD
with the smallest support counts in cnt1. Intuitively, if the
support counts for the two items are small, it is expected that
the support count of the 2-itemset containing these two items
should be smaller.

2) PRUNING IN STEP 4
Another possible main part of the cost in PFIM is the opera-
tion to generate the new frequent itemsets in T1 if required,
i.e. the step 4 in Section IV-C.2.

Although T1 is much smaller compared with TO, its abso-
lute sizemay be large also. Ifminsup1 is low, the computation
on T1 and TO can take a relatively long execution time, this
will affect the high efficiency of PFIM. Therefore, in step 4,
we also need a pruning operation to speed up its execution.
The pruning operation is performed on the generation of the
local frequent itemsets in T1 because, if the number of local
frequent itemsets is decreased, the cost in support counting
can be reduced also.

Given the support threshold minsup1, suppose that, in the
current iteration, we have retrieved transactions in BUF1

and transformed them into vertical representation. According
to the description in step 4 in Section IV-C.2, PFIM first
determines the local frequent 1-itemsets LF1,1. Given the
local frequent k-itemsets LFk,1(k ≥ 1) we have acquired,
before computing the candidates of the local frequent (k+1)-
itemsets, the pruning operation is executed. It is noted that
the itemsets in LFk,1 are sorted in the lexicographical order.
The itemsets in LFk,1 are first grouped according to the
first (k − 1) items, i.e. each group contains the itemsets
sharing the same first (k−1) items. Here, we assume that the
local frequent 1-itemsets LF1,1 belong to one group. After
the grouping operation, assume that we can obtain h groups
G1,G2, . . . ,Gh. Let lf1 and lf2 be two itemsets, lf1 ∪ lf2 be
the union operation of two itemsets, it generates a set of
items which is in lf1, in lf2 or in both. The pruning operation
in step 4 has two rules: pruning rule 2 (PR2) and pruning
rule 3 (PR3).

PR2: ∀1 ≤ b ≤ h, if Gb contains only one k-itemset,
Gb can be removed.

PR3: ∀1 ≤ b ≤ h, if the itemset
(⋃

lf ∈Gb lf
)
is contained

in Fqf , Gb can be removed.
The intuition behind PR2 is that, if Gb contains only one

k-itemset, (k + 1)-itemsets cannot be generated from Gb.
The intuition behind PR3 is that, if the itemset

(⋃
lf ∈Gb lf

)
is contained in Fqf , the possible itemset

(⋃
lf ∈Gb lf

)
has

already been considered in the previous steps, we do not need
to consider it again.
Example 9: Since the size of T1 is relatively small, we do

not illustrate the execution of PR2 and PR3 in the running
example. But, the idea of the pruning operation is intuitive.

E. UPDATE OPERATION
As the description above, the new transactions are accumu-
lated in T1. When the size of T1 reaches a certain threshold,
for example, 5% of the size of TO, the transactions in T1

and TO are merged. At this point, the quasi-frequent itemsets
in Fqf needs to be updated also. Of course, re-construction
totally is one choice, i.e. re-compute the quasi-frequent item-
sets with the support threshold ω on T = TO ∪ T1 from
scratch. But the total re-construction can be expensive. There-
fore, in this paper, we propose an incremental update strategy,
which utilizes the existing information computed already to
speed up the update operation.
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FIGURE 7. The illustration of update operation.

The goal of the update operation is to generate the quasi-
frequent itemsets on T given the support levelω. As illustrated
in Figure 7, the local quasi-frequent itemsets of TO are kept
in Fqf ,O, which is exactly the Fqf mentioned in Section IV-B.
First we need to add the occurrences of the local quasi-
frequent itemsets of Fqf ,O in T1, which is similar to the
execution in step 3 in Section IV-C.2. Then, the local quasi-
frequent itemsets in Fqf ,O, whose support counts are no less
than dω × ne (n = tno + tn1), are written into the new
fileFqf . Also, as depicted in Figure 7, the local quasi-frequent
itemsets of T1 are kept in Fqf ,1. In order to avoid dupli-
cate computation, the local quasi-frequent itemsets in Fqf ,1,
which have been contained in Fqf ,O, are removed before
the support counting. The support counts of the local quasi-
frequent itemsets in Fqf ,1 are calculated by another scan on
TO and T1. This processing is similar to that in step 4 in
Section IV-C.2. The local quasi-frequent itemsets in Fqf ,1,
whose support counts are no less than dω×ne, are written into
the new file Fqf . This moment, the update operation termi-
nates and Fqf maintains the updated quasi-frequent itemsets
of T .

