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ABSTRACT Mellin transform is a fast and robust method for parameter estimation. In this paper, the param-
eter estimator of K plus noise (KpN) model based on the Mellin transform is proposed. First, we start deriving
the expression of the second characteristic functions and log-based moments in detail by Mellin transform.
And then, we provide the expression of the first fourth order log-culumants which are directly related to the
parameters of KpN model. Finally, the numerical computation is applied to realize parameter estimation of
KpN model. The Monte Carlo simulations show that the proposed estimator is more efficient than existing
methods for clutter to noise ratios under both situations of large and small sample sizes.

INDEX TERMS K plus noise model, parameters estimation, Mellin transform, synthetic aperture

radar (SAR).

I. INTRODUCTION

Sea clutter modeling is a basis of image interpretation for
maritime environment surveillance by radar systems, such
as IPIX and synthetic aperture radar (SAR) [1], [2]. Exper-
imental data from sea-clutter returns have shown that they
are often dominated by multipath, shadowing, and ducting
mechanisms at low grazing angles and by Bragg scattering
from rough surfaces and whitecaps at high grazing angles [3].
The Gaussian clutter model is a reasonable description for
sea clutter in a low-resolution maritime radar system [4].
With lower altitude and grazing angles for high-resolution
imaging, the Gaussian clutter model is no longer appropriate
due to the larger scale structure of the sea surface.

For the sea clutter model in the high-resolution imaging
condition, compound K distribution is a good model for sea
clutter returns and has received a great deal of attention
in the literature e.g., [5] and [6]. Compound K distribution
results from a multiplicative texture model for the clutter
and fits a wide range of experimental data well; Ward pre-
dicted the radar detection performance in sea clutter using
the compound K distribution in [7]. However, it was noticed
that the observations from some areas were heterogeneous
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to an extent that even K distributions could not take
account of [8].

K distribution plus noise (KpN model) and K distribution
plus discrete spikes (KA model) are two extensions to the
compound K distribution, experiments carried out in [9] show
that the modifications to the compound K distribution have
a significant impact on radar target detection performance.
Generalized K distribution model is another extension to the
compound K distribution, which generalizes the compound K
distribution away from the strong-scattering limit, providing
a statistical model for weak scattering [10]. KK distribution is
a mixture model consisting of the sum of two K components,
one associated with whitecap components and one for the sea-
spikes. Compared to KA model, the KK model is equally able
to model the tail region with the benefit of better matching
in the region where the tail extends from the bulk of the
distribution and not consider the added thermal noise, so the
model has the analytic expression to compute easily [11].

Estimating the parameters of sea clutter model from data
samples is a very important application on maritime remote
sensing and surveillance. Studies on approaches to estimate
parameters of compound K distribution have been deeply
investigated. The great majority of the approaches on param-
eter estimation of K distribution is based on statistic charac-
teristics. The moment estimator is the initial and convenient
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way to solve this problem [12]. However, the disadvantages of
the moment estimator are also obvious, the moment estimator
is unable to realize equivalent number of looks estimation
and ensure sufficient accuracy of estimation. In [13],
Iskander et al. provided a method based on higher order
and fractional moments, that is computationally inexpensive
and do not require the solution of nonlinear equations. The
Maximum Likelihood (ML) estimator is the most optimal
estimator in theory. Unfortunately, the analytic expression is
hard to derive due to the complex representation of compound
K distribution [14], [15]. Roberts and Furui [16] improved
the ML estimator by Expectation Maximum (EM) algorithm
at the cost of huge computation burden. Wachowiak et al. [17]
applied the neural network to deal with the problem, but
time-consuming is too large to lead to the method ineffi-
ciency. Su and Chen [18] developed an estimation proce-
dure by means of particle swarm optimization (PSO) in.
Blacknell and Tough [19] put forward a new estimator for
K distribution based on zlog(z), comparing the proposed
method with five existing estimators to show the effectiveness
in. Hu [20] introduced a method called z" log(z) which is the
extension from zlog(z) and validated the proposed estimator
had better performance than the latter when the order is
smaller than one. Shi et al. [21] raised a fast and robust
method of parameter estimation for the K distribution based
on Mellin transform, Compared with the moment estimator,
the Mellin estimator has an ability to estimate the equivalent
apparent number and obtain higher estimation accuracy.

