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ABSTRACT The traffic flows in parallel computing systems show clustered, correlative nature and
the flows are always latency-sensitive. These flows have been abstracted as “Coflow” to pursue overall
optimization. Concurrent Coflows on the network show very novel traffic patterns. On the other hand,
multiple optical interconnection network architectures have been proposed to enable the traffic adaption
topology reconstructions. Nevertheless, topology reconstruction strategies are application-agnostic, and their
optimization objective of network performance cannot meet the Coflow demand. In order to exert the flexibil-
ity of optical topology to promote the performance of parallel computing application by Coflow acceleration,
the traffic patterns are preferred to be well recognized and then an adaptive topology is generated accordingly.
To avoid further complex, such recognition is expected to finish without prior knowledge from the application
layer. Then, the topology should be reconstructed to minimize the Coflow completion time. To implement
these procedures, we proposed a traffic pattern-aware topology reconstruction strategy. Our strategy first
combines CNN and spectral clustering to realize the traffic patterns awareness. And then, the genetic
searching algorithm is used to mind the proper topology. Based on real traffic trace from Facebook computing
application, large-scale simulations have verified the efficiency of such a strategy by lowering the completion

time of computing jobs. In addition, the experimental demonstration has confirmed the conclusions.

INDEX TERMS Traffic pattern, topology, optical interconnections, computing system, Coflow.

I. INTRODUCTION

Hadoop [1] and Spark [2] are the most popular distributed
parallel computing systems based on data centers (DCs).
In these computing systems, parallel data should be trans-
mitted across the racks of data center networks (DCNs). The
traffic pattern in each job is a group of clustered “all-to-all”
connections. And the traffic flows in a job are defined as a
“Coflow” in [3]. The flows in a certain Coflow are latency-
sensitive and are expected to finish within the same barriers,
as depicted in FIGURE 1(a). In a summary, the traffic pattern
in a job shows clustered and correlative nature. Usually,
several computing jobs are concurrent on the network [4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Lin Wang.

Thus, on the rack-level, the traffic patterns across the whole
network can be described as FIGURE 1 (b).

On the other side, the optical interconnection networks
have been introduced into DCs in recent years. Despites the
ultra-large bandwidth and low switching latency, the topol-
ogy flexibility is also deployed to support different traf-
fic patterns. In the optical DCNs such as Helios [5],
C-through [6] and OSA [7], the flexibility of network is
explored by dynamically reconfiguring light paths via algo-
rithm like b-matching [8] to maximize network throughput.
However, such reconstruction strategy is application-
agnostic, and sometimes may deteriorate the application
performance because of the ignorance of clustered and cor-
relative nature within traffic patterns. On improper topology,
the traffic with clustered and correlative connections are
separated by multiple hops or are assigned with limited
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FIGURE 1. Coflow, traffic patterns and the improper topology.

bandwidth, as shown in FIGURE 1 (c). In order to exert
the flexibility of optical DCNs to optimize application per-
formance, the topologies are advocated to be reconstructed
to support the diverse clustered traffic patterns. And then
minimizing the Coflow completion time (CCT) becomes
more essential objective than maximizing total throughput
in reconstruction strategies.

There are previous works that have demonstrated the
reconfigured topology to support the computing jobs, such as
the ““a table for two topologies” [9] and the “OvS” [10]. They
both can accelerate the job completion time by adjusting their
topologies. But these works have only verified their capabil-
ity in traffic adaption. To drive the “capability”’ to become
“efficiency”’, there are still problems left to be solved that
how to recognize the traffic patterns in computing system,
and what is the proper topology strategy.