According to the description above, the computation of
Fqf ,O on TO is saved. The itemsets in Fqf ,O just need to
add their support counts by the relatively small T1. The
number of the itemsets in Fqf ,1 can be reduced significantly
by the containment checking in Fqf ,O. The computation cost
of adding the support counts of itemsets in T1 and TO can
be lowered accordingly. Therefore, the incremental update
strategy can runs much faster than the total re-construction
strategy, which also is verified in the experiments.

F. DISCUSSIONS
This paper assumes that there exists a lower-bound ω for
the value of minsup in practical applications. The value of
ω is determined by the domain experts or the lowest value
of the used support levels. However, some user may submit
a frequent itemset mining with the specified minsup which
is lower than ω. Although this case should be quite unusual
(too many frequent itemsets can be generated), we still hope
that PFIM can deal with this case. Total re-computation
on T = TO ∪ T1 is one choice. But this choice should
be expensive and it neglects the pre-computation result of
the existing Fqf . A proper alternative is to reuse the pre-
computation result. Fqf maintains the quasi-frequent itemsets
whose support counts in TO are no less than dω × tnoe.
We first compute the frequent itemsets on TO with support

level minsup (here minsup < ω). This computation is similar
to candidate generation stage in Section IV-B. The difference
is that, the local frequent itemsets, which are contained inFqf ,
are removed before entering result refinement stage. This
moment, the newly generated frequent itemsets on TO and
the existing Fqf can be treated as the Fqf ,O in the incremental
update strategy. Thenwe setω to beminsup and the remaining
operations can be executed as that in Section IV-E. The
itemsets in the generated new Fqf are the required frequent
itemsets. Finally, we merge TO and T1. With the new Fqf ,
the new TO and new ω, PFIM can continue processing the
coming frequent itemset mining. Since the emphasis of this
paper is to efficiently compute frequent itemsets on massive
data, the discussion in this part will not be explored further.

V. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETTINGS
To evaluate the performance of PFIM, we implement it in
Java with jdk-8u20-windows-x64. The experiments are exe-
cuted on LENOVO ThinkCentre M8400 (Intel (R) Core(TM)
i7-3770 CPU@ 3.40GHz (8 CPUs)+ 32G memory+ 64 bit
windows 7). The used data set is stored in Seagate Expansion
STBV3000300 (3TB). In the experiments, the performance
of PFIM is evaluated against Apriori [20] and negFIN [25].
The reason to select the two algorithms for performance
evaluation is that, (1) Apriori is a classic level-wise algorithm
and thus we select it as the baseline algorithm, (2) negFIN is
the latest algorithm and it shows a performance advantage
over the other main frequent itemset mining algorithms [25].
Since the high memory consumption, we adopt a Partition
mode for negFIN, i.e. in the first stage, we use negFIN to
compute local frequent itemsets, and in the second stage,
support counts of the local frequent itemsets are computed to
determine the global frequent itemsets. It is found that, except
for the cases of very low support levels, the execution time in
the first stage usually dominates the overall execution time.

TABLE 2. Parameter settings.

In the experiments, we evaluate the performance of PFIM
in terms of several aspects: transaction number of TO (tno),
support level (minsup), the relative proportion of transaction
number tn1 of T1 over tno. The experiments are executed
on two data sets: synthetic data set and real data set. The
synthetic data set is generated by the IBMQuest Data genera-
tor,1 in which the number of items is set to 1000, the number
of maximal potential large itemsets is set to 2000, average
item number per transaction is set to 20 and the average
maximal potentially frequent itemset size is set to 6. The used
parameter settings are listed in Table 2. In the experiments,

1https://sourceforge.net/projects/ibmquestdatagen/
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the lower-bound ω for the value of minsup in practical appli-
cations is set to 0.001 in the synthetic data set. The real
data used is kosarak data set from FIMI Dataset Repository
(http://fimi.uantwerpen.be/data/).

FIGURE 8. The result of pre-computation and update.
(a) Pre-computation operation. (b) Incremental update.

B. PRE-COMPUTATION OPERATION
AND UPDATE OPERATION
In this part, we report the execution times of pre-
computation operation and the update operation. As depicted
in Figure 8(a), given that tn1/tno = 0.03, we illustrate the
pre-computation cost of PFIM with the varying values of tno.
The pre-computation time of PFIM increases quickly with the
greater value of tno. At tno = 100×106, the pre-computation
time is 322337.466s. For one hand, this indicates that frequent
itemset mining algorithms require a rather long execution
time to compute frequent itemsets if the value of minsup is
small. For the other hand, the pre-computation operation is
expensive on massive data. But it should be noted that the
pre-computation only is executed once from scratch and then
the incremental update can be performed. After the initial
pre-computation operation, PFIM can perform incremental
update to speed up the construction of the required structures.
As depicted in Figure 8(b), given tn1

tno
= 0.05 and tno ranging

from 106 to 100× 106, incremental update can run 33 times
faster than the pre-computation operation.