In all, the algorithms aimed at the parameter estimation
of K-distributed clutter are various, but the literature on K
distribution parameter estimation in the presence of added
thermal noise is not sufficient. The analogous problem has
been addressed by Fante [22] for log-normally distributed
clutter. Watts [23] made further predication on radar detec-
tion prediction in K-distributed sea clutter and thermal noise
and proposed a K-distributed plus thermal noise estimator
which uses higher-order moments estimation (HOME) in.
Sutour et al. [24] analyzed the K-distributed sea clutter and
thermal noise in high range and Doppler resolution radar
data and put forward a parameter estimator by calculat-
ing the complementary cumulative density function of real
data in. Mezache et al. [25] introduce two pragmatic methods
called curve-fitting estimation and Nelder-Mead algorithm
to parameter estimation for KpN model. Sahed er al. [26]
presented a zlog(z) based closed form approach, replacing the
hypergeometric function by the inverse of the harmonic mean
of the receive d data. Zhang andYang [27] proposed a method
of K distribution shape parameter estimation based on robust
statistics. In contrast to moment estimator, the estimator can
reduce the interference of the outlier significantly, but the
research on other K distribution parameters estimation was
not concluded.

In conclusion, the above parameter estimation algorithms
for KpN model have either the hard computation burden or
low estimation accuracy. Mellin transform has been proved
to be effective for K-distributed clutter parameter estimation.
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In this paper, we intend to generalize the Mellin transform to
KpN model and propose a novel estimator based on Mellin
transform to achieve parameter estimation for KpN model.

The remainder of this paper organized as follows.
Section II gives an overview on the KpN model and existing
estimation methods. Section III describes the method that
applies the Mellin transform to parameter estimation for KpN
model. Section IV presents and compares the experimental
results of the proposed algorithm with HOME and zlog(z)
method for a given clutter to noise ratio (CNR) in the large or
small sample sizes. Finally, summaries and conclusions are
given in Section V.

Il. OVERVIEW ON COMPOUND KpN MODEL AND
EXISTING ESTIMATION METHODS

In this section, we will first give an overview on KpN model.
Subsequently, in order to validate our proposed method bet-
ter, we will briefly introduce the other two parameter esti-
mation methods in [23] and [26] as contrast methods; The
HOME method is a classical parameter estimation method for
KpN model and is often used as a contrast method in many
papers [26]-[28]. The zlog(z)-based closed form approach
is the recent research production on KpN model parameter
estimation, the experiments carried out in [26] indicated that
the method had a better performance than the HOME method.

A. COMPOUND K DISTRIBUTION

The compound K distribution is composed of two compo-
nents. While accounting for the correlation properties of the
sea-echoes, this compounding agrees with modulating the
square law-detected speckle by the texture [26]. The proba-
bility density function (PDF) of the compound K distribution
can be expressed by

o]

px )= [pxy Glopy iy 0sxsoe ()
0
The conditional PDF of the speckle component x|y can be
described by an exponential distribution and the PDF of tex-
ture component y can be described by a Gamma distribution,
ie.,

1 X
pxjy (x|y) = —exp <——) 2)
y y

and

vy, v—1

I (v)
where b is the scale parameter, v is the shape parameter, and
I is the gamma function. Substituting (2) and (3) into (1),

we can derive the analytic expression of the compound K
distribution as

py () =

exp (—by) 3

1

px () = % (5)™ K (2v5) )

where K,_i () denotes the modified Bessel function of
the second kind.
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B. KpN MODEL

The influence of thermal noise is ignored in the previous
derivation. The PDF of the thermal noise is assumed to be an
uncorrelated zero-mean Gaussian distribution in [26]. Based
on this assumption, (2) should be modified as

1 X
px|y (x|y) = ex <— ) 4)
| by Pty

where p, = 20 is the noise power level.

The above derivation is based on single-look assumption
(i.e., the number of looks is equal to 1). When dealing with
the multi-look situation (i.e., the number of looks is more
than 1), the PDF of the K-distributed clutter plus noise can
be represented as same as [26], the detail derivation is as
follows.

