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ABSTRACT Compressed sensing (CS) is a sparsity-driven and regularization-based approach. The
CS theory has led to superior imaging methods, offering a number of benefits, including increased image
quality and robustness to the limitations in data quantity. In such imaging methods, if the targets are not
originally sparse (not sparse in the canonical basis), sparse representation is required. However, in synthetic
aperture radar (SAR) imaging scenarios, owing to the potentially random phase of the scene, it is very
difficult to find bases to sparsify a complex-valued and extended scene. In this paper, an improved framework
to handle the magnitude and phase of the scene separately is proposed. Although the phase of the scene is
potentially random, the magnitude can usually be sparsely represented. In the proposed framework, besides
the sparsity, the real-valued information of the magnitude and the coefficient distribution of the sparse
representation are also utilized. In the reconstruction process, the magnitude of the scene is constrained to be
real-valued, and the coefficients of the sparse representation are limited in the low-frequency area. A novel
gradient-based optimization algorithm is developed to solve the proposed framework effectively. Since
more a priori knowledge is utilized in the proposed algorithm, it can reduce the computational complexity
and improve the reconstruction precision. The simulation results and real data results from an airborne
SAR system are presented to show the superiority of the proposed algorithm.

INDEX TERMS Radar imaging, regularization-based reconstruction, magnitude sparse representation,
compressed sensing (CS).

I. INTRODUCTION
Traditional radar imaging methods are mostly based on
matched filtering [1]. These methods require signals to be
sampled at or above the Nyquist rate. In practice, acquiring
the signal at the Nyquist rate might be time-consuming,
expensive, or inefficient. In addition, the resolution of tra-
ditional radar imaging methods is limited by the signal
bandwidth. Recently, the sparsity properties of targets have
attracted much interest in radar imaging. In radar imaging
applications, the sparsity property can be satisfied if there
are only a few dominant scattering centers in the scene or on
the target. This is often true especially for targets like vehi-
cles, airplanes and so on [2]. Another case where sparsity
can hold is that the scene is not originally sparse, but can
be represented by a set of bases with sparse coefficients
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(i.e. a sparse representation or a sparsifying transform).
Sparsity-driven and regularization-based approaches have led
to superior imaging algorithms offering a number of ben-
efits, including increased image quality and robustness to
limitations in data quantity [3]–[6]. A special case of sparsity-
driven and regularization-based methods is compressed sens-
ing (CS) [7]–[12], which is used to reduce the number of
collected samples.

Many regularization-based or CS-based algorithms have
been proposed for radar imaging [2], [13]–[15], includ-
ing synthetic aperture radar (SAR) imaging [16]–[20],
SAR ground moving target indication (SAR/GMTI)
[21]–[25], tomography SAR [26]–[31] and 3D SAR imag-
ing [32]–[34], inverse SAR (ISAR) [35]–[37], and ground
penetrating radar (GPR) [38]–[40].

In SAR imaging scenarios, except for the case of a few
dominant scatterers in a low reflective surrounding, extended
scenes are usually not originally sparse (not sparse in the

29722
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-3127-8705
https://orcid.org/0000-0002-0734-9833


J. Yang et al.: CS Radar Imaging With Magnitude Sparse Representation

canonical basis) [2]. In this case, if we want to use sparsity-
driven methods, sparse representation is needed.

Sparse representation has successfully been used in
CS-based optical imaging [41]. In such a scenario, sparse
representation is performed on real-valued images, and many
conventional bases are effective. As a well known fact, optical
images usually can be transformed into a few dominant coef-
ficients using wavelets, the discrete Fourier transform or the
discrete cosine transform (DCT).

However, one aspect of SAR that differentiates it from
incoherent imaging scenarios is that both the observed data
and the reconstructed images involve complex-valued quan-
tities. Owing to the potentially random phase of the scene in
SAR, it is very difficult to find bases to sparsify a complex-
valued and extended scene [42], [43]. Although many inter-
esting ideas are presented for sparsity-driven or CS-based
SAR imaging, most of them are only demonstrated by sim-
ulation or for real data with a few dominant scatterers.
Only a very few papers investigated real data for extended
scenes.

Instead of considering sparsity issues for a complex-valued
scene, another idea is to handle the magnitude and phase
separately. Although the phase of the scene is potentially
random, the magnitude of the scene can usually be sparsely
represented. Samadi et al. [44] proposed an approach to
utilize the sparsity information in the magnitude of the
complex-valued scene in SAR imaging. The superiority of
the algorithm lies in high quality of final images and its
robustness to limited data. The algorithm proposed in [44]
uses an iterative approach to estimate the magnitude and the
phase of the scene separately. Since the calculations of both
magnitude and phase estimation are non-linear and complex,
the computation complexity is large for a single iteration.
Considering a number of iterations are needed in order to
converge to a good result, the algorithm proposed in [44] is
very time consuming.