In this paper, we propose such a universal clustered traf-
fic -aware topology reconstruction strategy to contribute the
topology efficiency. It can be deployed on any optical net-
work which has ability to reconstruct topology to benefit the
traffic patterns. To implement such reconstruction strategy,
the clustered traffic should be firstly recognized. Clustered
traffic recognition is actually to identify the number of com-
puting jobs, and which racks a job is running on. The traffic
pattern can be known by job information acquired from the
application, but this may add more extra development costs.
Thus, the traffic pattern is preferred to be recognized without
prior knowledge. Nevertheless, it is such a challenge to do the
accurate recognition in this way for the correlative yet various
traffic patterns. So as to solve this problem, the machine
learning method, i.e. the convolutional neural network (CNN)
combined with the spectral clustering are utilized. And then
based on the recognized traffic patterns, the proper topology
is calculated via the genetic algorithm to minimize the CCTs.

The traffic patterns -aware topology strategy is evaluated
by both the simulation and experiment way. The simula-
tion is based on large-scale networks. These large-scale net-
works can be regarded as fixed topology combined with
reconfigurable light paths. The different fixed topology span
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on a Tree network, a basic Lattice network [11], a basic
Cubic network [12], and a Small-world network [13]. These
networks can be logically achieved by optical switching,
the approaches are described in Section 2. In the simulation,
we use the real Coflow trace from Facebook [14]. Such real
data trace is injected in the above four networks. Then, the
accuracy of recognition and the CCT promotion are evalu-
ated. And based on the evaluations, the efficiency of such
strategy has been verified. In the experiment, the performance
of proposed topology strategy is demonstrated on the net-
work with fixed Tree topology and the with fixed Small-
world topology. The results have confirmed its efficiency by
lowering the job completion times (JCTs).

In the rest of the paper, we firstly introduce background and
motivations to propose the clustered traffic patterns -aware
topology reconstruction in Section 2. Then, the models and
algorithms are detailed in Section 3. In Section 4, we illus-
trate the simulation and analyze the corresponding evalua-
tion results. And finally, the experimental demonstration is
described in Section 5.

Il. BACKGROUND AND MOTIVATIONS

A. TRAFFIC PATTERNS IN DISTRIBUTED COMPUTING
SYSTEM

The traffic pattern of a computing job has clustered and
correlative nature. In the large-scale computing system, for
instance, based on DC, many jobs have to treat ultra-large
data processing. Due to the computing and storage limitation,
usually these jobs are assigned resources across the racks,
so that the inter-rack communications are required. In a job,
the traffic among racks show ‘“all-to-all” pattern. So, the
traffic can be regarded as clustered.

Additionally, in a job, the traffic flows between these racks
usually start at same time and they are expected to complete
with same barriers. Because, only if all the traffic flows finish,
the next step of a job will be executed. This is similar to the
buckets effect, the traffic flow with longest completion time
will determine the CCT. Thus, the traffic pattern in a job also
can be concluded as correlative.
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According to the job trace from Facebook [14], several jobs
are concurrent on the network in a period of time. A job is
executed among a group of racks. The traffic inside the group
is strong. But there is weak or no inter-group traffic. Different
groups may have overlaps. Thus, in a holistic view, the traffic
pattern from all the network can be seen as several groups
with inside clustered yet correlative connections.

To accelerate the CCT is very essential to optimize the
computing system. The CCT can occupy 50% of the JCT.
And this fraction will be enlarged by the job scale (i.e. the
number of racks that a job is running on) increasing [15].

B. TRAFFIC RECOGNITION APPROACHES

As for the traffic recognition in computing system, e.g.
the Hadoop/Spark on DCs. Tightly follow the concept of
maximizing the throughputs, the Flyways [16] recognized
the large flow and the small flow by counting the packet
numbers of a flow. And then the flyways (i.e. the optical
paths) are connected for the large flows. In Karuna [17],
the flows with or without deadline are recognized according
to the option segment in TCP header. And then the resource
is scheduled to optimize the mix-flows. In [18], the virtual
topology design (VTD) by means of cognition is proposed,
this cognition is actually the traffic prediction but rather
than patterns recognition. And in CODA [19], the Coflow
is recognized via flow-level features. The recognition is to
cluster the host-to-host flows into different Coflows. But
this method could not provide quick enough recognition of
traffic patterns on the rack-level, and additional modifications
should be done on every host and every switch.

