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ABSTRACT State equations are usually used for structural or qualitative analysis, such as deadlock
checking, in P/T systems. In this paper, we instead consider timed state equations in stochastic process
algebra models, to derive quantified dynamic information on the system modeled in the face of the state
space explosion problem. The average of these state equations is demonstrated as the linear combination of
the system transitions, with the combination coefficients specified by the bias term of the empirical transition
rates to their steady state. The approaches of stochastic simulation and fluid approximation, straightforwardly
generated from the quantified state equations, are studied, with the consistency being investigated both
theoretically and experimentally.

INDEX TERMS State equation, stochastic process algebra, fluid approximation, stochastic simulation.

I. INTRODUCTION
Stochastic process algebras, such as PEPA [1], EMPA [2]
and TIPP [3], are formal performance modelling languages,
which compositionally describes a concurrent system as a
number of interacting components which undertake actions.
The quantified durations associated with activities, usu-
ally satisfy exponentially distributions. Therefore, underlying
stochastic process algebra models there are usually contin-
uous time Markov chains (CTMCs) upon which quantita-
tive evaluation has relied. The state space of the CTMCs
can be generated through the algebraic state equations
of the models [4]. The state equations are often used as
a basis for qualitatively analyzing the systems, such as
checking deadlocks [5]. In Place/Transition (P/T) net (or
Petri net) modelling there are well-established techniques
of qualitative analysis [6]–[9], which can help to provide
valuable insight into the behavior of a system. However,
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the quantitative dynamic information of the system should be
incorporated.

In this paper, we will demonstrate how the numerical
representation schema of stochastic process algebra mod-
els leads to quantified state equations, and further express
them by Poisson processes, according to Kurtz’s method of
Poisson representation of CTMCs. It is easy to be obtained,
but never been established before, that the expectation of
these state equations are the linear combination of the system
transitions, with the combination coefficients specified by the
biased term of the empirical transition rates to their steady
state. The coefficients can thus be interpreted as the average
numbers of all transitions in some sense. Moreover, we also
introduce how the state equations straightforwardly leads to
several stochastic simulations methods and a fluid approxi-
mation approach, to derive the quantified information from
the system. In particular, fluid approximation can achieve
an acceptable accuracy at a low computational cost, so it is
considered as a novel approach to deal with the state space
explosion problem encountered in performance derivation of
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large scale systems. This paper justifies, both theoretically
and experimentally, that this approach can work very well
even for a small scale model with four states.

The remainder of this paper is formed as follows. Section 2
introduces the PEPA language and its numerical representa-
tion schema. Section 3 shows how this representation leads
to the quantified state equation of every PEPA model, which
is represented using Poisson processes by Kurtz’s theo-
rem. Stochastic simulation and fluid approximation meth-
ods base on the state equations have been discussed in
Section 4 and 5 respectively. After presenting some related
work in Section 6, we conclude this paper in Section 7.

II. THE PEPA MODELLING FORMALISM
This section will briefly introduce the PEPA language and
its numerical representation schema. The numerical repre-
sentation schema for PEPA, developed by Ding [4], [10],
represents a model numerically rather than syntactically sup-
porting the use of mathematical tools and methods to analyze
the model.

A. SYNTAX
Prefix: (α, r).P: Prefix is the basic mechanism which
describes the behavior of the system. Such a component will
subsequently behave asP after it carries out the activity (α, r),
which has action type α and a duration which satisfies the
exponential distribution with parameter r .
Choice: P + Q: The component P + Q represents a com-

petition between two components. The system may behave
either as P or asQ. The activities of both P andQ are enabled.
The choice is resolved by a race policy; the component whose
activity is completed first proceeds, the other is discarded.

Cooperation: PBC
L
Q: The cooperation combinator

describes the synchronization of P and Q over the activities
in the cooperation set L. In fact, for any activity whose action
type is contained in L, P and Q must cooperate to achieve
the activity. However, they will proceed independently and
concurrently with any activity whose action type is not
included in L.

Parallel: P||Q: The component P||Q represents two con-
current but completely independent components, meaning the
cooperation set is empty. This is simply a shorthand notation
for PBC

∅
Q.

Hiding: P/L: Hiding makes the activities whose action
types are in L invisible for an external observer. The com-
ponent P/L behaves as P except that any activities of types
within the set L are hidden.