In this paper, an improved magnitude sparse representation
method for compressed sensing SAR imaging is proposed.
Besides the sparsity of the magnitude of the scene, further
characteristics of the magnitude of the scene are utilized in
our algorithm.

It is well known that optical images will concentrated at
low frequencies if we perform a Fourier transform or DCT.
Similar to optical images, in many situations, the magnitude
of a SAR scene will not only be sparse, but also be concen-
trated at low frequencies. So, we can utilize this characteristic
in sparse representation. We will use only the bases corre-
sponding to the low frequency components to represent the
magnitude, instead of using the complete bases. In this way,
the size of the problem can be reduced and the computational
complexity can be consequently reduced.

Besides the coefficient distribution of the sparse repre-
sentation, we also utilize the real-valued information of the
magnitude in the proposed algorithm. The algorithm in [44]
does not constrain the magnitude to be real-valued in the
reconstruction process. In our algorithm, this information

is utilized as an additional constraint in the reconstruction
process.

The algorithm proposed in this paper has the following
superiorities:

1. Since the number of bases is reduced, the size of the
sparse representation matrix is also reduced. So the compu-
tational complexity can be consequently reduced.

2. Since more a priori knowledge is utilized, the recon-
struction precision can be improved and the quality of the
produced image can be increased.

These two points are demonstrated by simulation results
and real data results from an airborne SAR system.

This paper is organized as follows: in Section II, the
SAR imaging model is described along with the geometry
and signal equations. In Section III, magnitude sparsity-
driven method is introduced. In Section IV, the improved
method is proposed, including issues about utilizing the
real-valued information of the magnitude, reduced bases
for sparse representation, structure of two-dimensional (2D)
sparse representation, flowchart and solution of the proposed
algorithm, computational complexity and parameter analysis.
In Section V, simulation and real data results are presented
to show the advantages of the proposed algorithm. Finally,
in Section VI, conclusions for this paper are drawn.

II. SAR IMAGING MODEL
Consider the transmitted signal of the radar is

st (tr ) = p(tr ) exp(j2π fctr ) (1)

where tr is the fast time (signal time) [1], p(tr ) is the trans-
mitted waveform and fc is the carrier frequency. We assume
that a typical linear frequency modulated (LFM) waveform is
used, then p(tr ) is given by

p(tr ) = rect(tr/Tp) exp(jπγ t2r ) (2)

where rect(·) is the time window, which is a rectangular
function, Tp is the pulse duration and γ is the chirp rate.

Now suppose the transmitted signal is reflected by a point
scatterer at range R, the demodulated echo is

s(tr ) = g · p(tr − 2R/c) exp(−j4π fcR/c) (3)

where g is the reflectivity coefficient of the target and c is the
velocity of light.

In the case of SAR imaging, the radar transmits a pulse
train while it is in motion. The range of the target changes
with respect to the slow time (azimuth time). In addition,
the received signal is the superposition of the echo from the
whole illuminated scene. So the 2D SAR data can be written
as

s(ta, tr ) =
∫∫
D

g(x, y) · p(tr − 2R(ta, x, y)/c)

· exp(−j4π fcR(ta, x, y)/c)dxdy (4)

where ta is the azimuth time, D denotes the illuminated area,
x and y are the coordinates of the target, g(x, y) is the reflec-
tivity coefficient of the target at position (x, y) and R(ta, x, y)
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FIGURE 1. SAR imaging model.

is the range of the target at (x, y) when the radar is at azimuth
time ta.

In practice, the fast time and the slow time will be discrete
due to the sampling process. The scene is also discretized
into a grid format in order to use regularization-based meth-
ods. The geometry and signal model is illustrated in Fig. 1,
where P is the number of points along the x axis and Q is the
number of points along the y axis after the discretization of
the scene.

In order to use the regularization-based reconstruction
approach conveniently, the SAR signal should be rewritten
as matrix form as [45]

s = Ag (5)

where s is a MN × 1 vector, which is formed by stacking
the samples of s(ta, tr ) in (4). A is a MN × PQ matrix,
the elements of which are the values corresponding to p(tr −
2R(ta, x, y)/c) · exp(−j4π fcR(ta, x, y)/c) in (4). g is a PQ× 1
vector, which is formed by stacking the discretized g(x, y)
in (4).

