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ABSTRACT One of the downsides of the massive multiple-input-multiple-output (M-MIMO) system is its
computational complexity. Considering that techniques and different algorithms proposed in the literature
applied to conventional MIMO may not be well suited or readily applicable to M-MIMO systems, in this
paper, the application of different formulations inside the convex optimization framework is investigated.
This paper is divided into two parts. In the first part, linear programming, quadratic programming (QP), and
semidefinite programming are explored in an M-MIMO environment with high-order modulation and under
realistic channel conditions, i.e., considering spatial correlation, error in the channel estimation, as well
as different system loading. The bit error rate is evaluated numerically through Monte Carlo simulations.
In the second part, algorithms to solve the QP formulation are explored, and computational complexity
in terms of floating-point operations (flops) is compared with linear detectors. Those algorithms have
interesting aspects when applied to our specific problem (M-MIMO detection formulated as QP), such as
the exploitation of the structure of the problem (simple constraints) and the improvement of the rate of
convergence due to the well-conditioned Gram matrix (channel hardening). The number of iterations is
higher when the number of users K becomes similar to the number of base station antennasM (i.e., K ≈ M )
than the case K � M ; the number of iterations increases slowly as the number of users K and base station
antennas M increases while keeping a low system loading. The QP with projected algorithms presented
better performance than minimum mean square error detector when K ≈ M and promising computational
complexity for scenarios with increasing K and low system loading.

INDEX TERMS Massive MIMO communication, low-complexity detectors, convex optimization, linear
programming, quadratic programming, semidefinite programming.

I. INTRODUCTION
Multiple input multiple output (MIMO) system with
large number of antennas, often called Massive MIMO
(M-MIMO), or even large-scale MIMO (LS-MIMO), is a
promising technology where the great number of antennas
provides several advantages, such as improved energy and
spectrum efficiency, disappearance of thermal and fading
noise effects [1], [2], to name a few.

However, among the benefits, new problems arise. One of
the challenges in M-MIMO is the computational complexity

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiayi Zhang.

required to process the information from the great number
of antennas [2], [3]. This problem is even more accentu-
ated in the case of detection which is known for being a
non-polynomial (NP-hard) problem with optimal brute force
solution given by the maximum likelihood (ML) detector that
is unfeasible even for a not so high number of antennas, users
and modulation order combinations.

Although there are many techniques applied for conven-
tional MIMO, such as linear detectors with matched fil-
ter (MF), zero forcing (ZF), minimum mean square error
(MMSE), tree-search based algorithms including sphere
decoding (SD), heuristics, detectors-based on convex opti-
mization approach, and the possibility to combine with
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transmit preprocessing techniques, e.g. precoding and cod-
ing to further improve the performance, detection is still an
active field because most of the available algorithms apply
to conventional MIMO systems and may not be well suited
or readily applicable for M-MIMO systems (such as ML
and SD) [3]. Hence, new and innovative detection algorithms
must explore some of the specific features of M-MIMO
structure.

In amultiuserM-MIMO scenario with low number of users
and large number of antennas, linear detectors such as ZF and
MF are known for providing near-optimal performance [4].
Some algorithms tries to explore the channel hardening fea-
ture of theM-MIMO system that results in a well-conditioned
Gram matrix HHH [4], [5] approximating the matrix inver-
sion operation using techniques such as Neumann series [6],
the Gauss-Seidel algorithm [7], and variations considering
Newton algorithm such as [8], [9], and Newton-Schultz [10].
However, in those scenarios, a very small number of users
K limits the potential gains in spectral efficiency since the
capacity is proportional to the minimum between K and base
station antennasM , i.e., min(K ,M ) [5] and, as the number of
users increases, as in ultra-crowded heterogeneous machine
type communication (mTC) and enhanced mobile broad-
band (eMBB) scenarios, the reliability and the performance
of such detectors deteriorate [8], [11].

Another strategy to avoid the ML solution is the use of
convex optimization algorithms, such as linear programming
(LP) [12], [13], quadratic programming (QP) [14]–[16] and
semidefinite programming (SDP) [17]–[20]. With the relax-
ation of some constraints, detectors can be formulated as
convex optimization problems taking advantage of its solid
theory and extensive literature (e.g., [21]–[23]) and mak-
ing use of well-known polynomial-time algorithms [24],
many of them conceived and applied to solve large scale
problems [25]–[27].

Regard LP, a detection scheme is investigated considering
the `1-norm in conventional MIMO scenario with 8 × 8
antennas in [12]. The detection problem is reformulated first
as a mixed integer linear programming (MILP) and after,
the discrete constraint is relaxed and the problem is cast into
LP, which can be solved using interior point methods.

Zhang et al. [15] use a QP detector in an Orthogonal
Frequency Division Multiplexing (OFDM) context aiming to
reduce the interference among subcarriers, while Elghariani
and Zoltowski [14] compare a QP and two other modified
QP detectors with heuristics LAS and RTS (heuristics are not
the focus of our paper) in an M-MIMO context. Although
authors consider spatial correlation and different modulation
orders, they do not explore error in the channel estimation and
different system loading scenario.

The SDP detector is well-known in the literature and pro-
vides good performance results with an increased compu-
tational cost. The formulation in [17] is simple compared
with other approaches [20]; it was tested for 16× 16 MIMO
system [17], for a 40 × 40 system [18], and for 128 × 128

in [19], however only considering a symmetric system with
same number of antennas.