Considering a noncoherent integration of N pulses of sea
clutter data and assuming independent pulse-to-pulse sam-
ples, the sum of N pulses is indicated by intensity variable
Z; as

Zi=Y X i=12-M (©6)

where i is the range cell index and j is the pulse index.
According to the knowledge in probability theory, we can
infer the following expression by (5) and (6) as

-1
A Zi

. i =1t - 7

Pz (417) (pn+y)Nr(N)exP< pn+y> "

where ' (N) =N — 1)!
C. THE HOME METHOD
On the basis of (7), the Home method [23] suggested that the
three parameters of K-distributed plus noise can be estimated
by
~ ~2\3

18 (f12 — 217)

~ A A A \2
(1243 — 9122 + 23)

bn = 1 — (0.50 (a2 — 223)) "2 ®
ho
M1 — Pn
where
@
=
. 2(z)
iy = NNTD 9
. 6(2%)
fi3 =
NN +1 N +2)

where (-) is the mean operator. Details of the HOME method
can be found in [23].
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D. THE zlog(z)-BASED CLOSED FORM METHOD
Another method derived in [26] gives the parameter
estimation as

2
- 1% ) (2)
= eﬂ
vy (£7 g (2)) — ) = @) (27
A b
Pn = %_) (1_ G)
3
X N
b= ——nH-
(Z)=Npn
(10)

where v, is the effective value of the shape parameter, which
can be calculated by

1 \? N + 1) (Z)2
)=N<( +1)(Z) (11

Veff =V <1 + CNR Zz) _ (N I 1) <Z>2

lll. DERIVATION OF THE NOVEL

MELLIN-BASED ESTIMATOR

Mellin transform is an extremely powerful method; it is often
yielding closed-form expressions very difficult to come up
with other methods or to deduce from the usual tables of
integrals. Yet, as opposed to other methods, Mellin transform
is very straightforward to apply [29]. The Mellin-estimator
in absence of thermal noise is derived in [21]; the experiment
results show the estimator has good performance on param-
eter estimation of compound K distribution. In this section,
we generalize the Mellin transform to K-distributed plus
noise, and derive a novel estimator based on Mellin transform.
Prior to the presentation of the proposed estimation method,
we start by introducing the definition of Mellin transform and
characteristic function of the second kind.

A. MELLIN TRANFORMS

Let p (x) denotes a complex-valued function of the real, posi-
tive variable x, The Mellin transform of p (x) will be denoted
by MT [p (x)] (s). The definition of the Mellin transform
involves an integral

MT [p (01 (s) = fo ¥ lp (x)dx (12)

According to the (12), we can make a further definition of
the first characteristic function of the second kind as

¢z (s) = MT [pz (x)] (s) = /O X lpz (dx  (13)

where pz (x) denotes the PDF of K-distributed plus noise in
this paper.

The derivation of (13) at s = 1 can be used as the definition
of log moments:

. d*¢z (s)
my, = ——=
dsk

_ / T nnfp, @de (14
=1 0

S
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Combining (13) and (14), we can acquire the definition of
the second characteristic function of the second kind and log-
cumulants as follows.

&z (s) = Ingz (s) (15)
s d &7 (s)
= —x (16)

s=1

Equation (16) is the key to solve the problem on parameter
estimation of the K-distributed plus noise.

B. KpN MODEL ESTIMATOR BASED ON MoLC
In section III.A, we have given out the definition of Mellin
transform and characteristic function of the second kind.
We now provide the exhaustive derivation of our proposed
method based on Mellin transform.

Substituting (3) and (5) into (1), we can yield the
expression of the K-distributed plus noise as

) foo PP (47 a )d (17)
X) = _— —
bx o TO @aty P\ )

When considering the multi-pulse situation [N > 1, see
Eq. (6)], the (17) can be rewritten as

(Z)_/oo bvyv—lZN—l o (_b B z )d
P2 = T eer TP\ )Y
(18)

Substituting (18) into (11), Mellin transform of the
intensity variable z is given by

¢z (s) = exp(—by)

bY /oo yv—l
rmMrW) Jo  pat+y)
. z
X / - exp(—
0 pnty

The second integral can be used the following formula to
calculate [30]:

> dzdy (19)