The same recognition can be seen also in vehicle traffic
system. As proposed in [20], NMF algorithm is used to realize
OD matrix (very similar to the traffic matrix) decomposition.
Though the NMF can recognize features of a matrix, the fea-
tures are without physical significances. But these features
can be used to predict future via AR algorithm.

C. RECONFIGURABLE TOPOLOGY IN OPTICAL DATA
CENTER NETWORK

Since the optical interconnection network is introduced in
data center, multiple switching modes can coexist in the
network. Thus, by combination of the switching modes,
the logical topologies (i.e. virtual topologies) are diversified
into multiple basic types. Further, the topologies can be
dynamically configured. For example, in Helios, which has
been earliest proposed, the basic tree topology uses electrical
packet switching (EPS), and the reconfigured light paths can
be implemented via optical circuit switching (OCS). In the
OpenScale network [11], the basic hexagon topology runs
optical packet switching (OPS), and as well, the OCS is used
to build the logical connections between nodes.

As for the topology reconstruction strategies, the primary
one is periodical reconstruction [21]. It can obtain good per-
formance when the network traffic distribution is even. And it
is easily deployed without concerns on traffic patterns adap-
tion. Then, the topology computations aiming at throughput

28550

maximization are proposed. In Helios, it implemented the
topology reconstruction strategy, i.e. the Hedera, which is no
difference with the b-matching algorithm. The b-matching
algorithm regards the traffic demand as a bi-graph, the corre-
sponding topology is just maximum matching of the bi-graph.
And a TATR [11] method is proposed based on the OpenScale
network. The TATR will preferentially bridge the racks with
larger communication cost (i.e. the traffic volume multiplies
the hops). While in [22], a latency-driven topology recon-
struction method implemented via deep learning is proposed.
The objective for this topology reconstruction is to minimize
the flow completion time. In this work, the correlative of
flows is not considered. Besides, the time complexity of this
method is too high, because the topology searching is across
whole network (i.e. global search) and several extra deep
learning models have jointly been used.

D. THE COFLOW ACCELERATION

The Coflow acceleration can be achieved from several
aspects. One is to properly place the tasks of a job so that
the communication costs can be reduced, or the network con-
gestion can be avoided. Methods like ShuffleWatcher [23],
Corral [24] and SMD [25] are belong to this kind. The second
one is to design the flow-level scheduling to achieve pre-
emptively inter-Coflow forwarding, such as WSS [26] and
SCF/SEBF [27]. The above optimizations may acquire prior
knowledge from the application, such as the specific traffic
volume inside a Coflow. The third one is to dynamically
adjust the topology to match the traffic patterns of Coflow.
The demonstrations have verified the feasibility in the “a
table for two topologies™ [9] and the “OvS” [10]. However,
the specific strategy is not clear in those experiments.

Ill. TRAFFIC PATTERN RECOGNITION AND TOPOLOGY
RECONSTRUCTION

The aim of our recognition is neither simple classification
of size or type, nor the prediction via history data. Instead,
the traffic patterns are expected to be recognized, and the on-
demand topology can be provisioned accordingly. Based on
the aforementioned analyzation, the traffic patterns are gen-
erated from several concurrent computing jobs. If the more
accuracy recognition can be done to know the group of racks
for a job, the more adaptive topology can be reconstructed
to match the traffic pattern of this job. Since all of the traffic
patterns of concurrent jobs are recognized, and the light paths
of the network are reconfigured to adapt the concurrent jobs,
these jobs can be accelerated simultaneously.