In order to solve LP, QP and SDP, interior-point algorithms
can be applied [22], [23]. Particularly, the Mehrotra’s Predic-
tor Corrector (MPC) is the usual choice, and has been imple-
mented in commands linprog, lsqlin in Matlab [28]–[30] to
solve LP and QP, and in SDP3 to solve SDP [31]. Generally,
interior-point methods involve the solution of a linear system
of equations, hence have similar computational complexity
order compared to linear detectors [14], and even greater in
the case of SDP [18], [32].

General purpose solvers might be computationally
expensive [27]; some algorithms are created considering the
structure of the formulated problem, for example, the Two
Metric Projection (TMP) [33] proposed to solve prob-
lems with simple constraints, such as nonnegative and box
constraints [25]. With different scaling matrices, the TMP
can become a Projected Gradient (PG) [26] or Projected
Newton (PN) [25] algorithm (which are referred throughout
the text as projected algorithms). TMP is capable to solve
constrained problems similarly as its unconstrained coun-
terpart and has advantages over manifold suboptimization
and active set algorithms that require at least the number
of constraints to converge [25]. Some application of those
projected algorithms include large-scale problems arising
in the machine learning field [26], quasi-Newton variations
applied to image deblurring examples [27] and PG applied in
beamforming [34].

This work is structured in two parts: in the first, the perfor-
mance of different detectors formulated as optimization prob-
lems LP, QP and SDP in anM-MIMO context are studied in a
variety of scenarios. In the second part, observing that the QP
formulation presents the least number of variables, projected
algorithms are applied to solve the QP formulation and its
characteristics observed through numerical simulations.

The contributions of this work are threefold. a) An
M-MIMO detector based on LP formulation is proposed
using `∞-norm (LP`∞), and its performance-complexity
trade-off is compared with LP `1-norm (originally proposed
in [12] for conventional MIMO systems), QP and SDP-
based detectors. Those detectors are considered in the new
large scale MIMO context operating under realistic scenarios
composed by channel correlation, error in the channel state
information (CSI) estimation, and different number of users,
including (K � M ) and crowded scenarios (K ≈ M ),
and also under different modulation orders. b) In the sec-
ond part of the work, we focus on the application of pro-
jected algorithms to solve specifically the QP due to its
reduced problem size compared with LP and SDP formula-
tions and suitable performance. We characterize the appli-
cation of solvers for QP and unveils the influence of the
condition number of the Gram matrix (channel hardening
effect) on the rate of convergence through numerical simu-
lations. c) We have characterized both the convergence and
complexity-performance trade-off of the proposed efficient
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M-MIMO detectors compared with the linear detectors under
different system loading.

Our work differs from others presented in the literature;
for instance, in [35], the Newton’s Method (NM) is applied
to LS-MIMO detection considering an optimization prob-
lem formulation where the constraints are discarded, hence
solving an unconstrained problem. Herein, we use TMP and
variations including PN, an algorithm adapted to solve con-
strained problems. In [8]–[10], NM and Newton-Schultz iter-
ative algorithms are applied to M-MIMO detection problems
in order to approximate the inverse of the channel matrix;
however, differently from these approaches, we focus on the
solution of an optimization problem.

The remainder of this paper is organized as follows.
In section II the systemmodel is described.Mathematical for-
mulation of LP`1, LP`∞, QP, SDP-based M-MIMO detec-
tors are presented in section III. Specific algorithms (solvers)
applied to solve the optimization formulations LP, QP and
SDP are detailed in section IV. Simulation results are divided
in two parts. In the first part, the performance of the detectors
are analyzed in subsection V-A, while the characterization
and performance of projected algorithms are presented in
subsection V-B. Computational complexity are analyzed
in section VI. Final remarks and conclusions are offered in
section VII.
Notation: bold lower case and bold upper case letters a,

A represent column vectors and matrices, respectively. The
ith element of vector is written in italic ai, bold numbers
denote a vector of the number (for example 3 = [3 . . . 3]T ),
and I is the identity matrix.

II. UL M-MIMO SYSTEM MODEL
Considering a real-valued representation of an uplink (UL)
M-MIMO system operating in multiplexing mode with
single-antenna multiuser transmitters given by:

y = Hx+ z, (1)

where y and z ∈ R2M , x ∈ R2K and H ∈ R2M×2K represent
the received signal, additive noise with variance σ 2

z , transmit-
ted information and channel matrix, respectively;K represent
number of user equipments (UEs), and M is the number of
base station (BS) antennas.

In real applications, the separation between antennas can
be smaller than half of the wavelength of the signal and
spatial antenna correlation may occur [36]. Here we consider
a uniform linear array (ULA) and the Kronecker model [36];
the correlated channel matrix is given by

H =
√
RMH

√
RK , (2)

whereH,RM andRK represent the small-scale fading matrix
with independent and identically distributed (iid) entries,
the correlation matrices of the BS and UE, respectively. In the
multiuser scenario considered, the Toeplitz symmetric matrix

RM is given by [37]

RM =


1 . . . ρ(M−1)

2

...
. . .

...

ρ(M−1)
2

. . . 1

, (3)

where ρ ∈ [0, 1] is the correlation factor and here RK = I,
because users are autonomous and far from each other and,
hence, not spatially correlated. Note that inside an uncorre-
lated scenario, H = H.

Moreover, errors in the channel estimation are also consid-
ered as [38]

H̃ =
√
1− τ 2H+ τN, (4)

where N ∼ N (0, 1) and τ ∈ [0, 1] is the channel estimation
quality parameter; for instance, τ = 0 represents perfect
knowledge of CSI, τ = 0.1 means deviation of 10% in
average from the perfect channel estimation.