Constant: A def
= P: Constants are components whose mean-

ing is given by a defining equation such as A def
= P, which

gives the constant A a behavior similar to the behavior of
component P.
On the basis of the operational semantic rules (please

refer to [1] for details), a PEPA model may be regarded as

a labelled multi-transition system(
C,Act,

{
(α,r)
−→|(α, r) ∈ Act

})
where C is the set of components, Act is the set of

activities and the multi-relation
(α,r)
−→ is given by the

rules.
The durations of all activities satisfy the exponential distri-

butions, which means that the stochastic process underlying
the labelled transition system is a CTMC. The steady state
distribution can be obtained by solving the global balance
equation associate the CTMC using linear algebra, from
which quantitative performance measures such as throughput
and utilization can be derived. However, for large scale sys-
tems it is difficult to calculating the steady state distribution
due to the state space explosion problem. Other two compu-
tational approaches have therefore been proposed, which will
be discussed later.

B. NUMERICAL REPRESENTATION SCHEMA OF PEPA
The above original definition of PEPA is syntactic, making
models to be easily understood but not be convenient to
employ mathematical tools to analysis models. This subsec-
tion presents the numerical representation of PEPA models,
which were defined in [4]. For convenience, throughout this

paper any such transition U
(l,r)
−→ V defined in PEPA models

may be rewritten as U
(l,rU→V

l )
−→ V , or just U

l
−→ V if the

rate is not being considered, where U and V are two local
derivatives. Following [11], hereafter the term local deriva-
tive refers to the local state of a single sequential component.
In the numerical representation schema, the system state is
represented by a numerical vector form which is defined
below:
Definition 1 (Numerical Vector Form [11]): For an arbi-

trary PEPA model M with n component types Ci, i =
1, 2, · · · , n, each with di distinct local derivatives, the numer-
ical vector form ofM, m(M), is a vector with d =

∑n
i=1 di

entries. The entry m[Cij ] records how many instances of the
jth local derivative of component type Ci are exhibited in the
current state.

In the numerical representation schema, the transitions
between states of a model are represented by a numerical
matrix, called activity matrix. In order to introduce activity
matrix, we need first give the definitions:
Definition 2 (Pre and Post Local Derivative):

1) If a local derivative U can enable an activity l, that is
U

l
−→·, then U is called a pre local derivative of l. The

set of all pre local derivatives of l is denoted by pre(l),
called the preset of l.

2) If V is a local derivative obtained by firing an activity
l, i.e. ·

l
−→V , then V is called a post local derivative

of l. The set of all post local derivatives is denoted by
post(l), called the post set of l.
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3) The set of all the local derivatives derived from U by
firing l, i.e.

post(U , l) = {V | U
l
−→ V },

is called the post set of l from U.
Definition 3 (Labelled Activity):

1) For any individual activity l, for each U ∈ pre(l),V ∈
post(U , l), label l as lU→V .

2) For a shared activity l, for each

(V1,V2, · · · ,Vk ) ∈ post(pre(l)[1], l)× post(pre(l)[2], l)

× · · · × post(pre(l)[k], l),

label l as lw, where

w = (pre(l)[1]→ V1, pre(l)[2]→ V2, · · · ,

pre(l)[k]→ Vk ).

Each lU→V or lw is called a labelled activity. The set of all
labelled activities is denoted byAlabel. For the above labelled
activities lU→V and lw, their respective pre and post sets are
defined as

pre(lU→V ) = {U}, post(lU→V ) = {V },

pre(lw) = pre(l), post(lw) = {V1,V2, · · · ,Vk}.
The impact of labelled activities on local derivatives can be

recorded in a matrix form, as defined below.
Definition 4 (Activity Matrix, Pre Activity Matrix, Post

Activity Matrix): For a model with NAlabel labelled activities
and ND distinct local derivatives, the activity matrix C is an
ND × NAlabel matrix, and the entries are defined as follows

C(Ui, lj) =


+1 if Ui ∈ post(lj)
−1 if Ui ∈ pre(lj)
0 otherwise

where lj is a labelled activity. The pre activity matrixCpre and
post activity matrix Cpost are defined as

CPre(Ui, lj) =

{
+1 C(Ui, lj) = −1
0 otherwise.