III. MAGNITUDE SPARSITY-DRIVEN RECONSTRUCTION
FOR SAR
Let us briefly review the traditional radar imaging method
first. Using the measurement model expressed in (5), the tra-
ditional imaging algorithm based on matched filtering can be
written as

ĝ = AH s (6)

where (·)H denotes the Hermitian of a matrix.
Equation (6) corresponds to the traditional backprojection

imaging algorithm in SAR. All the other traditional imag-
ing algorithms based on matched filtering, such as range
Doppler (RD), chirp scaling (CS), Omega-K and fast back-
projection, are variants and approximations of (6). The aim
of these algorithms is to reduce the computational cost in
practical application.

The matched filtering algorithms require the signals to be
sampled above the Nyquist rate and the resolution is lim-
ited by the signal bandwidth. No a priori knowledge of the
scene is utilized in these algorithms. Recently, sparsity has

attracted many interests in radar imaging. Sparsity-driven and
regularization-based approaches have led to superior imaging
algorithms [3].

Now, let us briefly review conventional sparsity-driven
or CS-based imaging algorithms in SAR. Such algorithms
assume that the scene is originally sparse, so the scene
(i.e. g in equation (5)) can be obtained by a sparse reconstruc-
tion as

min
g
‖g‖1 s.t. s = Ag (7)

where ‖·‖1 denotes the `1-norm. Equation (7) can be solved
by basis pursuit [46] or matched pursuit [47] algorithms.
In the following simulation and real data processing in this
paper, we use the spectral projected gradient for L1minimiza-
tion (SPGL1) [48] to solve (7).

In the case of that the scene is not originally sparse,
equation (7) is no longer valid and a sparse representation
is needed. As mentioned in the introduction, since the phase
of the scene is potentially random, it is difficult to find
bases to sparsify g. Since we are usually interested in the
magnitude of a SAR image, a feasible idea is to handle
the magnitude and phase separately. Although the phase of
the scene is potentially random, the magnitude of the scene
can usually be sparsely represented [44]. We denote the scene
with magnitude and phase separately as

g = P |g| (8)

where P = diag {exp [jφ(g)]} is a diagonal matrix, φ(g) are
the phases of g, and |g| is the magnitude of the scene g.
We consider that the magnitude can be sparsely represented
as

|g| = 8α (9)

where 8 contains the bases and α is the sparse coefficients.
By denoting g with magnitude and phase, the SAR mea-

surement model in (5) can be rewritten as

s = Ag = AP |g| = AP8α (10)

In (10), if we know P, the sparse coefficients α can be
obtained using standard sparse reconstruction algorithms
such as basis pursuit [46] or matched pursuit [47]. However,
the difficulty is that we do not know P (i.e. the phase of the
scene). Using the algorithm proposed in [44], this problem
can be solved by the following iterative approach:

The details to solve step 1 and step 2 in Algorithm 1 are
shown in [44]. Although the magnitude sparsity-driven algo-
rithm summarized in Algorithm 1 is an effective way to
solve the random phase problem, it also has some limitations.
In this algorithm, the number of the unknown phase terms for
the scene is equal to the number of grid points. Themagnitude
is represented by a set of sparse coefficients, but the positions
of the dominant coefficients are totally unknown. Thesemean
that the degree of freedom for the unknown variables is
high. The real-valued property of the image magnitude is
also unused. This is not beneficial for reconstruction. In the
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Algorithm 1Magnitude Sparsity-Driven Reconstruction [44]
Initialize: Start with an initial estimate of g that could be its
traditional matched filtering result. Then initial estimates
of P and α are also
obtained.
Step 1: Using the estimate of P, solve for α as

min
α
‖α‖1 s.t. s = AP8α (11)

Step 2: Using the new estimate of α, a new estimate of P
can be obtained as

min
β
‖s− ABβ‖2 s.t. |β| = 1 (12)

where B = diag {|g|}, β is a vector formed by stacking the
diagonal elements of P, and 1 is a PQ × 1 vector with all
elements are equal to 1.
Step 3: Update P using the new estimate result of step 2
and return to step 1.
Terminate when the change of α or β is less than a prede-
termined threshold.

following section, we will exploit more a priori knowledge
to improve Algorithm 1.

IV. PROPOSED MAGNITUDE SPARSE REPRESENTATION
METHOD
The above section introduced the magnitude sparsity-driven
reconstruction for SAR imaging. In this section, we will
exploit more a priori knowledge of the scene to improve the
existing algorithm. We will utilize the real-valued informa-
tion of the magnitude and the coefficient distribution of the
sparse representation.

A. UTILIZING THE REAL-VALUED INFORMATION OF THE
MAGNITUDE
In (11), 8α = |g| should be real-valued. However, this
knowledge is not exploited in Algorithm 1. There is no
constraint to force 8α to be real-valued. In the algorithm
proposed in this paper, we will utilize this information. If we
choose proper bases, such as the DCT, it can represent a real-
valued signal with real-valued coefficients. That is to say,
if we use the DCT bases, real-valued coefficients α will be
equivalent to real-valued magnitudes8α. So, we just need to
constrain α to be real-valued in order to obtain a real-valued
magnitude. This can be realized by adding a constraint to the
optimization problem in (11). Thus equation (11) is modified
to

min
α
‖α‖1 s.t. s = AP8α and α = α∗ (13)

where 8 contains the DCT bases and α∗ denotes the conju-
gation of α.