III. M-MIMO DETECTORS
In order to recover the transmitted information, theML detec-
tor denoted as the optimization problem

minimize
x

‖y−Hx‖2p
s.t. x ∈ B (5)

can be applied. The symbol B is related to the digital mod-
ulation and represents the set of constellation symbols (for a
numerical example, 16-QAMhasB = {±1;±3} in the equiv-
alent real-valued representation) and p denotes the norm.

A. QUADRATIC PROGRAMMING
Equation (5) is an integer programming problem; in order to
solve it, the usual approach (e.g. [12], [15], [17]) is to relax
the integer constraint into a bound constraint considering x a
continuous variable. This results in a QP with linear (affine)
inequalities

minimize
x

‖y−Hx‖2p=2
s.t. b1 ≤ x ≤ b2, (6)

which, opening the quadratic term of the objective function
and reorganizing the constraints, becomes the problem

minimize
x

xTHTHx− 2yTHx

s.t.
[
I
−I

]
x ≤

[
b2
−b1

]
(7)

where the term yT y is omitted from the objective function
because it does not change the optimal point, b1 ∈ R2K and
b2 ∈ R2K are vectors of the lower and upper values of the
set B with b1 ≤ b2 (for example in 16-QAM, b1 = −3
and b2 = 3). The problem in (6) is a QP, and can also be
called constrained least squares (CLS) [21] problem or box
constrained QP (BCQP) [39]. Problem (6) is the minimiza-
tion of a quadratic function of x with Hessian in the form of a
symmetric and semidefinite positive Gram matrix HTH over

29508 VOLUME 7, 2019



R. M. Fukuda, T. Abrão: Linear, Quadratic, and Semidefinite Programming Massive MIMO Detectors

a convex set (i.e., a polyhedron, which is the intersection of
a finite number of halfspaces and hyperplanes),1 and hence,
constitutes a convex optimization problem that can be solved
usingwell-known algorithms. Notice that when theHessian is
indefinite, the problem is nonconvex and can have stationary
points and/or local minima [23], [39], [41].2

B. LINEAR PROGRAMMING
Observing that the norm operator is always nonnegative and
minimize the norm is equivalent to minimize the square of the
norm [21], the optimization problem (6) can be equivalently
expressed as

minimize
x

‖y−Hx‖p

s.t. b1 ≤ x ≤ b2. (8)

The problem (8) can be recast as LP in two different ways
depending on the norm, namely sum of absolute residuals
approximation for `1 norm (p = 1) and Chebyshev approxi-
mation for `∞ norm (p = ∞) [21].

1) LP WITH `1-NORM
The detection problem (8) can be expressed in the LP
form [12]

minimize
x,t

1T t

s.t. −t ≤ y−Hx ≤ t

b1 ≤ x ≤ b2, (9)

where variables in the vector t ∈ R2M are the new optimiza-
tion variables, jointly with the original variables x.
Many solvers accept LP problems in a specific format such

as equality or inequality form. Redefining variables, problem
(9) can be expressed in the LP standard inequality form

minimize
x`1

cT`1x`1

s.t. A`1x`1 ≤ b, (10)

where

c`1 =
[
0
1

]
, A`1 =


H −I
−H −I
I 0
−I 0

 , x`1 = [xt
]
,

b =


y
−y
b2
−b1

.
After the solution x?`1 is found, the first 2K elements

corresponding to x are extracted and converted from real to
complex to form the estimated data symbols.

1Note that every Gram matrix is semidefinite posi-
tive [40, Theorem 7.2.10].

2The convexity of a function can be verified applying the second order
conditions over the objective function; e.g., for problem (7), ∇2f (x) =
HTH � 0.

2) LP WITH `∞-NORM
Following a similar procedure, the LP detector based on
`∞ norm is detailed. The cast to LP of the Chebyshev
approximation [21] including the constellation symbol con-
straint becomes

minimize
x,t

t

s.t. −1t ≤ y−Hx ≤ 1t

b1 ≤ x ≤ b2. (11)

The problem (11) expressed in the standard inequality
form is

minimize
x`∞

cT`∞x`∞

s.t. A`∞x`∞ ≤ b, (12)

where:

c`∞ =
[
0
1

]
, A`∞ =


H −1
−H −1
I 0
−I 0

 , x`∞ = [xt
]
.

After the solution x?`∞ is found, the last element is dis-
carded and the vector is converted from real to complex
to form the estimated symbol obtained through the LP`∞
detector.

C. SEMIDEFINITE PROGRAMMING
The SDP is a powerful mathematical method [18] that has
a competitive performance in MIMO detectors for high
order modulations because of its polynomial worst-case com-
plexity in contrast to ML that has an exponential com-
plexity depending on the constellation size [17]. Here we
consider [17] due to its simplicity and equivalence with other
representations [20].

Considering the relaxation of the rank restriction in SDP
formulation and the relaxation of the constellation sym-
bols, it is possible to reformulate the detection problem for
high-order modulation as the following SDP optimization
problem [17]:

minimize
X

trace(LX)

s.t. X � 0

X(N ,N ) = 1

bB
2

1 ≤ X(i, i) ≤ bB
2

2 , (13)

where X is the N × N unknown variable, N = 2K + 1,
the index i = 1, . . . ,N −1, scalars bB

2

1 and bB
2

2 represent the
lower and upper limits of the set B2 (for example, 16-QAM
has a set B2

= {1, 9}, so bB
2

1 = 1 and bB
2

2 = 9) and

L =
[
HTH −HT y
−yTH 0

]
. (14)

The method considered here to extract the solution vector
from X is the rank-1 approximation [18],

x?SDP = v1
√
λ1, (15)
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where λ1 denotes the maximum eigenvalue and v1 is its
associated eigenvector.