,

CPost(Ui, lj) =

{
+1 C(Ui, lj) = +1
0 otherwise.

From Definition 3 and Definition 4, each column of the
activity matrix corresponds to a system transition and each
transition can be represented by a column of the activity
matrix. The activity matrix equals the difference between the
pre and post activitymatrices, i.e.C = CPost

− CPre. The rate
of the transition between states is specified by a transition
rate function. We first give the definition of the apparent rate
of an activity in a local derivative.
Definition 5 (Apparent Rate of l in U): Suppose l is an

activity of a PEPA model and U is a local derivative enabling
l (i.e. U ∈ pre(l)). Let post(U , l) be the set of all the local

derivatives derived from U by firing l, i.e. post(U , l) = {V |

U
(l,rU→V

l )
−→ V }. Let

rl(U ) =
∑

V∈post(U ,l)

rU→V
l . (1)

The apparent rate of l in U in state m, denoted by rl(m,U ),
is defined as

rl(m,U ) = m[U ]rl(U ). (2)
The above definition is used to define the following transi-

tion rate function.
Definition 6 (Transition Rate Function): Suppose l is an

activity of a PEPA model and m denotes a state vector.

1) If l is individual, then for each U
(l,rU→V )
−→ V , the

transition rate function of labelled activity lU→V in
state m is defined as

f (m, lU→V ) = m[U ]rU→V
l . (3)

2) If l is synchronized, with pre(l) = {U1,U2, · · · ,Uk},
then for each

(V1,V2, · · · ,Vk ) ∈ post(U1, l)× post(U2, l)

× · · · × post(Uk , l),

let w = (U1 → V1,U2 → V2, · · · ,Uk → Vk ). Then
the transition rate function of labelled activity lw in
state m is defined as

f (m, lw) =

(
k∏
i=1

rUi→Vi
l

rl(Ui)

)
min

i∈{1,··· ,k}
{rl(m,Ui)},

where rl(m,Ui) = x[Ui]rl(Ui) is the apparent rate of l
in Ui in state m. So

f (m, lw) =

(
k∏
i=1

rUi→Vi
l

rl(Ui)

)
min

i∈{1,··· ,k}
{m[Ui]rl(Ui)}.

(4)
It has been pointed out in [4] that Definition 6 accommo-

dates the passive or unspecified rate>. An algorithm for auto-
matically deriving the numerical representation schema of a
PEPA model has been given in [4]. We assume throughout
this paper the considered PEPA models satisfy two assump-
tions. Firstly, there is no cooperation within groups of compo-
nents of the same type. Secondly, each column of the activity
matrix of a model is distinct, i.e. each labelled activity is
distinct in terms of pre and post local derivatives.

III. STOCHASTIC STATE EQUATIONS IN PEPA MODELS
This section shows how the numerical representation schema
helps to manifest the P/T structure underlying PEPA models.
First, the relevant definitions are given below.
Definition 7 (P/T Net, Marking, P/T System, [9]):
1) A Place/Transition net (P/T net) is a structure N =

(P,T ,Pre,Post) where: P and T are the sets of places
and transitions respectively; Pre and Post are the |P|×
|T | sized, natural valued, incidence matrices.
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2) A marking is a vector m : P→ N that assigns to each
place of a P/T net a nonnegative integer (number of
tokens).

3) A P/T system is a pair S = 〈N ,m0〉: a net N with an
initial marking m0.

From Definition 7, it is easy to see that the structure N =(
D,Alabel,CPre,CPost) derived from a PEPA model is a P/T
net [4], where D,Alabel are the sets of all local derivatives
and all labelled activities of the PEPAmodel respectively, and
CPre,CPost are the pre and post activity matrices respectively.
Given a starting state m0, S = 〈N ,m0〉 is a P/T system.
Clearly, each reachable marking m from m0 is a state of the
aggregated CTMC underlying the given PEPA model.