In this way, the real-valued information of the magnitude
is utilized, and the reconstruction will be improved. We will
demonstrate this in Section V with both simulation and real
data results.

B. REDUCED BASES FOR SPARSE REPRESENTATION
Let us consider the sparse representation for the magnitude
again. In fact, similar to optical images, if we perform the
DCT on the magnitude of a SAR image, the coefficients are
usually concentrated at low frequencies. We will utilize this
a priori knowledge in our algorithm. It means that the non-
zero or dominant coefficients will be located at low frequen-
cies. The coefficients corresponding to high frequency bases
will be zero or very small, so they can be excluded in the
sparse representation matrix. Consequently, the size of the
optimization problem can be reduced.

Let us focus on the sparse representation matrix 8 in
equation (9). 8 contains the bases to represent |g|; conven-
tionally, these bases are complete and orthogonal. So the
number of bases is equal to the signal dimension and 8 is a
square matrix (PQ×PQ). As mentioned above, if we use only
the low frequency bases, the number of columns of 8 can
be reduced, so that the dimensions of α and the optimization
problem can be reduced accordingly, while the precision is
nearly the same. Let 8′ denote the matrix of the reduced
bases. Then the size of8′ is PQ×K , where K is the number
of low frequency bases, which can be significantly smaller
than PQ. Then the sparse representation shown in (9) can be
modified to

|g| = 8′α′ (14)

The size ofα′ isK×1, which can be significantly smaller than
the size of α. For example, assuming that half bases are used
for representation both in columns and rows, K = PQ/4.

The needed number of bases for sparse representation
depends on the characteristic of the scene. The value of the
number of bases can be experientially determined according
to the statistic result of many scenes, and it also can be
adjusted according to different type of scenes.

Using the reduced bases for sparse representation, the size
of the optimization problem (13) is consequently reduced.
So the computational complexity will also be reduced.
We will analyze this reduction in subsection E of this section.

C. STRUCTURE OF 2D SPARSE REPRESENTATION WITH
REDUCED BASES
As SAR is a 2D imaging system, in this subsection, we will
consider the structure of the sparse representation for the
2D scene. The sparsity-driven and regularization-based
model is usually expressed in matrix form. In order to analyze
the sparse representation in combination with the regulariza-
tion model conveniently, we should write it in a matrix form
too. We begin with the sparse representation for the magni-
tude of the 2D reflectivity map. The sparse representation can
be applied both to the columns and rows of the 2D map, and
it can be expressed as

|G| = 8cX8r (15)

where |G| is the 2D reflectivity map, which is the original
form of |g|. X is the 2D sparse coefficients, which is the
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original form of α or α′. 8c are the bases for the columns
and8r are the bases for the rows. Assuming that the reduced
bases are used, the size of 8c is P× K1 and the size of 8r is
K2 × Q, where K1 and K2 are the number of bases used for
column and row representation respectively. The size of X
is K1 × K2.
As shown in Section II, in order to express the equations

in matrix form, the 2D reflectivity map |G| is stacked into
a column vector |g|. The 2D coefficients X are also stacked
into the column vector α′. Therefore, the sparse represen-
tation in (15) should also be reformatted accordingly. The
sparse representation for the columns should be reformatted
as

8̃c =

8c
8c

. . .
8c

 (16)

where 8̃c is a PQ× K1Q matrix. Let

ϕrij

=

[
0︸︷︷︸

(j−1)zeros

φr (1, i) 0︸︷︷︸
(K1−1)zeros

φr (2, i) · · · φr (K2, i) 0︸︷︷︸
(K1−j)zeros

]
i = 1, 2, · · · ,Q

j = 1, 2, · · · ,K1. (17)

where ϕr (·) denotes the elements of 8r .

8ri =


8ri1
8ri2
...

8riK1

 (18)

The sparse representation for the rows should be reformat-
ted as

8̃r =


8r1
8r2
...

8rQ

 (19)

where 8̃r is a K1Q× K1K2 matrix.
Then the sparse representation for |g| is

|g| = 8̃c8̃rα
′
= 8′α′ (20)

where8′
= 8̃c8̃r , the size of8′ is PQ×K1K2 and the size

of α′ is K1K2 × 1. Note that the previously mentioned K is
equal to K1K2 here.