D. CLASSICAL LINEAR M-MIMO DETECTORS
For reference purpose, the classical linear detectors ZF and
MMSE are considered and the estimated symbol is given in
the form x̃ =Wliny. The matrixWlin is expressed by:

Wlin =


(HTH)−1HT , ZF detector,(
HTH+

σ 2
z

Es
I

)−1
HT , MMSE detector,

(16)

with Es denoting the symbol energy. The ZFM-MIMO detec-
tor is obtained performing the pseudoinverse of the channel
matrix, while the MMSEM-MIMO detector requires the sec-
ond order channel statistics.

IV. SOLVERS FOR CONVEX OPTIMIZATION
In this section, algorithms usually implemented in general
purpose solvers for LP, QP and SDP formulations are dis-
cussed. Algorithms implemented more frequently in subsec-
tion IV-A and the TMP exploring the simple constraints is
detailed in subsection IV-B.

A. INTERIOR-POINT METHODS
Interior point methods appeared as a polynomial complex-
ity approach to solve LP problems with efficiency better
than simplex [22]; those algorithms were extended and are
also capable to solve QP problems [22]–[24] and also SDP
problems [22].

Among different algorithms, for example, barrier method,
primal-dual path following, and the affine scalingmethod, the
MPC is one of the most efficient implementations [22], [23]
in this category; in Matlab platform, it is implemented
with commands lsqlin and linprog [28]–[30] to solve to
solve QP and LP, respectively. For SDP, the CVX, a pack-
age for specifying and solving convex programs [42], [43],
was considered in the numerical simulations configured
to use the SDPT3 solver, which also employs an MPC
implementation [31].

Interior point methods solve a linear system of equa-
tions at each iteration, and has similar computational com-
plexity order compared with linear detectors [14], [44] and
is more computationally intensive in the SDP case, where
specialized interior-point algorithms for SDP may require
O(K 3.5) [18], [32].
Table 1 summarizes the number of unknowns, constraints

and computational complexity order of each formulation. The
SDP-based detector must find a matrix of unknowns, and is
the most complex among the studied detectors. The number
of unknowns in the LP`1 formulation depends onM , which is
large inM-MIMO systems and this impacts on computational
complexity. The number of unknowns is similar between QP
and LP`∞, however, as shown later in section V, the per-
formance of QP is better than LP`∞. The QP formulation
presents the least number of unknowns and constraints and

TABLE 1. Problem size in terms of number of variables and constraints
and the associated complexity for M-MIMO detectors.

is a good candidate to be an efficient detector with a good
complexity-performance trade-off. In the next subsection,
the application of TMP in the QP-based detector are detailed.

B. TWO-METRIC PROJECTION ALGORITHMS
The TMP method is of practical application when the pro-
jection on the feasible set can be carrier easily [33], such as
the box constraints in the QP-based detector (6). We have
considered an initial and feasible vector x0 = 0 in the
middle of the feasible region (assuming a symmetric QAM
constellation around zero, i.e. a 16-QAM with {±1,±3}).3

For different definitions of the direction matrix D, we can
obtain different algorithms, such as:

1) Dn = I, resulting in the PG method [26];
2) Dn =

(
∇

2 f (x)
)−1
= (HTH)−1, the PN algorithm

with complexity 2/3(2K )3 + 2(2K )2 to perform LU
factorization [21] for the matrix inverse calculation.

3) Dn =
1

diag(∇2 f (x))
scaling the gradient with the

inverse of the diagonal, the Diagonally Scaled Pro-
jected Gradient (DSPG) method, which requires 2K
flops after the precomputation of the Hessian;

4) Approximation of the inverse of the Hessian using
Neumann series namely Projected Newton with Neum-
man Approximation (PNNA); under this approach it is
affordable to consider 3 terms in the expansion result-
ing in cubic complexity [6] of 16K 3

+12K 2
−10 flops.

Note that there are many possible variations, such
as the approximation of Hessian (quasi-Newton method,
e.g., BFGS [27]); approximations of the solution of the linear
system of equations named truncated Newton; different line
search algorithms can be employed beyond the Armijo-like
rule, the utilization of an initial point (also called warm-
start). Herein, we are not exhaustive, but trying promising
combinations.

The steps of the TMP algorithm with the PN variation
detailed in [25] are presented herein for completeness. When
Dn = (∇2f (x))−1 we have the PN; note the similarities
when compared with the unconstrained counterpart NM: it
is iterative, there is a search direction defined by matrix Dn,
a line search to find a step length αn and an updating equation
in a similar manner:

xn+1(αn) = [xn − αnDn∇f (xn)]#, (17)

3Note that depending on the constraints, more sophisticated strategies may
be required to choose a feasible initial point, for example, the solution of an
LP [44].
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with the operator [.]#

[ai]# =


bi2 if bi2 ≤ a

i

ai if bi1 < ai < bi2
bi1 if ai ≤ bi1,

(18)

keeping the solution inside the feasible region (the box con-
straints). At the nth iteration, the matrix Dn is diagonal with
respect to subset of indexes I#n defined as

d ij = 0, ∀i ∈ I#n , j 6= i, (19)

and set of indexes are chosen such as

I#n =
{
i| bi1 ≤ x

i
n ≤ b

i
1 + εn and

∂f (xn)
∂x i

>0 or

× bi2 − εn ≤ x
i
n ≤ b

i
2 and

∂f (xn)
∂x i

<0
}

(20)

with tolerance

εn = min{ε, ‖ [xn −MTM∇f (xn)]# ‖2}, (21)

whereMTM is a definite positive diagonal matrix that can be
fixed or vary at each iteration; herein, it was considered as I
as suggested in [25] for simplicity. The step length αn is