A transition l (i.e. a column of the activity matrix C) is
enabled in a state m if and only if m ≥ CPre[·, l]; its
firing yields a new state m′ = m+ C[·, l]. This is denoted

by m
l
→m′. In a P/T system an occurrence sequence from

m is a sequence of transitions σ = l1 · · · lk · · · such that

m
l1
→m1 · · ·

lk
→mk · · · . A statem is said to be reachable from

m0 if there exists a occurrence sequence σ such thatm0
σ
→m,

that is

m = m0 + C · σ . (5)

where σ is the firing count vector corresponding to σ . The
formula (5), called the state equation ( [9]), reflecting that
each state in the state space is related to the starting state
through an algebraic equation, can also be written as

m = m0 +
∑
l∈T

lσl, (6)

where C · σ =
∑

l∈T lσl , in which l, each column of C, is a
transition vector, σl is its occurrence number, and T is the set
of transition vectors. Now we consider a timed state equation
or stochastic state equation. Letm(t) denote the system state
at time t , so m(0) = m0. Define

σl(t) = #{s ≤ t : m(s)−m(s−) = l}, (7)

where #{·} denotes the number of elements in a set, then

m(t) = m(0)+
∑
l∈T

lσl(t). (8)

Notice that σl(t) is the occurrence number of transition l in
[0, t]. The firing count vector σ (t) records σl(t) for all l ∈ T .
The equation (8) can be written as

m(t) = m(0)+ C · σ (t). (9)

Because the stochastic process underlying a PEPA model
is a CTMC, that is, the state function m(t) of the system is a
CTMC. So, for any transition vector l ∈ T ,

Pr (σl(t + h)− σl(t) = 1 | m(t))

= Pr (m(t + h)−m(t) = l | m(t))

= f (m(t), l)h+ o(h), (10)

Pr (σl(t + h)− σl(t) = 0 | m(t))

= 1− f (m(t), l)h+ o(h), (11)

and

Pr (σl(t + h)− σl(t) = 0,∀l ∈ T | m(t))

= Pr (m(t + h)−m(t) = 0 | m(t))

= 1−
∑
l∈T

f (m(t), l)h+ o(h). (12)

The following two theorems will demonstrate some prop-
erties of the expectation of the system state.
Theorem 1: Let m(t) be the state of a PEPA model at

time t, then

dEm(t)
dt

=

∑
l∈T

lE [f (m(t), l)]. (13)

Proof: By equations (10) and (11),

E [m(t + h) | m(t)] = m(t)+
∑
l∈T

lf (m(t), l)h+ o(h).

Taking expectations on the both sides leads to

E [m(t + h)] = E [m(t)]+
∑
l∈T

lE [f (m(t), l)] h+ o(h),

or

E [m(t + h)]− E [m(t)]
h

=

∑
l∈T

lE [f (m(t), l)]+
o(h)
h
.

Let h tend to zero, then the conclusion is obtained. �
The solution Em(t) of the differential equation (13) is

specified in the following theorem.
Theorem 2: Let m(t) be the state of a PEPA model at

time t, then

Em(t) = Em(0)+
∑
l∈T

αl l +
∑
l∈T

o(exp(−βl t)t)l, (14)

where αl and βl are some constants.
Proof: Because m(t) is the positive recurrent CTMC

underline a PEPA model, and f (·, l) is a bounded function
defined on the state space S ofm(t), then there exist constants
al and βl (where βl > 0), satisfying ( [12])

E
(
1
t

∫ t

0
f (m(s), l)ds

)
= Rl +

al
t
+ o(exp(−βl t)) (15)

as t → ∞, where Rl is the expectation of f (m, l) with
the respect to the steady state probability distribution π∞,
i.e. Rl = E∞f (m, l) =

∑
s∈S f (s, l)π∞(s). Then by Equa-

tion (13), we have that

Em(t) = Em(0)+
∑
l

lE
[∫ t

0
f (m(t), l)ds

]

= Em(0)+

(∑
l

l
[
Rl t + αl + o(exp(−βl t)t)

])

= Em(0)+

(∑
l

lRl

)
t +

∑
l

lαl

+

∑
l

l(o(exp(−βl t)t)).
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The state space of the CTMC underlying a PEPA model
is finite, so Em(t) is bounded for any time t , and thus∑

l lRl = 0. This observation leads to

Em(t) = Em(0)+
∑
l

lαl +
∑
l

l(o(exp(−βl t)t)),

which completes the proof. �
In the proof, equation (15) demonstrates that as an esti-

mator of the expectation of f (m, l), the time average of
f (m(t), l), i.e. 1

t

∫ t
0 f (m(s), l)ds, is biased. However, the con-

stants αl and βl in the biased term in (15) relate to the
expectation E∞m, which will be illustrated later.