* I'(y)
m _ n d — 20
fo " exp (—p7") dx T (20)
Substituting (19) into (18), double integral can be
simplified to

I'(s+N—-1)b" /00 y'~Lexp (—by)
rmrwy  Joo @at+n'™

In order to solve the remainder integral, we need use
another formula [30, p. 348, eq. 3.383.4]:

¢z () = dy (2D

/ ¥y —wH exp (—By) dy

pnry o ptv=2

=BT W T (Wexp (—

Bu

2 )W P

(22)

where W (-) denotes the Whittaker function [30, p. 1025,
Secs. 9.22-9.33].
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Substituting (22) into (21), we can obtain the expression of
Mellin transform of K-distributed plus noise as
IFr(N+s—1)b" [

v T (N)

bpn
TN +s— 1)exp(%)

= — pI— W%$(bpn) (23)
L(N)D2 (pn)

On the basis of (23) and (15), the second characteristic
function of the second kind is given by

&z () = Ingz (5)

¢z (s) = Y (on+y) " exp(—by) dy

— )
:1n1"(N+s—1)+V2slnb+v+; 1n pr
bpy
+ I W 1y (bp) ~InT (V) (24)

In (24), the logarithm of the Whittaker function is too dif-
ficult to handle, the equivalent expression is given here [30]:

1 1y 1
Wi.u (2) = exp 7)< U §+M—k, 142u,z) (25
Making use of (25), (24) can be simplified as

7@ =InT(+N—-D+{ —=s)Inb—InT (N)
+In[U( —-s,2—v—s,bp,)] (26)

where U (-) is the Tricomi function, and the Tricomi function
can be written as the form of definite integral as [31]

[ exp (—zt) % (t — At + B ar

U 9 9 =

(@ exp(—A2)T (a)

(27)

where A =1—B.

LetA =0,

o0 —z2) % () (¢t + D dr
U(a,c,z)zfo exp (—zt) * (1) ( ) (28)
I' (a)

Substituting (28) into (26), the expression of &z (s) is

§z (s)

=InT(N+s—1)—InT" N)+vIinb+ (@ +s— 1) In(p,)

+1In </oo exp (—bput) * "~ (1 + 1)*7! dt) —InT (v)
0
(29)

In order to get concise representation, we give the
following notations in advance.

o0
A= / exp (—bpnt) * (1)~ dt
OOO
B = / exp (—=bpnt) * ()"~ In (141) dr
OOO
C =/ exp (—=bput) ()" In (141) In (141) dt
0

D= /ooexp(—bpnt)*(t)v_l In(14+£)In (14+£)In (1 + 1) dt
0
(30
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FIGURE 1. Curve-fitting between the simulated samples and theory PDF.

The first, second, third and fourth-order log cumulants in
the theory are

déz (s) B
=®(N)+1 -
s | (N) + n(pn)+A
d*&; (s) CA — B?
—2 2 =®(A,N)+ ———
ds? s=1 ( o A2
d3€5 (s) DA% — 3ABC + 2B3
—£ 2 =9 @2,N 31
| (2,N) + YE (31

where @ (-) denotes the digamma function [32] (i.e., the log-
arithmic derivative of the gamma function); ® (m, -) is the
m-th-order polygamma function [32] (i.e., the m-th-order
derivative of the digamma function).

On the other hand, the log cumulants calculated by sample
data are identical to the situation absence of noise. That is,

. 1 Y
a=ﬁ§mmn

S N
Ek=ﬁ2|:ln(xi—51) ], k>2
=

where x; is the gray value of pixels in the image.
Combining (31) and (32), the Mellin-transform-based
estimator can be represented as

(32)

Z| -

® (N)+1n(p,) + g = [In (x;)]

[m (xi — 51)2}
[m (wi - 31)3}

(33)

1

CA — B?

®(LN) + =

Z| -

M=

1

DA% — 3ABC + 2B
®(2,N)+ Ve + =

2|~

M=

1

In general, the number of pulses, N, is known a priori in
the radar processor [11] and the log cumulants in (32) can be
calculated directly from the data. That leaves the parameters
v, b, and p,, which can be obtained by (33) through numerical
solution.
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TABLE 1. Parameters of KpN model simulation corresponding Fig. 1.