C. EXP 1: THE EFFECT OF TRANSACTION
NUM IN OLD TABLE
Given tn1

tno
= 0.03 and minsup = 0.01, experiment 1 evalu-

ates the performance of PFIM on varying transaction num-
bers in old table. As depicted in Figure 9(a), PFIM runs
750.7 times faster than negFIN and 5134.6 times faster
than Apriori. This shows the high efficiency for PFIM to
compute frequent itemsets on massive data. Even at tno =
100 × 106, PFIM can return frequent itemsets within 17s.
The decomposition of execution time of PFIM is illustrated
in Figure 9(b). Given the specified value 0.01 of minsup,
step 4 in PFIM, i.e. computing new frequent itemsets in T1,
is not executed. In experiment 1, the most of the execution
time of PFIM is spent on step 2 and step 3. Due to the pre-
computation results, PFIM also involves much less I/O cost
than other algorithms. As illustrated in Figure 9(c), PFIM
involves 22.8 times less I/O cost than negFIN and 68.5 times
less I/O cost than Apriori. Since the step 4 is not executed,
PR2 and PR3 are not invoked also. Only the effect of PR1 is

FIGURE 9. The effect of transaction number in old table. (a) Execution
time. (b) The time decomposition. (c) The I/O cost. (d) Pruning
ratio of PR1.

reported in experiment 1. The pruning ratio of PR1 is depicted
in Figure 9(d). Let |STCAD|before and |STCAD|after be the num-
bers of candidates in STCAD before and after the pruning with
PR1 respectively. Here, the results of solid line are computed
by |STCAD|before−|STCAD|after

|STCAD|before
, while the results of dotted line are

computed similarly, except that not considering 2-itemsets.
Figure 9(d) shows that PR1 can discardmost of the candidates
in STCAD before entering step 3.

D. EXP 2: THE EFFECT OF SUPPORT LEVEL
Given tno = 10 × 106 and tn1

tno
= 0.03, experiment 2

evaluates the performance of PFIM on varying support lev-
els. As illustrated in Figure 10(a), if the value of minsup
decreases, the execution times of the three algorithms rise
significantly. The result of Apriori at minsup = 0.001 is
not reported in Figure 10(a), since it is rather expensive for
Apriori to compute frequent itemsets at such low support
level. Averagely, PFIM runs 693.29 times faster than negFIN
and runs 5106.1 times faster than Apriori. The time decom-
position of PFIM is depicted in Figure 10(b). At minsup =
0.001, the step 4 of PFIM is executed. Obviously its execution
time dominates other steps since it involves the processing
of the old table. Figure 10(c) compares the I/O costs of
the three algorithms. The pruning ratio of PR1 is shown in
Figure 10(d). At minsup = 0.001, PR1 only can remove the
candidate 2-itemsets in STCAD. But, in other cases, PR1 can
discard most of the candidates. In experiment 2, PR2 and
PR3 are executed at minsup = 0.001. Therefore, we report
their results in Figure 10(e) and the results are displayed
according to their effect on the candidate itemsets of different
sizes. PR2 and PR3 actually first perform a grouping oper-
ation and then check candidates in each group. Obviously,
when the size of the candidate itemsets is 1 or 2, the pruning
effects of PR2 and PR3 are poor. But, as the size of the
candidates increases, PR2 and PR3 can achieve a satisfactory
overall pruning effect.
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FIGURE 10. The effect of minimum support threshold. (a) Execution time.
(b) The time decomposition. (c) The I/O cost. (d) Pruning ratio of PR1.
(e) Pruning ratios of PR2 and PR3 (minsup = 0.001).

FIGURE 11. The effect of transaction number in new table. (a) Execution
time. (b) The time decomposition. (c) The I/O cost. (d) Pruning
ratio of PR1.

E. EXP 3: THE EFFECT OF TRANSACTION
NUM IN NEW TABLE
Given tno = 10 × 106 and minsup = 0.01, experiment 3
evaluates the performance of PFIM on varying transaction
numbers in new table. As depicted in Figure 11(a), the exe-
cution time of PFIM increases gradually as more transac-
tions in new table are involved, while the execution times
of other two algorithms basically remain unchanged. This
reason is that, a larger value of tn1 will increase the exe-
cution times in step 1, 2 and 3, but it does not affect the

total transaction number significantly. PFIM runs 820.4 times
faster than negFIN and 6476.8 times faster than Apriori. The
time decomposition of PFIM is illustrated in Figure 11(b),
the step 4 of PFIM is still not executed in experiment 3.
As shown in Figure 11(c), the I/O costs of the three algorithms
are similar to those in Figure 11(a) and can be explained in
the same way. PFIM involves 31.1 times less I/O cost than
negFIN and 77.6 times less I/O cost than Apriori. The pruning
ratio of PR1 is depicted in Figure 11(d), and most of the
candidate itemsets in STCAD can be removed by PR1.