αn = (βTM)mn (22)

where mn is the first m that attains the Armijo-like condition

f (xn)− f (x(βmTM)) ≥ σTM

βmTM∑
i/∈I#n

∂f (xn)
∂x i

pin

+

∑
i∈I#n

∂f (xn)
∂x i

[
x in − x

i
n(β

m
TM)

] (23)

and variables σTM ∈ [0, 0.5], βTM ∈ [0, 1]; mn is nonnega-
tive and

pn = Dn∇f (xn). (24)

The algorithm terminates when a critical point xn+1 = xn is
found [25]. Numerically, here we consider that the algorithm
terminates if the condition holds approximately in the form

‖xn+1 − xn‖2 ≤ εn. (25)

The mentioned steps are synthetized in Algorithm 1. After
the stop criteria is attained, the solution vector xn is con-
verted from real to complex form of the estimated data sym-
bols. The computational complexity considered here is flops.
Matrix and vector operations and some factorizations are
found in [21, Appendix C]. Herein, the exponential operator
[.]m and square root

√
[.] (for calculation of `2−norm) are

counted as 8 flops; if conditions are ignored, for example
in (18), since they are not mathematical operations such as
sum, subtraction, division, multiplication in the definition of
flop [45].

Similar terms in the objective function (7) and its gradi-
ent ∇f (x) can be precomputed and stored before entering
Algorithm 1; a fixed computational cost in evaluating HTH

Algorithm 1 Projected Newton Method for Problem (7)
1: Input parameters: σpn, βpn,Dn, x0, ε,Nmax, f (x),∇f (x)
2: Initialize n = 0, xn = x0, εn
3: while n ≤ Nmax do
4: Evaluate and store ∇f (xn) F 8K 2

5: Evaluate tolerance (21) F 20K
6: Check indexes (20)
7: Zeroing some elements of Dn eq.(19)
8: Evaluate (24) F (4K 2

− 2K ), or 2K if Dn is diagonal
9: Line search (23) F

8K 2
+ 6K − 2+ miter (8K 2

+ 10K + 10)
10: Next iteration point (17) F 10K
11: if condition (25) is attained then
12: Store n inside Niter
13: end if
14: end while
15: Output: xn

results in 8K 2M−4K , the precomputation ofHT y represents
8MK − 2K and the sum after the multiplication by xn spends
2K operations, resulting in a total of precomputation com-
plexity ofϒfixed = 8K 2M−4K+8MK . The evaluation of the
gradient ∇f (xn) = 2HTHxn − 2HT y requires only the eval-
uation of a matrix-vector multiplication of xn per iteration.
Hence, the total computational complexity of each algorithm
is composed by a fixed amount ϒfixed plus the construction
of Dn and an iterative amount of operations described along
Algorithm 1; the flops are summarized in Table 2, along
with the flops count for linear detector MMSE, with Niter
representing the number of iterations till the condition (25)
is attained and miter = 1+mn, where mn is the mean number
of mn line search evaluations that attains the condition (23)
plus one because m = 0 is the first evaluation.

Note that inside the projected algorithms only ϒfixed
depends on M ; equations inside Algorithm 1 involve the
multiplication of matrices and vectors of size 2K and does
not depend on M . The most costly part of the projected
algorithms PN, PNNA, PG, DSPG applied to the M-MIMO
detection is due to (23) calculation, which requires the eval-
uation of the objective function Nitermiter times resulting in a
complexity order of O(NmaxmnK 2).
The variable Niter depends on the rate of convergence of

each algorithm. PN is described as the fastest and PG the
slowest among the studied projected algorithms; the rate of
convergence of PG algorithm is given by [33]

‖xn+1 − x?QP‖2 ≤ max {‖1− αnλmin‖1,

‖1− αnλmax‖1} ‖xn − x?QP‖2, (26)

where λmin and λmax denote the minimum and maximum
eigenvalues of the Hessianmatrix and x?QP is the optimal point
for the QP formulation. Observing (26), the rate of conver-
gence depends on the eigenvalues of the Hessian, which is
the Gram matrix for QP, ∇2f (x) = HTH. One can expect
that changing the eigenvalues of the Hessian using different
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TABLE 2. Number of flops for considered algorithms.

number of users K � M , the channel hardening effect
occur changing the matrix condition number and influencing
the rate of convergence of the projected algorithms. In that
way, the number of iterations Niter and evaluations miter are
obtained numerically in order to characterize the full compu-
tational cost of the algorithm in section V.

Another detail to consider in the implementation is that the
PN requires the Hessian to be definite positive and, in some
scenarios, this condition may not be attained. So modifica-
tions in the Hessian matrix should be considered [22, Ch. 5],
where the Hessian is replaced by

∇̂2f (x) =
∇

2 f (x)+ γ I
1+ γ

(27)

before the calculation of the inverse in the matrix Dn for PN,
where large values of the regularization factor γ approxi-
mates the NM to a Steepest Descent. The value of γ was
determined through numerical simulations.

V. NUMERICAL RESULTS
Monte Carlo simulations (MCS) were carried out to demon-
strate the effectiveness of the proposed detectors in terms of
performance-complexity trade-off; all the MCS have been
conducted under uncoded information scenarios. The reliabil-
ity of the studied detectors are presented in subsection V-A,
while the characterization and performance of the projected
algorithms are presented in subsection V-B.