Shape Parameter (V) 1
Scale Parameter (b) 2
Noise Power ( p,) 0.5
Sample Sizes (M) 10000
Independent Trials (n) 1000
Integrated Pulses (N) 10
x 10 Shape Parameter
1.4
zlog(z)
HOME
12 Mellin
1
0.8
w
(2}
=
0.6
0.4
0.2
d .
1 2 3 4 5 6 7
Number of Trials
(@
x 107 Scale Parameter
14
zlog(z)
2 HOME
1 Mellin
1
0.8
w
(2}
=
0.6
0.4
0.2
o 5
1 2 3 4 5 6 7
Number of Trials
(b)
x 10° Noise Power
7
zlog(z)
HOME
6 Mellin
5
4
w
(72}
=
3
2
1
0
1 2 3 4 5 6 7
Number of Trials
(©

FIGURE 2. Comparison of MSE estimates of shape parameter, scale
parameter and noise power of a KpN model for the HOME,

the zlog(z)-based closed form, and the proposed estimation methods,
the experiment parameters are same as Table 2.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our pro-
posed method and compare it with other two popular meth-
ods through Monte-Carlo simulations. For convenience,
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TABLE 2. Sample mean and sample standard deviation of the three parameter estimates of v, b and pp at CNR = -3, 0 and 10DB, from home

method [23], zlog(z) closed-form method [26] of K-clutter plus noise for M = 10000 samples, N = 10 integrated pulses, and n = 1000 independent trials.

Parameters of Simulat{:gllj;:)lutter Plus Noise (True Mean and Standard Deviation of the Estimated Parameters
Methods v | CNR(dB) b D, E[Y] std (V) E[b] std (b) E[p,] std(p,)
zlog(z) 0.5001 0.0022 1.4979 0.0039 0.6660 6.0275¢-4
HOME 0.5 -3 1.4976 | 0.6661 0.5003 0.0047 1.4981 0.0076 0.6660 0.0014
Proposed 0.5001 0.0015 1.4978 0.0027 0.6661 4.4926¢-4
Zlog(z) 0.0999 3.7849¢-4 0.1998 73877e-4 0.5001 2.6392¢-4
HOME 0.1 0.2 05 0.0999 0.0013 0.1998 0.0016 0.5000 0.0027
Proposed 0.0999 1.5074e-4 0.1999 3.7154e-4 0.5001 1.0461e-4
zlog(z) 0.5000 9.2661e-4 0.9999 0.0016 0.5000 3.0219e-4
HOME 0.5 1 0.5 0.5005 0.0029 1.0004 0.0034 0.4998 0.0013
Proposed 0 0.4998 6.25%e-4 0.9996 0.0011 0.5001 2.2877e-4
zlog(z) 0.9992 0.0027 1.9988 0.0034 0.5001 4.4987¢-4
HOME 1 2 0.5 0.9999 0.0059 1.9995 0.0065 0.4999 0.0014
Proposed 0.9994 0.0022 1.9991 0.0029 0.5001 3.7051e-4
zlog(z) 1.5022 0.0060 3.0024 0.0067 0.4997 8.4235¢-4
HOME 1.5 3 0.5 1.5062 0.0114 3.0064 0.0120 0.4990 0.0017
Proposed 1.5001 0.0051 3.0000 0.0059 0.5000 7.2189¢-4
zlog(z) 0.1001 1.7792¢-4 0.1101 2.6578¢-4 0.0909 6.2507e-5
HOME 0.1 0.11 0.0909 0.1003 6.5254e-4 0.1103 4.7033e-4 0.0897 0.0026
Proposed 10 0.1000 9.4669¢-5 0.1100 1.6151e-4 0.0909 2.3341e-5
zlog(z) 1.0000 9.8040e-4 1.1000 0.0011 0.0909 2.1178e-4
HOME 1 1.1 0.0909 0.9997 0.0026 1.0998 0.0017 0.0910 0.0011
Proposed 1.0001 7.1599¢-4 1.1001 8.3358¢-4 0.0909 1.2114e-4

the power of the received clutter is normalized to unity so
that the first-order moment p, + v/b ~ 1, this operation
is the same as [26]. The simulations follow the two steps,
we provide a method to produce random samples fitting for
the KpN model in the first step, and in the second step,
we estimate the parameters of KpN model from the samples
by the three methods, respectively in different sample sizes,
CNR and integrated pulses.