Contrast to the well-known representation method, i.e.
Em(t) =

∑
s∈S sπt (s), this new formulae (14) is only

expressed by the transition vectors and their linear combi-
nation coefficients αl and βl , successfully avoiding directly
using the state space S, and thus avoiding the state space
explosion in some sense (αl and βl still relate to the state
space S through equation (15)).
As time t tends to infinity, the transient probability dis-

tribution πt of the CTMC will converge to the steady state
distribution π∞, leading to

Em(t) −→ E∞m = Em(0)+
∑
l

lαl,

where E∞m =
∑

s∈S sπ∞(s), is the expectation of the CTMC
with respect to π∞, and Em(0) =

∑
s∈S sπ0(s) where π0 is

the initial probability distribution. So we have that
Corollary 1: Denote F(m) =

∑
l∈T lf (m, l), then

E∞m = Em(0)+
∑
l∈T

lαl, (16)

and

CE∞F(m) =
∑
l∈T

lE∞f (m, l) = 0, (17)

These results reveal the relationship among the transition
vectors, the transition rate functions, and the expectation of
the underlying CTMC. The rate of the CTMC convergence
to its expectation is also being specified. By equation (16), αl
can be interpreted as the ‘‘average’’ number of the occurrence
of l in some sense, which also explains its meaning in (15).
To the best of our knowledge, it is the first time to obtain these
conclusions such as equation (14) and (16) for finite CTMCs.

IV. STOCHASTIC SIMULATION OF THE STATE EQUATION
The stochastic process underlying a PEPAmodel is a CTMC,
so the number of transition l of this CTMC in [0, t], i.e.
σl(t), is a counting process with random intensity function
f (m(t), l), shown in Equation (10) and (11). That is,

Pr (σl(t + h)− σl(t) = 1 | m(t)) = f (m(t), l)h+ o(h),

Pr (σl(t + h)− σl(t) = 0 | m(t)) = 1− f (m(t), l)h+ o(h).

In the following, we will show that σl(t) can be represented
using a Poisson process.

Let Ft be the filtration generated by m(t), so σl and
f (m(t), l) are adapted to Ft . In addition, if we denote ξk

by the k-th jump time of σl(t), then for each l and k ,
σl(t ∧ ξk )−

∫ t∧ξk
0 f (m(t), l) is a martingale, by noticing that

E
[
σl(t ∧ ξk )−

∫ t∧ξk
0 f (m(t), l) | Ft

]
= 0. According to the

Meyer’s result [13], σl(t) can be written as

σl(t) = Yl

(∫ t

0
f (m(s), l)ds

)
, (18)

where Yl(t) are independent Poisson processes with inten-
sity 1, corresponding to transition l ∈ T . Therefore,

m(t) = m(0)+
∑
l

lσl(t) (19)

= m(0)+
∑
l

lYl

(∫ t

0
f (m(s), l)ds

)
. (20)

That is to say, the CTMCm(t) underlying a PEPA model (or
the marking of a stochastic P/T system), can be represented
using Poisson processes.
Theorem 3: Letm(t) be the state of a PEPA model at time

t, f (·, l)(l ∈ T ) be the transition rate functions, where T is
the transition set. Then the state equation can be represented
by

m(t) = m(0)+
∑
l∈T

lYl

(∫ t

0
f (m(s), l)ds

)
. (21)

This kind of representation method has also been given
by Kurtz in [14]. As pointed out in his another paper [15],
the stochastic state equation (21) can straightforwardly
lead to several simulation methods of CTMCs, such as
next reaction (next jump) method given by Gibson and
Bruck [16], Gillespie’s direct method or the stochastic sim-
ulation algorithm [17], as well as the following Gillespie’s
τ -leap method [18],

m̂(τn) = m(0)+
∑
l∈T

lYl

(
n−1∑
k=0

f (m̂(τk ), l) (τk+1 − τk )

)
,

(22)

where 0 = τ0 < τ1 < · · · , which is the Euler-type
approximation for (21).