A. PERFORMANCE EVALUATION
The main M-MIMO system parameters considered are pre-
sented in Table 3. A default set of parameters appears on
the top, and, for each scenario, one parameter is changed
at time in order to observe its effect on the system per-
formance. The optimization problems (6), (10), (12) were
treated using Matlab optimization solvers, lsqlin and lin-
prog commands for QP and LP, respectively. The prob-
lem (13) was solved using CVX, a package for specifying
and solving convex programs [42], [43] configured to use the
SDPT3 solver [31].

In Fig. 1, the BER performance for different values
of signal-to-noise ratio (SNR) is presented for different
detectors. Under uncorrelated scenarios and perfect CSI,
the M-MIMO detectors with convex optimization formula-
tion (LP, QP) presented better performance (lower BER) than
linear detectors ZF andMMSE. Moreover, among the convex

TABLE 3. M-MIMO System and Channel MCS parameters.

detectors, QP provided the best performance, followed by
LP`∞ and LP`1 formulations.
In Fig. 1a, considering errors in CSI around 5 and 10%,

the BER performance was impaired for all detectors, while a
similar behavior in performance compared to perfect CSI has
been observed; SDP provides the best performance among
analyzed detectors followed by QP, LP`1, LP`∞ and linear
detectors. Indeed, the linear detector ZF provides the poorest
performance among the studied detectors; its performance is
degraded even further with the increase of the τ parameter.

Fig. 1b exhibits the spatial antenna correlation impact on
the BER performance; when ρ = 0.5, the overall perfor-
mance is worsened; however, under extreme high correlated
scenarios, i.e., ρ = 0.9, the performance of SDP, QP, LP`1
and LP`∞ is worse than MMSE, while the LP`1 detector
exhibits similar performance compared to QP and SDP.

In Fig. 1c where the number of users are changed, the sys-
tem loading K

M is reduced progressively and the performance
of linear detectors ZF andMMSE are significantly improved,
surpassing LP`1 and LP`∞ detectors and providing per-
formance similar to QP and SDP detectors; and a different
behavior compared to previous scenarios (Figs. 1a and 1b)
is observed among LP detectors: as the number of users is
reduced, the performance of LP`1 surpasses LP`∞.
In Fig. 1d, the modulation order was altered. In the low

order modulation 4-QAM scenario, the improvement in per-
formance of SDP compared with QP detector is more evident;
performance of SDP and QP are better than linear detectors;
moreover, the performance of LP`1 becomes very similar to
LP`∞, which is a different behavior compared with high
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FIGURE 1. Performance of 128× 128 M-MIMO detectors under realistic channel and intended system conditions: spatial correlation, error in the
channel estimation and reduced number of users (system loading) and digital modulation order. (a) Performance with error in the channel estimation.
(b) Performance with different correlation indexes. (c) Performance with different number of users. (d) Performance with different values of
modulation order.

order modulations (16-QAM and 64-QAM), where LP`∞
provides superior performance compared with LP`1.
In summary, although SDP provides the best performance,

this advantage is not very distinguishable compared with
QP performance with high order modulation, i.e., 16-QAM
in Figs. 1a, 1b, and 1c; it is more prominent in 4-QAM
presented in Fig. 1d. The QP detector provides suitable BER
performance under scenarios with imperfect CSI, different
system loading, at low or medium level of spatial correlation
(ρ ≤ 0.5) and only a slightly worse in performance than
MMSE at the excessively correlated scenarios, i.e. ρ = 0.9.
In the next subsection, projected algorithms are considered
to solve the QP formulation in (7) focusing on the com-
putational complexity while their solution quality and com-
petitiveness are investigated and compared with the linear
detector MMSE.

B. PROJECTED METHODS IN LS-MIMO DETECTION
In this subsection, MCS are performed focusing on compu-
tational complexity and characterization of parameters Niter
and miter in order to investigate the competitiveness of the
projected algorithms applied to solve the QP formulation
against linear detectors. The chosen scenarios are the ones
that might interfere directly on the convergence properties as
shown in (26): scenarios with different system loading K

M ,
including the intended use in LS-MIMO systems, where a
large number of BS antennas serve a small number of users
(K � M ) and also when K ≈ M e.g., in crowded scenarios.
First, numerical simulations were carried out in order to
choose adequate input parameters for PG, DSPG, PNNA and
PN algorithms. After that, the BER performance (deploying
tuned parameters for a fair comparison) is computed and com-
plexity compared in terms of flops. Finally, the performance
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with different number of users but a constant system loading
is performed, to further evidence that the number of iterations
Niter of projected algorithms depends mainly on the relation
K
M and the properties of the Hessian, but not so much on the
dimensionality K of the QP problem.

1) DIFFERENT NUMBER OF USERS
Some algorithms are sensitive to the selection of input param-
eters, and an initial calibration may be required in order to
improve the convergence speed. In [46], a methodology is
proposed to tune the input parameters. Considering a certain
interval for each parameter, one parameter is varied at time
and the effect in performance is observed; the parameter
that produces an adequate performance is chosen and the
next input parameter is varied; two rounds of simulations are
executed till the input parameters are chosen. Here, a similar
procedure is deployed for γ, σTM, βTM, ε in order to char-
acterize Niter and miter for scenarios with different system
loading. Considering an initial set of parameters depicted
in Table 4, the procedure was executed first, for different
system loading varying K , and after, for constant loading,
changing both M and K .