We can use the following Matlab routine to produce the
KpN model samples

Z = gamrnd (N,pn + gamrnd (v, l/b, n, M))

Fig. 1 shows the simulated sample data match well with the
theory PDF.

Subsequently, we want to show how efficient the pro-
posed Mellin-based estimator is, given by (33), compared
to the existing zlog(z)-based closed form method [26] and
HOME method [23], which are introduced in section II. The
mean and standard deviation (STD), and the mean square
error (MSE) criteria [26] are considered to assess the qual-
ity of the estimation methods of interest. To this effect,
Table 2 summaries the sample mean and the sample standard
deviation of the three estimated parameters, namely, the shape
parameter v, the scale parameter b and the noise power p;,
for CNR = -3, 0, 10 dB, numbers of samples M = 10000,

VOLUME 7, 2019

TABLE 3. Parameters corresponding to Fig.3 (CNR = —3dB).

Shape Parameter 02 04]06| 08 [1]12] 14

)

Scale Parameter (b) | 0.6 | 1.2 | 1.8 | 24 31 3.6 | 42
Noise Power ( p,,) 0.6661
Sample Size (M) 10000
Independent Trials 1000
()

Integrated Pulses 10
™)

the number of noncoherent integrated pulses N = 10 and
estimation of the unknown parameters are obtained by n =
1000 independent trials. The parameter estimation results of
the three methods are displayed in the Table 2, and we make
a further investigation on the MSE for the three methods and
the results are displayed by Fig. 2 (the parameters are similar
to the Table 2).

The results in the Table 2 and Fig. 2 show that the proposed
method has the comparative estimation accuracy with the
other two methods, and our method has the smallest MSE
and STD in the three methods.

Furthermore, we compare the computational efficiency
among the three methods. The corresponding computation
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x 10° Shape Parameter

zlog(z)
HOME
Mellin

MSE

x
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Number of Trials

(a)

x 10° Scale Parameter

zlog(z)
8 HOME
Mellin

MSE
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Number of Trials

(b)

x 10° Noise Power
4.5

zlog(z)
4 HOME
Mellin
3.5

MSE

1 2 3 4 5 6 7
Number of Trials

©

FIGURE 3. Comparison of MSE estimates of shape parameter, scale
parameter and noise power of a KpN model for the HOME,

the zlog(z)-based closed form, and the proposed estimation methods for
CNR = —3dB, the experiment parameters are same as Table 3.

was performed using optimized MATLAB R2014a codes run
on a Windows 7.0 operational systems; the hardware environ-
ment was an Inter Core i5-7500 3.4-GHz CPU processor with
8-GB memory. As a result, the run time for each independent
trail in average is 0.3119s, 0.4268s, and 0.8984s for the
zlog(z), HOME, and the proposed method, respectively. This
is reasonable because the proposed method involved a numer-
ical calculation to estimate the three parameters [see (33)]
in comparison with the zlog(z) and HOME methods, which
leads to a slightly heavier computation burden in the proposed

29208

x 10° Shape Parameter

zlog(z)
35 HOME
Mellin

1 2 3 4 5 6 7
Number of Trials

(a)

x 10" Scale Parameter

% zlog(z)
HOME
Mellin

0.8

MSE

0.6
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0.2
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Number of Trials
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x 10° Noise Power

zlog(z)
HOME
Mellin
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Number of Trials

(©

FIGURE 4. Comparison of MSE estimates of shape parameter, scale
parameter and noise power of a KpN model for the HOME,

the zlog(z)-based closed form, and the proposed estimation methods for
CNR = 0dB, the experiment parameters are same as Table 4.

method than in zlog(z)-based method or HOME method.
However, the time efficiency of the proposed estimator is
sufficiently acceptable because the run time in average is in
the same order of magnitude for the proposed estimator and
zlog(z)-based or HOME estimator, as Mellin-based estima-
tors have been widely used in radar data processing [33].