D. FLOWCHART AND SOLUTION OF THE PROPOSED
ALGORITHM
Combining subsection A and B, the flowchart of the proposed
algorithm can be summarized as follows:

Now, let us consider how to solve step 1 and step 2 in
Algorithm 2. To solve step 1 in Algorithm 2, the constrained

Algorithm 2 Proposed Algorithm
Initialize: Choose proper bases which can sparsely rep-
resent the real-valued magnitude with real-valued coeffi-
cients. Only use its reduced form 8′ for representation.
Start with an initial estimate of g that could be its traditional
matched filtering result. Then the initial estimate of P and
α′ are also obtained.
Step 1: Using the estimate of P, solve for α′ as

min
α′

∥∥α′∥∥1 s.t. s = AP8′α
′ and α′ = α′∗ (21)

Step 2: Using the new estimate of α′, a new estimate of P
can be obtained as

min
β
‖s− ABβ‖2 s.t. |β| = 1 (22)

where B = diag {|g|} and β is a vector formed by stacking
the diagonal elements of P.
Step 3: Update P using the new estimate result of step 2
and return to step 1.
Terminate when the change of α′ or β is less than a
predetermined threshold.

optimization problem (21) can be replaced with the following
unconstrained problem

min
α′

∥∥α′∥∥1 + λ1 ∥∥s− AP8′α′
∥∥2
2 + λ2

∥∥∥α′ − α′∗∥∥∥2
2

(23)

where λ1 and λ2 are the regularization parameters.
Equation (23) can be solved using gradient-based algorithms
such as quasi-Newton. To use gradient-based algorithms,
the gradient of the cost function should be provided to the
algorithm. We have

∇α′ = φ(α′)+ 2λ1(AP8′)H (AP8′)α′

−2λ1(AP8′)H s+ 2λ2(α′ − α′
∗) (24)

where φ(α′) = exp
[
jϕ(α′)

]
, ϕ(α′) is the phase of α′ and

α′∗ is the conjugation of α′.
In quasi-Newton algorithms, besides the gradient, another

important issue is how to determine the Hessian matrix.
As mentioned in [3], standard quasi-Newton algorithms with
a conventional Hessian update scheme perform poorly for
non-quadratic problems. Here we will derive a novel Hessian
matrix, which has been proved to be effective by simulation
and real data. The gradient expression in (24) can be rewrit-
ten as

∇α′ = H(α′)α′ − 2λ1(AP8′)H s (25)

where

H(α′)=9(α′)+2λ1(AP8′)H (AP8′)+2λ2I−2λ2φ(α′)−2

(26)

9(α′) = diag
{
1
/√∣∣α′∣∣2 + ε} (27)

φ(α′)−2 = diag
{
exp

[
−j2φ(α′)

]}
(28)
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I is the identity matrix and ε is a small constant to avoid
singularity when

∣∣α′∣∣ approaches zero.
Examining the gradient expression of (25), the termH(α′)

resembles a ‘‘coefficient’’ matrix multiplying α′ [3]. As a
result, we use H(α′) as an approximation to the Hessian.
Note that this Hessian approximation depends on α′ itself.
We use this approximate Hessian in the following quasi-
Newton iteration. Then α′ can be obtained as

α′
(n+1)
= α′

(n)
− γ1

[
H(α′(n))

]−1
∇α′

(n) (29)

where γ1 is the scale for the step length.
To solve step 2 of Algorithm 2, the constrained optimiza-

tion problem of equation (22) can be replaced with the fol-
lowing unconstrained problem

min
β
‖s− ABβ‖2 + λ3

PQ∑
i=1

(∣∣β i∣∣− 1
)2 (30)

where λ3 is the regularization parameter. Equation (30) can
be rewritten as

min
β
‖s− ABβ‖2 + λ3 ‖β‖

2
2 − 2λ3 ‖β‖1 (31)

The gradient of the above cost function is

∇β = 2(AB)H (AB)β − 2(AB)H s+ 2λ3β − 2λ3ϕ(β) (32)

where φ(β) = exp [jϕ(β)], ϕ(β) is the phase of β.
Again, equation (31) can be solved by quasi-Newton algo-

rithms, as that the gradient is provided in equation (32). Here
we also use the previously mentioned idea to determine the
Hessian matrix. Equation (32) can be rewritten as

∇β = H(β)β − 2(AB)H s (33)

where

H(β) = 2(AB)H (AB)+ 2λ3I− 2λ39(β) (34)

9(β) = diag
{
1
/√
|β|2 + ε

}
(35)

where ε is a small constant to avoid singularity when |β| tends
to zero.

Given that the Hessian matrix is approximated as H(β),
then β can be obtained by the following quasi-Newton itera-
tion as

β(n+1)
= β(n)

− γ2

[
H(β(n))

]−1
∇β(n) (36)

where γ2 is the scale for the step length.