It can be noticed that to recognize the traffic patterns with-
out prior knowledge is actually to cluster the racks with strong
connections into a group. If the traffic requests among the
racks are regarded as a weighted graph, the clustering of racks
can be modeled as a weighted graph cutting problem. The
weights in a graph indicates the traffic volume. To achieve
the weighted graph cutting, the basic unsupervised clustering
methods (i.e. the KNN, k-means and community algorithms)
are less efficient. Because the number of the rack groups
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FIGURE 2. Procedure to implement traffic patterns -aware topology
reconstruction.

may not be deterministic. Besides, the KNN or the k-means
is more efficient to cluster the data sequence rather than a
graph. The k-clique method in community algorithms can
be used to cut the graph with multiple full-meshed sub-
graphs, which is inapplicable for our case. (Even the traffic
patterns in a job are clustered and corelative, they are not full-
meshed.) Although the other community method, the fast-
unfolding theoretically can be used, its performances are not
good, the analysis of which can be seen in Section 4. The
spectral clustering algorithm [28] has also been verified to be
suit for the graph cutting. Unlike the community algorithm,
to use the spectral clustering, the number of the groups can
be pre-defined. If such parameter is not previously given,
the cluster number has to be tested by the clustering algo-
rithm until the results are accuracy. The time complexity will
increase. So, the cluster number is expected to be known
at first. To know the group number of the graph can be
modeled as a graph classification problem. The CNN can
extract the graph features via convolutional processing, and
then classify the graphs. In light of these, the traffic pat-
terns recognition method is CNN combined with spectral
clustering.

As for the topology reconstruction strategy, it will benefit
for lowering the CCT, so that the JCT can be decreased.
It is not easy to find a direct method to obtain a topology
to minimize the CCT of a job. Thus, the problem can be
transformed as an optimization model. The optimization goal
is to minimize the CCT in a certain group of clustered traffic.
To solve this optimization model, i.e. to search a topology
which can obtain minimum CCT, the genetic algorithm is
utilized for its fast convergence speed.

The procedure to realize the traffic patterns -aware topol-
ogy reconstruction strategy is shown in FIGURE 2. In the
traffic patterns recognition module, to recognize the traffic
patterns is to identify the job number k in the traffic matrix
via the job number identifier, and then to cluster the racks
to k groups via the job traffic clusterer. The identification of
the job number k is a classification problem. For example,
the traffic matrix with i(i = 1, 2, ..., k) jobs can be marked
as the i class. A trained CNN is utilized to identify the job
number k. After the k is determined, the traffic matrix will
be clustered to k group by the stage-of-art spectral clustering
algorithm. Then, the recognized k groups of traffic will be
sent to the topology calculation module. After searching via
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Algorithm 1 Spectral Clustering
Input: k, TM (TM: Traffic Matrix)
TM <« Relative(TM)
if i = j then

DG, j) = TM(, ))
end if
L=D-TM
L < Normalized(L)
EV = Eigenvector(L)
RG; = K-means(EV, k)
(RGy: k rack groups)

genetic algorithm, a topology with minimal CCT can be
obtained.

A. TRAFFIC PATTERN RECOGNITION

We used CNN to classify the traffic matrix. The CNN con-
tains several convolution layers and an equal number of
pooling layers. As shown in FIGURE 3, the input graphs
are convolved by a convolutional kernel function (i.e. a small
square matrix) to multiple feature maps. Then a pooling func-
tion will subsample these feature maps to smaller size. Then
these feature maps will be sent to next convolution layer and
the corresponding pooling layer. After each convolution layer
and pooling layer, the number of the feature maps increases,
but the size of the feature maps is smaller. The final feature
maps will be set relation to the output vector. The output
vector is used to label the class of the traffic matrix. For
example, we can use k-size hot key vector [29] to represent
k class. When training the CNN, the convolutional kernel
function will be upgraded according to the learning errors.
After multiple learning steps, a best kernel function will be
learned until the error is limited and stationary.