However, it is easy to directly simulate the state equa-
tion m(t). As mentioned before, a transition between states,
namely from m to m + l, is represented by a transition

vector l, with the rate f (m, l). That is,m
(l,f (m,l))
−→ m+ l. Given

a starting state m0, the transition chain corresponding to a
firing sequence l0, l1, . . . , l, . . . is

m0
(l0,f (m0,l0))
−→ m0 + l0

(l1,f (m0+l0,l1))
−→ (m0 + l0)+ l1

···
−→· · ·

···
−→m

(l,f (m,l))
−→ m+ l

···
−→· · · .

The above sequence can be considered to be one path or
realization of the CTMC, if the enabled activity at each state
is chosen stochastically, i.e. is chosen through sampling. That
is, if the current state is m, then the next state is chosen
as m + lu where lu is the transition vector to make that
tu = minl∈T {tl}, where tl are the numbers sampled from the
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exponential distributions with the rates f (m, l), l ∈ T . The
time duration of the chain stayed in m is tu.
After a long time, the steady-state of the system is

assumed to be achieved. Hence the average performance
R =

∑
s∈S ρ(s)π∞(s) can be calculated, where ρ is a

reward function defined on the state space. Performance
metrics, such as throughput of an activity and capacity uti-
lization of a local derivative, which are discussed in [19],
can be derived through this algorithm by choosing appro-
priate reward functions. For details, please refer to [4]. The
empirical performance 1

t

∫ t
0 ρ(m(s))ds will converge to its

expectation E[ρ(m)] =
∑

s∈S ρ(s)π∞(s), as the following
ergodic theorem shows.
Theorem 4: The time average of the state reward in a

PEPAmodel converges to its statistical average, as time tends
to infinite. That is,

Pr
(
1
t

∫ t

0
ρ(m(s))ds→ E[ρ(m)] as t →∞

)
= 1.

where E[ρ(m)] =
∑

s∈S ρ(s)π∞(s). Here ρ : S → R is
any bounded reward function, and S is the state space of the
underlying irreducible and positive recurrent CTMC with the
unique steady state distribution π∞.

Proof: The result is a consequence of Theo-
rem 3.8.1 in [20]. �
This ergodic theorem states the convergence of the time
average or empirical performance to its expectation, but in
a biased manner as shown in Equation (15).

V. APPROXIMATION OF THE STATE EQUATION
Stochastic simulations have to rely on more computational
costs, particularly longer running time, to derive more accu-
rate performancemeasures from PEPAmodels. This becomes
unacceptable for realtime requirement, particularly in the
case of large scale models. However, fluid approximation,
as a novel approach to obtain an acceptable accuracy at a low
cost, has attracted lots of interests [4], [11], [19], [21], [22].
This section will illustrate the important role of the state
equation in investigating fluid approximation methods.

A. APPROXIMATING THE STATE EQUATION
Let m(t) be the CTMC underlying a PEPA model, then by
equation (13),

Em(t +1t)− Em(t) =
∑
l

l
∫ t+1t

t
Ef (m(s), l)ds. (23)

Approximating E [f (m(s), l)] by f (Em(s), l), as discussed by
Hayden [21], we have that

Em(t +1t)− Em(t) ≈
∑
l

l
∫ t+1t

t
f (Em(s), l)ds. (24)

This leads to the following ODEs, by considering Em(t) as
x(t) in (24),

dx
dt
= F(x), (25)

where

F(x) =
∑
l∈T

lf (x, l). (26)

The solution x(t) of the ODEs (25) can be considered as an
approximation of Em(t), in contrast to the following direct
differentiation of equation (9):

ṁ(t) = C · σ̇ (t),

which is considered in [23].
LetU be a local derivative. For any transition vector l, l[U ]

is either±1 or 0. If l[U ] = −1 thenU is in the pre set of l, i.e.
U ∈ pre(l), while l[U ] = 1 implies U ∈ post(l). According
to (25) and (26),

dx(U , t)
dt

=

∑
l

l[U ]f (x, l)

= −

∑
l:l[U ]=−1

f (x, l)+
∑

l:l[U ]=1

f (x, l)

= −

∑
{l|U∈pre(l)}

f (x, l)+
∑

{l|U∈post(l)}

f (x, l). (27)

The term
∑
{l|U∈pre(l)} f (x, l) represents the ‘‘exit rates’’

in local derivative U , while the term
∑
{l|U∈post(l)} f (x, l)

reflects the ‘‘entry rates’’ in U . The formulae (25) and (26)
are activity centric while (27) is local derivative centric. It has
been proved that
Theorem 5 [4]: If f (x, l) is Lipschtz, then the approxi-

mated ODEs of this model have a unique solution in time
interval [0,∞). Moreover, the solution is bounded and non-
negative, given the initial condition is nonnegative.