E. COMPUTATIONAL COMPLEXITY AND PARAMETERS
ANALYSIS
As mentioned above, step 1 and step 2 of the proposed
algorithm are solved by the quasi-Newton algorithm with
novel Hessian matrices. In step 1 of the proposed algorithm,
the size of 8′ is PQ × K (K = K1K2), the size of AP8′

is also PQ × K and the size of α′ is K × 1. In step 1 of the
existing algorithm, the size of8 is PQ×PQ, the size ofAP8
is also PQ × PQ and the size of α is PQ × 1. For step 1,

the computational complexity of the proposed algorithm is
K/(PQ) of the existing algorithm, both for the gradient com-
putation and Hessian update. For step 2, the computational
complexity of the proposed algorithm is approximately the
same as the existing algorithm. In the existing algorithm,
the computational complexity of step 1 and step 2 are about
the same. As mentioned above, K/(PQ) can be significantly
smaller than 1, so the total computational complexity of
the proposed algorithm is approximately half of that for the
existing algorithm for each iteration. Furthermore, it should
be noted that, since the real-valued magnitude information
and the coefficient distribution information are utilized in the
proposed algorithm, the reconstruction error of the proposed
algorithm decreases more quickly when the number of itera-
tions increases. That is to say, to achieve the same precision,
the number of iterations of the proposed algorithm will be
smaller than for the existing algorithm. So, the total com-
putational complexity of the proposed algorithm will be less
than half of the existing algorithm. Meanwhile, the quality
of the result of the proposed algorithm will also be better
than the existing algorithm. Both simulation and real data
results in Section V will show these benefits for the proposed
algorithm.

In the proposed algorithm,λ1, λ2 and λ3 are the regular-
ization parameters, which specify the strength of the con-
straining terms into the solution. The selection of λ1, λ2 and
λ3 involves a trade-off between relying on data or on the
prior information [44]. For example, in equation (23), smaller
values of λ1 and λ2 usually produce sparser magnitude.
Thus, in general if we have enough information of the scene,
such that the magnitude of the scene is very sparse in the
DCT bases, smaller values of λ1 and λ2 will produce better
results. There also has trade-off between the reconstruction
precision of the magnitude and the phase. In equation (30),
a larger value of λ3 will produce an estimate of β with∣∣β i∣∣ closer to 1, but may lead to larger error in the data, which
will influence the magnitude reconstruction. So the choice of
the regularization parameters should be carefully considered
according to the practical situations and requirements.

V. SIMULATION AND REAL DATA RESULTS
In order to demonstrate the superiority of the proposed algo-
rithm, simulation and real data results are presented. The first
simulation is for 1D imaging and the second simulation is
for 2D SAR imaging. Some results of real data from an
airborne SAR system are also presented.

As shown in Section IV-E, the choice of the regulariza-
tion parameters is very important in the proposed algorithm.
Since we are usually more interested in the magnitude of
the obtained image for single channel SAR systems, we set
relatively small values for λ3 in this paper. The selection of
the regularization parameters is also related to the noise level
in the data [48]. Considering the above guidelines, we use
λ1 = 1000, λ2 = 100 and λ3 = 0.001 for the 1D and
2D simulation. λ1 = 100, λ2 = 100 and λ3 = 0.01
are used for the real data processing. The scale for the step
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TABLE 1. Simulation parameters for 1D imaging.

FIGURE 2. (a) Magnitude of the scene, (b) phase of the scene,
(c) DCT result of the magnitude.

length γ1 and γ2 are set to 0.9. The small constant ε is set
to 10−7. The above values for the parameters are based on
subjective and qualitative assessments of the obtained results.
There are also automatic parameter selection methods [49]
developed for similar problems that could be a direction of
research in future work.

A. SIMULATION FOR 1D IMAGING
In order to compare the proposed algorithm with traditional
radar imaging algorithms, the full data which satisfies the
Nyquist sampling theorem is generated firstly. Then only part
of the samples is selected for the CS-based reconstruction.
Gaussian noise is added in the data, the signal to noise
ratio (SNR) is 20 dB. The simulation parameters are shown
in Table 1.

Fig. 2 (a) shows the magnitude of the scene and Fig. 2 (b)
shows the phase of the scene. It can be seen that magnitude
of the scene has a smooth shape but the phase is random.
Fig. 2 (c) shows the DCT result of the magnitude. It can be
seen that the coefficients are sparse and concentrated at low
frequencies.

Fig. 3 (a) shows the result of traditional matched filtering
(equation (6)) using the full data. It can be seen that although
the scene has a smooth magnitude, the result has obvious
fluctuations. Such phenomena reflect the reality that even in
a SAR image of smooth terrain, there will exist speckle noise.