To summarize, the foregoing results indicate that a better
estimation accuracy and a slightly expensive computation
cost in the proposed estimator than in the zlog(z)-based or
HOME estimator.
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FIGURE 5. Comparison of MSE estimates of shape parameter, scale
parameter and noise power of a KpN model for the HOME,

the zlog(z)-based closed form, and the proposed estimation methods for
CNR = 10dB, the experiment parameters are same as Table 5.

In order to make a further effort to confirm our proposed
method, we make detailed researches on the MSE of the
three methods in the different situations to pay more attention
to check the estimation accuracy of different methods. This
is because the results (not provided in order to save space)
of time efficiency of different methods are similar with the
foregoing results.

Figs. 3-5 display the MSE of the three methods in different
CNRs (-3, 0, 10dB) and Figs. 6-7 display the MSE in the
small sample sizes (M = 300, 600) compared with the
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FIGURE 6. Comparison of MSE estimates of shape parameter, scale
parameter and noise power of a KpN model for the HOME,

the zlog(z)-based closed form, and the proposed estimation methods for
CNR = 10dB, the experiment parameters are same as Table 5 except for
M = 300.

previous experiments in M = 10000. Fig. 8 displays the
MSE in the small number of noncoherent integrated pulse
(N = 2) compared with the previous experiments in N = 10
integrated pulses. The detailed settings of the parameters are
contained in the Tables 3-5.

The parameters of Figs. 6-8 are almost identical to Table 5,
the differences are the sample sizes M = 300 in Fig. 6, M =
600 in Fig. 7, and integrated pulses N = 2 in Fig. 8.

Observing the Figs. 3-5, the higher CNR is, the higher
estimation accuracy of three parameters for three methods is.
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FIGURE 7. Comparison of MSE estimates of shape parameter, scale
parameter and noise power of a KpN model for the HOME,

the zlog(z)-based closed form, and the proposed estimation methods for
CNR = 10dB, the experiment parameters are same as Table 5 except for
M = 600.

And, the MSE curves of three parameters of proposed Method
and zlog(z)-based closed form method are lower than HOME
method all the time regardless of the high CNR or low CNR.
The performance of our proposed method and zlog(z)-based
closed form method is comparative at CNR = 10dB, but
in the situations of low CNR, our proposed method has
the more remarkable performance than zlog(z)-based closed
form method.

Observing the Figs. 6-7, we can easily find that the small
sample sizes have a significant impact on the estimation
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FIGURE 8. Comparison of MSE estimates of shape parameter, scale
parameter and noise power of a KpN model for the HOME,

the zlog(z)-based closed form, and the proposed estimation methods for
CNR = 10dB, the experiment parameters are same as Table 5 except for
N=2.

accuracy of the HOME method rather than the others and
our proposed method has the smallest MSE in the three
methods.

Comparing the Fig. 5 with Fig. 8, we find that the inte-
grated pulse count also has an influence on performance of
the three methods. Obviously, the HOME method is at a
disadvantage with the others, and our proposed method has a
slight preponderance on performance than the zlog(z)-based
closed form method.
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TABLE 4. Parameters corresponding to Fig.4 (CNR = 0dB).

Shape Parameter (V) 02 (04 |06|08|1] 1214

Scale Parameter (b) 041108 | 12| 16]|2]24]028
Noise Power (2,) 0.5
Sample Size (M) 10000
Independent Trials (n) 1000
Integrated Pulses (N) 10

TABLE 5. Parameters corresponding to Fig.5 (CNR = 10dB).

Shape

Parameter 0.2 0.4 0.6 0.8 1 1.2 1.4

)

Parameter (b)

Scale

022 | 044 | 0.66 1.32

Noise Power

0.0909
P.)

Sample Size

10000
M)

Independent
Trials (n)

1000

Integrated
Pulses (N)

10

V. CONCLUSION

A novel K-clutter plus thermal noise parameter estimation
method based on Mellin transform has been proposed in
this paper. At first, we introduce the K distribution and give
the generalized expression in the presence of added thermal
noise. Next, a useful tool called Mellin transform has been
suggested and the novel estimator based on Mellin transform
has been proposed by the mathematical derivation. Conse-
quently, the simulation experiments have shown that the new
estimator has comparative estimation accuracy and lower
STD and MSE than the HOME method and zlog(z)-based
closed form method.
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