TABLE 4. Scenario parameters for the calibration of input parameters for
projected algorithms.

In Fig. 2, the influence of the regularization factor γ in (27)
is observed, where the Hessian was substituted by ∇̂2f (x)
before the computation of Dn for PN and PNNA. The effect
of γ is distinguishable in the scenario with K = M for
PN where the increase in γ results in better performance as
shown in Fig. 2 i) and less line search evaluations depicted
in Fig. 2 ii); after γ = 1 the improvements becomes smaller
and so, γ = 1 is considered for PN in the K = M scenario.
Parameter γ does not seem to influence the performance for
the other scenarios and other algorithms besides the PN, and
also does not interfere in miter shown in 2 iii) for K = 32,

FIGURE 2. Influence of parameter γ for different simulation scenarios
considered.

so the value γ = 0 is considered for other algorithms and
other scenarios.

In Fig. 3, the calibration of parameters σTM, βTM and ε
are presented for K = M and K = M

4 ; the procedure was
also executed for K = 3M

4 and K = M
2 but omitted herein

for brevity. The left axis shows BER performance and the
right axis the search evaluations miter , which impacts on the
complexity. As βTM increases, the evaluations of miter also
increases, and more aggressively for PG. The parameter σTM
is related to the step size in (22) and different values result in
different performances for K = 128 and K = 32.

In the case of ε, Nmax = 5 is not sufficient to achieve an
MMSE performance for PG, DSPG and PNNA, and so, its
effect is not clearly observed; the exception is the PN where
the performance is slightly harmed when ε = 0.5. Therefore,
the rate of convergence is characterized (parameters Niter
and miter ), and a second round of simulations are executed
with smaller values of ε. The information collected from
the simulations illustrated in Fig. 3 and the two rounds for
parameter ε shown in 4 is presented in Table 5.

Convergence for the M-MIMO detectors algorithms are
presented in Fig. 4, where the BER performance is depicted
as function of the number of iterations n. Adopted parameters
are presented in Table 5. The number of iterations Niter were
stored in line 12 inside Algorithm 1 throughout the MCS and
rounded; miter represents the line search evaluations, which
is an internal step required to solve the optimization problem
with projected methods and causes a direct impact on the
number of flops in the final complexity are also presented.
Observe that Niter presented in the Table is also depicted
inside Fig. 4. In Fig. 4a, the first round of ε is presented for
the scenario with different number of users; details about the
MMSE performance for each scenario are also presented. For
DSPG, PNNA and PG, the performance is similar to MMSE,
however, the value ε = 0.5 causes a premature termination
of the algorithm since their performance could be improved
with more iterations.
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TABLE 5. Tuned parameters for the simulations with different number of users. The order is [PN; DSPG; PNNA; PG].

FIGURE 3. Performance varying the number of users in order to choose
σTM, βTM and ε parameters. (a) Calibration with users K = M = 128.
(b) Calibration with users K = 1

4 M = 32.

In Fig. 4b, the convergence of the algorithms are compared.
Two extreme situations are analyzed; the other scenariosK =
3 M
4 and K = M

2 are interpolations between them. A deeper
analysis of the computational complexity in terms of flops is
presented in section VI, where the complexity is compared
with MMSE.

FIGURE 4. Rate of convergence of projected algorithms applied to QP
formulation with different number of users. (a) Convergence considering
values of ε for round 1. (b) Convergence considering values of ε for
round 2.

• For K = M = 128, PN algorithm with ≈ 15 itera-
tions can provide a better performance than MMSE with
similar computational complexity order simply because
it requires the calculation of the inverse of the Hessian.
Neumann approximation for the inverse whenK ≈ M is
poor [6], and BER improvement of PNNA is slower than
PG and DSPG. The PG and DSPG require a simpler Dn
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TABLE 6. Tuned parameters for the simulations with constant system
loading. The order is [PN; DSPG; PNNA; PG].

matrix (PG an identity, DSPG a diagonal matrix) and
after around 30 iterations, they achieve a performance
similar to PN.

• For K = 32 = M
4 , the performance of QP-based

detectors is almost the same achieved by the MMSE,
as shown previously in Fig.1c; the number of iterations
to achieve MMSE performance is reduced for all algo-
rithms. For PN, around 4 iterations are required. Neu-
mann approximation becomes more accurate with the
reduction of KM [6]; in such low system loading scenario,
the convergence of PNNA is substantially improved in
comparison with K = 128, and less than 10 iterations
are enough to provide MMSE-like BER; for PG and
DSPG, less than 10 iterations are sufficient to achieve
MMSE-like performance.

2) CONSTANT SYSTEM LOADING
Here, simulations considering a constant system loading are
presented in order to observe the behavior of the projected
algorithms when the dimensionality of the problem increases
(more users, more unknown variables in the QP problem),
while keeping a constant (and low) system loading of K

M =
1
4

aiming to maintain the characteristic of the channel harden-
ing, i.e., a well-conditioned Hessian HTH.
The convergence considering a constant system loading

K
M =

1
4 is presented in Fig. 5. The procedure considered in

the previous simulations are also deployed here. The input
parameters σTM, βTM and ε are determined through numeri-
cal simulations as shown in Fig. 5a and condensed in Table 6,
and the number of iterations Niter and line search evaluations
miter are obtained numerically; the Niter is shown in Fig. 5b.
A similar behavior is observed in the scenario 128 × 32
(from previous subsection) and 256× 64; a reduced number
of iterations (less than 10) are required for the projected
algorithms and is an indicative that themethodworks in larger
systems without great impacts on the number of iterations
and, consequently, in complexity.