FIGURE 3. Reconstruction results, (a) matched filtering (full data),
(b) CS-based algorithm without sparse representation, (c) existing
magnitude sparsity-driven algorithm, (d) proposed algorithm.

Fig. 3 (b) shows the result of CS-based reconstructionwith-
out sparse representation (equation (7)), using 2048 samples.
The reconstruction algorithm is SPGL1 [48]. Since the scene
is not originally sparse, the reconstruction is inaccurate.

Fig. 3 (c) shows the result of the existing magnitude
sparsity-driven reconstruction (Algorithm 1) using only
2048 samples. The complete DCT bases are used for sparse
representation of the magnitude. It can be seen that the
result contains much less noise fluctuation than the traditional
matched filtering result.

Fig. 3 (d) shows the result of the proposed algorithm
(Algorithm 2) using only 2048 samples. Only 40 DCT bases
are used for sparse representation of the magnitude. The real-
valued information of the magnitude is also exploited. It can
be seen that the result has even less noise fluctuation than
the existing magnitude sparsity-driven reconstruction. This
implies that the proposed algorithm is superior to the existing
algorithm in Fig. 3 (c).

Fig.4 shows the mean square error (MSE) of the recon-
structed magnitude of the scene. It can be seen that since
more a priori knowledge is used, the proposed algorithm
has a smaller MSE than the existing magnitude sparsity-
driven algorithm. The MSE of the proposed algorithm also
decreases more quickly when the number of iterations
increase. So, to achieve the same precision, the proposed
algorithm requires fewer iterations. This can reduce the com-
putational cost.

In this example, both the existing magnitude sparsity-
driven algorithm and the proposed algorithm are imple-
mented by non-optimized codes and run on the same
computer. To compare the computational complexity, both
the existing algorithm and the proposed algorithm have
20 iterations. The running time of the existing magnitude
sparsity-driven algorithm is 1518s, the running time of the
proposed algorithm is 834s. It can be seen that for the same
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FIGURE 4. MSE comparison between existing magnitude sparsity-driven
algorithm and the proposed algorithm.

TABLE 2. Simulation parameters for 2D imaging.

number of iterations, the proposed algorithm is about twice as
fast as the existing algorithm. Considering that the MSE the
proposed algorithm decreases more quickly than the existing
algorithm, to achieve a same precision, the running time of
the proposed algorithm will be less than half of the existing
algorithm.

B. SIMULATION FOR 2D IMAGING
In this subsection, a 2D SAR imaging scenario is simulated.
The simulation parameters are shown in Table 2. There are
two extended objects placed in the scene, one of which has
a round shape and the other has a rectangle shape. The scat-
terers that consist of these two objects have random phases
associated with them.

Fig. 5 (a) shows the magnitude of the scene. Fig. 5 (b)
shows the phase of the scene, which is random in [−π, π].
Fig. 5 (c) shows the DCT result of the magnitude. It can be
seen that as expected the coefficients are sparse and concen-
trated at low frequencies.

Fig. 6 (a) shows the result of traditional matched filtering
(equation (6)) using the full data. The imaging algorithm is
the backprojection algorithm. It can be seen that although
the scene has a smooth shape, the imaging result has obvious
speckle.

Fig. 6 (b) shows the result of CS-based reconstruc-
tion without sparse representation (equation (7)), using
64 range samples and 64 azimuth samples. The reconstruction

FIGURE 5. Scene of 2D imaging simulation. (a) Magnitude of the scene,
(b) phase of the scene, (d) DCT result of the magnitude.

FIGURE 6. Reconstruction results, (a) matched filtering (full data),
(b) CS-based algorithm without sparse representation, (c) existing
magnitude sparsity-driven algorithm, (d) proposed algorithm.

algorithm is SPGL1. Since the scene is not originally sparse,
the reconstruction is inaccurate.

Fig. 6 (c) shows the result of the existing magnitude
sparsity-driven reconstruction (Algorithm 1) using 64 range
samples and 64 azimuth samples. The complete DCT bases
are used for sparse representation of the magnitude. It can be
seen that the result has much less speckle than the traditional
matched filtering result.

Fig. 6 (d) shows the result of the proposed algorithm
(Algorithm 2) using 64 range samples and 64 azimuth sam-
ples. Only 256 (16 × 16) DCT bases are used for sparse
representation of the magnitude. It can be seen that the result
has less speckle than the existing magnitude sparsity-driven
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FIGURE 7. Airborne SAR system, (a) antenna pod, (b) radar hardware
system.

TABLE 3. Parameters of data 1.

reconstruction. This implies that the proposed algorithm is
superior to the existing algorithm.

For 12 iterations, the running time of the existing magni-
tude sparsity-driven algorithm is 2892s, and the running time
of the proposed algorithm is 1558s.