FIGURE 12. The effect of real data set. (a) Execution time. (b) The time
decomposition. (c) The I/O cost. (d) Pruning ratio of PR1. (e) Pruning
ratios of PR2 and PR3 (minsup = 0.01).

F. EXP 4: THE REAL DATA SET
The real data, kosarak data set, is obtained from FIMI Dataset
Repository. It contains 990002 transactions, in which the
maximum length of the transactions is 2498 and the average
length of the transaction is 8.1. In experiment 4, we split the
kosarak data set into two partitions by randomly selecting
the specified number of transactions. The partition 1 is used
as the old table while the partition 2 acts as the new table,
tn1

tno
is set to be 0.03 in experiment 4. The value of ω is set

to 0.01. The experiment 4 evaluates the performance of PFIM
on real data set with varying support levels. As illustrated
in Figure 12(a), PFIM runs 13.1 times faster than negFIN
and 19.8 times faster than Apriori. The variation trends of
the algorithms are similar with those in experiment 2 and can
be explained similarly. The time decomposition of PFIM is
depicted in Figure 12(b). PFIM involves an order of magni-
tude less I/O cost than other algorithms, 18.1 times less I/O
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cost than negFIN and 38.4 times less I/O cost than Apriori.
The pruning effects of PR1, PR2 and PR3 and illustrated
in Figure 12(d) and Figure 12(e) respectively.

FIGURE 13. The effect of PR1 pruning. (a) Execution time. (b) The I/O
cost. (c) The time component (PR1). (d) The time component (no PR1).

G. EXP 5: THE PRUNING EFFECT
Given tn1

tno
= 0.03 and minsup = 0.01, the experiment

5 evaluates the performance of PR1 in PFIM with varying
transaction number in old table. For PR1, it utilizes an extra
I/O operation on T1 to reduce the number of candidates in
step 2, and therefore, the computation cost in step 3 can
be saved significantly. It is described in Section IV-D.1 that
PR1 can speed up the execution of PFIM. This is verified
in experiment 5. As depicted in Figure 13(a), PFIM with
PR1 runs 2 times faster than PFIM without PR1. As shown
in Figure 13(b), due to the extra I/O operation, the involved
I/O cost in PFIM with PR1 is a little greater than that in
PFIMwithout PR1. PFIMwithout PR1 runs faster than PFIM
with PR1 in the execution of step 2, which is illustrated
in Figure 13(c) and Figure 13(d). However, with the help
of PR1, the execution time in step 3 for PFIMwith PR1 is sig-
nificantly saved. Comparatively, this time decrease in step 3
is much greater than the time increase in step 2. This verifies
that PR1 improves the overall performance of PFIM.

Since PR2 and PR3 do not involve extra I/O operation
and the computation is not expensive, they can improve
the overall performance of PFIM naturally. Given tno =
10 × 106, tn1

tno
= 0.03, minsup = 0.001, we evaluate the

effects of PR2 and PR3. Since the other operations are the
same, we only report the execution time to compute local
frequent itemsets in step 4.Without PR2 and PR3, PFIM takes
299.987 seconds to compute the local frequent itemsets in T1.
With PR2 and PR3, PFIM only takes 84.712 seconds to do
the same operation, since the fewer candidates are generated.
This verifies the effects of PR2 and PR3.

VI. CONCLUSION
This paper considers the problem of computing frequent
itemsets on massive data. It is found that the existing

algorithms cannot perform frequent itemset mining on mas-
sive data efficiently. This paper utilizes the idea of reusing
the work done previously and devises a precomputation-
based PFIM algorithm to quickly acquire the frequent item-
sets on massive data. The transaction table consists of two
part: the large old table and the relatively small new table.
By the quasi-frequent itemsets pre-computed on the old table,
PFIM can report the frequent itemsets on massive data effi-
ciently. Three pruning rules are proposed in this paper to
speed up the execution of PFIM. The incremental update
strategy is presented to re-construct the quasi-frequent item-
sets quickly when merging the old table and the new table.
The extensive experimental results show that PFIM has a sig-
nificant performance advantage over the existing algorithms.
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