The trained CNN can be used to directly classify a traffic
matrix. After classification, the traffic matrix and the k will
be used as inputs of the spectral clustering model. The outputs
of the spectral clustering are several groups of racks. A cer-
tain job is running on one of these rack groups. The spec-
tral clustering algorithm clusters these groups according to
the relationship between racks. Such relationship is actually
described in the traffic matrix. For example, the element of
i row and j column indicates the relationship of rack i and
rack j. The relationship is strong if the traffic between i and j
is large. Furthermore, the correlative relationship among mul-
tiple racks can also be captured by spectral clustering algo-
rithm. The principle of the spectral clustering algorithm is
that the input traffic matrix will be transformed to a Laplace
matrix. And the eigenvectors of the Laplace matrix will be
calculated. Then, these eigenvectors will be clustered by the
deterministic k-means. The number of the clustering group
is according to the input k. The pseudo-code of the spectral
clustering is shown in “Algorithm 1. Depending on CNN
and spectral clustering, the traffic patterns are recognized
completely.
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FIGURE 3. CNN structure to classify the clustered traffic patterns.

B. TOPOLOGY RECONSTRUCTION STRATEGY

The adaptive topology ready to be reconstructed will be
searched through genetic algorithm. The objective of the
searching is to find a topology which can minimize the CCT.
The CCT calculation cannot directly be represented as
an equation. It can be calculated by mapping traffic
matrix to a certain topology. Using specific routing
(i.e. shortest path in this paper), the traffic flow is assigned
to each network node. And using single queue model, the
process latency of traffic flow in each node can be calcu-
lated. Then, one flow completion time equals to the sum of
the process latencies of routed nodes of this flow. Finally,
the CCT is the maximum flow completion time in the same
job.

The topology searching will be operated to each rack
group. Before the genetic algorithm, each rack ID will
be encoded to a binary vector. A light path can be repre-
sented as a joint vector of two different binary vector of
racks. In the genetic algorithm, pn initial topologies are
randomly generated as the initial genes. And then based on
pn initial topologies, the CCT is calculated, and the fitness
is assigned inversely proportional to the CCT. And in the
subsequent iteration, the Roulette Wheel Selection (RWS)
is used. It means a gene (i.e. a topology) will be selected
obeying the selection probability. The selection probability
is calculated according to the fitness. But in order to accel-
erate the conversion, we set the selection probability of the
topology with smallest CCT to 1. It means that such topology
will appear in next generation definitely. And the one-point
crossover and the simple mutation will be used in every
iteration. After multiple iterations, the genetic algorithm
will stop if the minimum CCT is stationary or due to the

28552

maximum step (i.e. the end condition). Noteworthy,
in every iteration, the CCTs are calculated based on
the shortest path routing. The proper topology may vary
when the routing method is changed. The details of the
genetic algorithm are shown in the following pseudo-code
“Algorithm 2.

Algorithm 2 Topology Searching

Encode()

TS = Initialize(pn) (TS: Topology Set)

while True do
CCT <« CalculateCCT(TS)
Fitness o« 1/CCT
Probability(i) < Fitness(i)/Sum(}_7" Fitness(i))
Maximum(Probability) < 1
TS <« Crossover(TS, Probability)
TS <« Multation(TS, Probability)
TS <« Insert() (insert a random topology)
(next generation of topology)
EndCondition() (break or continue)

end while

IV. SIMULATION EVALUATION

We evaluated the performance of traffic pattern-aware
topology reconstruction strategy by simulation. Specifi-
cally, the classification accuracy of CNN, the cluster-
ing accuracy of spectral clustering algorithm, and the
CCT promotion rate of such strategy have been ana-
lyzed. The simulation is programmed by Python and ran
on a VM from Dell 720 server with 4 CPU cores and
16GB memory.
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FIGURE 4. Four networks to evaluate the traffic patterns-aware topology reconstruction.