For an arbitrary CTMC, the evolution of probabilities dis-
tributed on each state can be described by a set of linear
ODEs ( [24], page 52). For example, for the CTMC underly-
ing a PEPA model, the corresponding differential equations
describing the evolution of the probability distributions are

dπt
dt
= QTπt , (28)

where each entry of πt represents the probability of the
system being in each state at time t , and Q is an infinitesimal
generator matrix corresponding to the CTMCwith the entries
Qs,s+l = f (s, l). Clearly, the dimension of the coefficient
matrix Q is the square of the size of the state space, which
increases with the number of components.

The derived ODEs (25) describe the evolution of the popu-
lation of the components in each local derivative, while (28)
reflects the the probability evolution at each state. Since the
scale of (25), i.e. the number of the ODEs, is only determined
by the number of local derivatives and is unaffected by the
size of the state space, so it avoids the state space explosion
problem. In contrast, the scale of (28) depends on the size of
the state space, so it suffers from the explosion problem. The
price paid is that the ODEs (25) are generally nonlinear due
to synchronizations, while (28) is linear.

However, if there is no synchronization then the ODEs (25)
become linear and E [f (m(s), l)] = f (Em(s), l), resulting
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in that x(t) = Em(t) and consequently, limt→∞ x(t) =
limt→∞ Em(t) = E∞m. This justifies the consistence of the
fluid approximation. In a general case with synchronization,
since the formulae (24) is an approximation, so x(t) 6= Em(t)
in general. But x(t) is very close to Em(t), which will be
illustrated later by an example.

B. STEADY STATE EQUATIONS
If the solution x(t) of the ODEs (25) converges to a limit
x(∞), as time tends to infinity, then∑

l∈T
lf (x(∞), l) = lim

t→∞
ẋ(t) = 0.

Notice that
∑

l∈T lE∞f (m, l) = 0, shown in Corollary 1.
So, both f (x(∞), l) and E∞f (m, l) are the solutions of the
following algebra equation∑

l∈T
lzl = 0, (29)

with the conservation condition∑
l∈T

zl = constant, (30)

which origins from the conservation law satisfied by PEPA
models, and the ‘‘constant’’ equals the number of processes
in a PEPA model. See [4] for details. Equation (29) with (30)
is in fact a steady state equation, compared with the global
balance equation of (28), i.e. QTπ∞ = 0, with the ‘‘conser-
vation’’ condition 1Tπ∞ = 1.
According to the theory of linear algebra, if the rank of

the activity matrix C (consists of all transition vectors l) of
a given PEPA model is #T − 1, where #T is the number of
the elements in set T , i.e. the number of transition vectors,
then E∞f (m, l) is proportional to f (x(∞), l), for all l. This
relationship is revealed in the following theorem.
Theorem 6: If rank C = #T − 1, then there exists a

constant k such that for any l ∈ T ,

E∞f (m, l) = kf (x(∞), l). (31)
In realistic scenarios, the proportion factor k is very closed

to one, even for some small scale models. We use the follow-
ing PEPA model to illustrate this conclusion:

User1
def
= (task1, a).User2

User2
def
= (task2, b).User1

Provider1
def
= (task1, a).Provider2

Provider2
def
= (reset, d).Provider1

(User1[1]) BC
{task1}

(Provider1[1]).

The activity matrix and transition rate functions have
been specified in Table 1. In this table, Ui,Pi (i = 1, 2)
are the local derivatives representing Useri and Provideri
respectively. For convenience, the labelled activities or transi-
tion vectors task1(U1→U2,P1→P2), taskU2→U1

2 , resetP2→P1 will
subsequently be denoted by l1, l2, l3 respectively.

TABLE 1. Activity matrix and transition rate function.