Considering the values ofNiter andmiter obtained, the com-
putational complexity is further characterized in the next
section.

VI. COMPUTATIONAL COMPLEXITY
The computational complexity is analyzed in two parts. In the
first, SDP, QP, LP`1 and LP`∞ are compared in terms of
complexity order; in the second part, the projected algorithms

FIGURE 5. Convergence and line search evaluations considering different
number of BS and UE antennas, keeping the system loading K

M constant.
(a) Calibration of input parameters for constant system loading.
(b) Convergence for a constant system loading 1

4 ,M = 128 and
M = 256 with SNR = 15dB.

are evaluated in terms of flops and compared with the linear
detector MMSE.

Initially, a complexity comparison considering SDP, QP,
LP`1, LP`∞ and linear detectors presented in subsection V-
A is considered using complexity metric given in terms of O
(big-O) notation, as shown in Table 1. The complexity per
iteration of SDP is the biggest, followed by LP`1; LP`∞
and QP. The number of iterations for each detector eval-
uated numerically is presented in Table 7. Combining the
information presented in those two tables, the SDP-based
detector provides a good performance with a high complexity
cost: each iteration costs more and Niter is also greater than
other detectors. LP`1 presents a cost per iteration higher,
however costs ≈ 3 iterations less than LP`∞. Regard QP,
its complexity per iteration is lower and requires fewer Niter
than other detectors providing suitable trade-off among the
performance of the studied M-MIMO detectors.
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TABLE 7. Number of iterations for different detectors under the condition
SNR = 15 dB.

FIGURE 6. Number of flops for the LS-MIMO detectors considering
different system loading varying K users, and with a constant K/M,
increasing both UE and BS antennas.

Regard the impact of the modulation order, for SDP, Niter
increased for higher orders, however this behavior was not
observed for other detectors; only small fluctuations were
observed. For QP, Niter was around 8 to 9 iterations; for
LP`∞ around 16 and 17 and for LP`1, Niter presented a
small reduction around 2 iterations (from 15 to 13) as the
modulation order increased.

In the second part, a more in-depth computational com-
plexity analysis for the projected algorithms described in
section V-B is developed considering the number of flops.
Using expressions from Table 2 and substituting the respec-
tive number of iterations Niter and line search evaluations
miter obtained in subsection V-B, the plots presented in Fig. 6
are obtained.

From Fig. 6 i) with K = 32, MMSE provides the
lowest number of flops. Although PG and DSPG have a
diagonal Dn matrix and similar Niter , the DSPG requires
a lower miter than PG, hence, a lower number of flops.
PN presented a low Niter however it also requires a matrix
inverse computation resulting in more complexity com-
pared with MMSE. Finally, Neumann approximation is
poor for large K and PNNA presented a slow convergence
(high Niter ) resulting in higher complexity compared with
PN approach.

In Fig. 6 ii), the number of flops considering a constant
system loading is presented. Observing the flop-complexity

expressions, thematrix-vector operations required forMMSE
(ϒfixed ) are also required for the other algorithms, and
the projected algorithms evaluates K 2 operations Nitermiter
times. So, the complexity order of MMSE and projected
algorithms, now considering the O notation, is O(K 3)
and O(NitermiterK 2), respectively. Keeping the proportion
K
M =

1
4 , the computational complexity order of DSPG

would be lower than MMSE when Nitermiter < K .
Indeed, we see that the number of iterations does not
affect too much Nitermiter ; hence, as K increases, the com-
putational complexity approaches the MMSE complexity.
Evaluating in terms of flops, the computational complex-
ity for DSPG was lower than MMSE for M = 256
and K = 64; in other words, DSPG provides good
BER performance with low computational complexity in
terms of flops.

VII. CONCLUSIONS AND REMARKS
In the first part of this work, M-MIMO detectors using four
promising optimization formulations, namely LP`1, LP`∞,
QP and SDP are analyzed considering high-order modulation
in realistic scenarios including spatial correlation, error in
CSI, different system loading andmodulation order. The SDP
detector provided the best performance among the studied
detectors in a variety of scenarios; the exception was the
excessively high correlated scenario, ρ = 0.9, where the per-
formance of all detectors were severely degraded, andMMSE
provided a slightly better performance. The LP`∞ provided
lower computational complexity per iteration compared with
LP`1 and a better performance under imperfect CSI and
medium correlation ρ = 0.5; however, a worse performance
for different system loading (K = 64 and K = 32), and
similar performance for the low-order modulation 4-QAM.
The QP detector showed the lowest complexity order per
iteration and also better performance compared with both
LP`1 and LP`∞.
In the second part, projected algorithms, which explore

simple constraints of the formulated problem, were applied to
find the transmitted symbols of a M-MIMO detector written
as a QP problem. Amethodology to determine the line search
parameters was applied and, through numerical simulations,
the improvements in the rate of convergence of the algo-
rithms (reduction of Niter ) due to the well-conditioned Gram
matrix (channel hardening) were evidenced; the convergence
is slower for K ≈ M than for K � M . The computational
complexity order of MMSE and projected algorithms are
O(K 3) and O(NitermiterK 2), respectively. The use of pro-
jected algorithms is suggested in scenarios whereNitermiter <
K , noting that Niter increases slowly as K increases while
K
M =

1
4 , as observed during numerical simulations with

K = 32,M = 128 and K = 64,M = 256. Hence, QP solved
with DSPG provided better performance than MMSE in sce-
narios with K ≈ M and showed promising computational
complexity for scenarios with increasing K and low system
loading.
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