A. SETUPS

Four networks are used to evaluate the performance of the
traffic pattern -aware topology. The four networks are drawn
in FIGURE 4. These networks basically have a fixed topology
(e.g. through electrical packet switching (EPS), or optical
packet switching (OPS)). And each node (i.e. rack-level) has
d ports (e.g. in the FIGURE 4, the d = 1 for more visible
view, also in the evaluation) to interconnect the other nodes
to build the reconfigurable light paths. The fixed topology of
the four networks are: Tree, Lattice, Cubic and Small-world.
In the Tree network, all the nodes can be seen to be connected
with a big packet switch. And in the Lattice or Cubic network,
nodes can be fixedly connected as multiple squares or cubes.
While in the Small-world network, fixed topology can be
regarded as multiple full-meshed hexagon cells.

In the simulation, the number of the nodes of all the
networks is 216. So that the traffic matrix is 216 x 216.
Each traffic matrix may contain k jobs, the maximum k
is 6. 1200 traffic matrixes are generated according to a
real job trace from Facebook [14]. In the traffic pattern
recognition, these traffic matrixes will be transformed into
relative ones (i.e. each element in the matrix is no more
than 1) to avoid the potential effect due to the uneven traffic
volume.

The CNN is set with two convolutional layers and
two pooling layers. The input of the CNN is a relative
216 x 216 traffic requests matrix. In the first convolutional
layer, the convolutional kernel is 3 x 3 and the outputs are 32
150 x 150 feature maps. And these feature maps are reshaped
to by the first 3 x 3 pooling layer to 72 x 72. Then the 32
72 x 72 maps are input to the second convolutional layer; the
outputs are 64 72 x 72 feature maps. After the second 3 x 3
pooling layer, the 64 feature maps are reshaped to 24 x 24.
The output layer uses the 64 feature maps to map a vector with
6 elements. In the spectral clustering, the k-means is used as
the eigenvalue clustering method. In the genetic algorithm,
the population number pn=10.

1000 pairs of traffic matrix and the previously known k are
used to train the CNN. And the residual 200 traffic matrixes
are used to test the trained CNN. Then, based on these
200 traffic matrixes, the job traffic clustering and topology
reconstruction have been evaluated.
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FIGURE 5. The classification results of CNN.

B. TRAFFIC RECOGNITION ANALYZATION

The classification accuracy of the CNN is evaluated. In the
evaluation, we compare the performance of two CNNSs, one is
with 3 convolutional layers and 3 pooling layers (depicted as
blue spot in FIGURE 5), the other is with 2 convolutional lay-
ers and 2 pooling layers (depicted as grey spot in FIGURE 5).
It can be seen that the CNN with more layers can achieve fast
convergence along learning steps. However, the training time
of each learning step is much longer than the CNN with less
layers. Though the CNN with less layers converges slowly
and shows less classification accuracy, the training speed is
fast. So, we used the CNN with 2 convolutional layers and
2 pooling layers as aforementioned, because the accuracy
deterioration is not evident. The following analyzation is
based on this.

In the training process, the classification accuracy of the
traffic matrix can arrive to 96.8%, and when testing, the accu-
racy can keep at 88.1%. And based on the 200 traffic matrixes,
the accuracy of traffic pattern clustering is also evaluated in
FIGURE 6 (b). This accuracy in spectral clustering is defined
as:

k
1 E;
Z 1= =
r 4R
In clustered group i, the E; is the number of the missing and

wrong nodes, and the »; is the actual number of nodes. In the
FIGURE 6 (b), it can be observed that, when the k increases,
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FIGURE 6. (a) The average clustering accuracy by spectral clustering
algorithm. (b) The average iteration step by genetic searching algorithm.

the clustering accuracy drops. This is because the k£ groups
may overlap. But a certain node can only be clustered to only
a group, so the overlapped nodes may be missing in other
groups.

We compared the performances of spectral clustering and
the fast-unfolding algorithm. When using the fast-unfolding
algorithm, the average accuracy can reach almost 0. This
is because the k is always falsely recognized by the fast-
unfolding method. It proves that the community algorithm
cannot be used in our cases.