Let m(t) be the CTMC underlying the model with initial
state s1 = (1, 0, 1, 0)T . Then the state space of S is composed
of

s1 = (1, 0, 1, 0)T , s2 = (0, 1, 0, 1)T ,

s3 = (1, 0, 0, 1)T , s4 = (0, 1, 1, 0)T . (32)

The generator matrixQ of the CTMC has the following form:

Q =


−a a 0 0
0 −(b+ d) b d
d 0 −d 0
b 0 0 −b

.
Suppose a = 2, b = 2, d = 8, then the steady state
probability distribution π∞ can be calculated:

π∞(s1) =
20
41
, π∞(s2) =

4
41
,

π∞(s3) =
1
41
, π∞(s4) =

16
41
.

It is easy to obtain that E∞m =
(
21
41 ,

20
41 ,

36
41 ,

5
41

)T
, and

E∞fl1 (m) =
40
41
, E∞fl2 (m, l2) =

40
41
, E∞fl3 (m) =

40
41
.

The ODEs derived from the model through fluid approxima-
tion are 

dx1
dt
= −amin{x1, x3} + bx2,

dx2
dt
= amin{x1, x3} − bx2,

dx3
dt
= −amin{x1, x3} + dx4,

dx4
dt
= amin{x1, x3} − dx4,

(33)

with the initial condition x(0)= (x1(0), x2(0), x3(0), x4(0))T =
(1, 0, 1, 0)T . Let a = 2, b = 2, d = 8. The solution of (33),
x(t) = (x1(t), x2(t), x3(t), x4(t))T , will converge to the limit
(see [4, Sec. 6.4])

x(∞) = (x1(∞), x2(∞), x3(∞), x4(∞))T

=

(
1
2
,
1
2
,
7
8
,
1
8

)T
=

(
20
40
,
20
40
,
35
40
,
5
40

)T
.

So we have

fl1 (x(∞)) =
40
40
, fl2 (x(∞)) =

40
40
, fl3 (x(∞)) =

40
40
.
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It is clearly to see that x(∞) tightly approximates E∞m, and
for any l ∈ T ,

E∞fl(m) =
21
20
fl(x(∞)).

This example illustrates that the approximation works very
well even for a small scale PEPA model. For the discussions
in large scale cases, particularly on the topic of consistence
of this approach, please see [4], [21], [22], and [25].

VI. RELATED WORK
The numerical representation schema of stochastic process
algebra models, which leads to discover the underlying P/T
structure, is established in [4] and [10]. Algorithms to auto-
matically generated a PEPA model from an activity matrix
is presented in [26]. Qualitative analysis of PEPA mod-
els based on this structure is presented in [5]. In the cir-
cumstance of Petri net or P/T system, state equations and
timed state equations are common topics, see [6]–[9],
[23], [27], [28]. However, we have not seen the quanti-
fied state equations are expressed using Poisson processes,
although Kurtz’s related theory has established in the early
of 1980s [14]. The advantages of this kind of Poisson rep-
resentation for CTMCs, such as straightforwardly leading to
several simulation methods, have also been presented in [15].
The fluid approximation of PEPA models have been inten-
sively discussed in [4], [11], [19], [21], and [22], employed
a moment approximation method, similarly to our discussion
of equation (13) that originated from timed state equations.
In [4] and [22], the derivedODEs are the same to the ones here
and in [21], which are considered as the approximation of a
family of density dependent CTMCs underlying the model.
As mentioned before, Silva et al. [23] instead directly differ-
entiate the state equation to derive a set of different ODEs.
A recent detailed comparison of the fluid approximation and
stochastic simulation approaches, in terms of both accuracy
and computational costs, have been presented and discussed
in [25].

VII. CONCLUSIONS
In this paper, we have demonstrated how the numerical
representation schema of stochastic process algebra models
leads to quantified state equations, which can be expressed
by Poisson processes according to Kurtz’s theorem. The
expectation of these state equations have been presented as
the linear combination of the system transitions, with the
combination coefficients specified by the deviated term of the
empirical transition rates to their steady state. This conclusion
is not difficult to be obtained, but never been revealed before.
Moreover, the state equations are shown to derive quantified
dynamic information about the system, through stochastic
simulation and fluid approximation approaches. The consis-
tence of the latter has also been discusses both theoretically
and experimentally.
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