C. REAL DATA RESULTS
In this subsection, real data results will be presented. The raw
data is acquired by an airborne SAR system. Fig. 7 shows the
radar system. Fig. 7 (a) shows the antenna pod and Fig. 7 (b)
shows the radar hardware system. The center frequency of the
radar is 15GHz (Ku band), and the chirp signal bandwidth
is 200MHz. The sampling rate is 250MHz. The velocity of
the airplane is 105m/s and the pulse repetition frequency
(PRF) is 500Hz. The original full data is under-sampled for
the CS-based reconstruction. Three scenes are selected to
demonstrate the effectiveness of the proposed algorithm.

Data 1 contains a scene of a farmland, in which there are
crops. There is also some cleared land in the farmland scene.
The reflectivity from the crops is different from that of the
cleared land. The reconstruction parameters for Data 1 are
shown in Table 3.

Fig. 8 (a) shows the result of traditional matched filtering
(equation (6)) using the full data. The imaging algorithm is
the backprojection algorithm. We can see the shape of the
cleared land in the farmland. The crop lines are also visible in
the image. However, there is significant speckle noise in the
image, which degrades the quality of the image.

Fig. 8 (b) shows the result of CS-based reconstructionwith-
out sparse representation (equation (7)), using 180 azimuth
samples and 90 range samples. The reconstruction algorithm
is SPGL1. Since the scene is not originally sparse, the recon-
struction is inaccurate.

FIGURE 8. Reconstruction results of Data 1. (a) matched filtering (full
data), (b) CS-based algorithm without sparse representation, (c) existing
magnitude sparsity-driven algorithm, (d) proposed algorithm.

FIGURE 9. Reconstruction results of Data 2. (a) matched filtering (full
data), (b) CS-based algorithm without sparse representation, (c) existing
magnitude sparsity-driven algorithm, (d) proposed algorithm.

Fig. 8 (c) shows the result of the existing magni-
tude sparsity-driven reconstruction (Algorithm 1), using
180 azimuth samples and 90 range samples. The complete
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TABLE 4. Parameters of data 2.

FIGURE 10. Reconstruction results of Data 3. (a) matched filtering (full
data), (b) CS-based algorithm without sparse representation, (c) existing
magnitude sparsity-driven algorithm, (d) proposed algorithm.

DCT bases are used for sparse representation of the magni-
tude. The farmlandwith crops and the cleared land are visible,
but there is also significant speckle noise in the image.

Fig. 8 (d) shows the result of the proposed algorithm
(Algorithm 2) using 180 azimuth samples and 90 range sam-
ples. Only 4050 (90 × 45) DCT bases are used for sparse
representation of the magnitude. It can be seen that the image
has less speckle than the existing magnitude sparsity-driven
algorithm and the matched filtering algorithm. This implies
that the proposed algorithm has superior performance com-
pared to the existing algorithms.

In this example, due to the limitation of the computer
memory, the selected signal samples are far fewer than the
full samples. If the number of the selected samples increases,
the proposed algorithm can achieve higher performance.

Data 2 contains a scene with a pond. The reflectivity from
the water region of the pond is very low. The reconstruction
parameters for Data 2 are shown in Table 4. The recon-
struction results of Data 2 are shown in Fig. 9. Data 3 con-
tains a scene of farmland with trellises. The reflectivity from
the trellises is very strong. The reconstruction parameters

TABLE 5. Parameters of data 3.

for Data 3 are shown in Table 5. The reconstruction results of
Data 3 are shown in Fig. 10. From the results of Data 2 and
Data 3, it can be seen that the proposed algorithm can produce
image with less speckle and clearer edge of different regions
than the previous algorithms.

VI. CONCLUSIONS
In this paper, an improved magnitude sparsity-driven and
CS-based SAR imaging algorithm is proposed. It can effec-
tively handle the potentially random phase of the SAR scene.
Besides the sparsity in the magnitude, the real-valued infor-
mation of the magnitude and the coefficient distribution of
the sparse representation are also utilized in the proposed
algorithm. A novel gradient-based algorithm is developed
to solve the optimization problem effectively. Since more
a priori knowledge is utilized in the proposed algorithm,
it can reduce the computational complexity and improve the
reconstruction precision. Compared to the existingmagnitude
sparsity-driven algorithm, the proposed algorithm can obtain
higher quality images with about half running time.

The proposed algorithm is a sparsity-driven and
regularization-based imaging algorithm. It maintains the
advantages of such type of algorithms, including increased
image quality and robustness to limitations in data quantity.
The latter is the aim of compressed sensing. So compressed
sensing is a special case of the algorithm proposed in this
paper, which aims to reduce the number of data samples.
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