We also analyzed some key performance indexes of spec-
tral clustering, including root mean square standard devia-
tion (RMSSTD), the R-square (RS) and the calinski_harabaz
index (CH). The smaller RMSSTD indicates more accurate
clustering. The RS is a number between 0 and 1. When the
RS is closer to 1, it means the clustering results are more
approximate to real data. And the CH index can be used to
compare the inter-group distance and intra-group distance.
The higher CH means the larger inter-group distance and
smaller intra-group distance, and ultimately, better clustering
performances. The average RMSSTDs under different k are
depicted in FIGURE 6. (a). The average RSs of k are shown
in FIGURE 6. (b). In FIGURE 6. (¢), it can be seen that the
CHs get highest when the k is accurately given. This can
prove the efficiency of our hybrid methods.

C. TOPOLOGY RECONSTRUCTION ANALYZATION

In the topology calculation, the convergence rate of the
genetic algorithm is evaluated in FIGURE 6 (b). The number
of convergence step decreases by growth of k. Because the
bigger k indicates smaller number of nodes in a group. The
number of light paths is limited, so the convergence step is
lower.

And the CCT promotions based on calculated topology
(via the traffic patterns -aware reconstruction, the TATR
reconstruction and periodical reconstruction) are compared to
the traditional b-matching reconstruction in FIGURE 8. The
promotion is using CCT based on b-matching divided by the
CCT based on other topology reconstruction methods.

Under the traffic patterns -aware reconstruction, the CCT
promotions rise when the k is larger. The reason is that when
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the network scale increases, the communication costs within
a small group of nodes have larger probability to be higher.
This is because the network distance (i.e. hops) between
nodes may be longer. In this case, the traffic patterns -aware
reconstruction strategy can recognize the traffic correlation
in large-scale and revise the mismatch between topology and
traffic. So, the topology strategy for the clustered traffic can
give better optimization on larger k clustered traffic.

Under the TATR, the CCT promotion is lower when & is
smaller. And when the k grows, the CCT promotion of
TATR gets better than b-matching. Because the TATR can
partly restrict its reconstructions in a certain cluster. But the
TATR does not aim to accelerate the CCT, thus, the promotion
is limited.

Oppositely, the periodical reconstruction may strongly
impact the flatten network (i.e. the small world, the cubic and
the lattice network). And when the k increases, the objectless
periodical reconstruction can cause huge mismatch between
traffic and topology, and ultimately the performance of peri-
odical reconstruction gets worse.

D. TIME COMPLEXITY ANALYSIS

The time complexity of CNN is O(F2 -K?. Ci-C,). The F is
the maximum size of feature maps, the K is the maximum of
convolution kernel. And the C;/C, is the input/output dimen-
sion. In this paper, the F is 72, the K is 3, and the C;/C, is 1.
And the time complexity of the spectral clustering method
is determined by the method for computing the eigenvalues.
It could be O(n?) or O(n?). In this paper, we choose method
with time complexity of O(n). The community clustering
method’s time complexity is O(mn), in which n is the vertex
size, and the m is the edge size. When the graph is denser,
the O (m) can be closer to O (n%). (When the graph is full-
meshed, the m=n(n—1)/2, thus O (m) is O (n?).) In this paper,
the traffic matrix is dense. Thus, if the community method is
used, the complexity will arrive O (1%).

As for the topology searching, the time complexity is
mainly impacted by the iteration steps, namely nT. The n is
the step number of iterations, and the T is the average time
for each iteration. In [22], it uses global searching, the n and
the T are both higher. However, in this paper, the topology is
only searched in each cluster. Thus, the n and the 7' is much
smaller.

Besides the above theoretical analysis, we also evalu-
ated the real time of clustering and topology searching
in Section 6.

E. ADVANCED DISCUSSION

How does the classification error in CNN impact the clus-
tering, and then the CCT promotion? If the deviations of is
larger in classification, the accuracy is worse in clustering.
In order to detail this phenomenon, as shown in FIGURE 9,
a clustering (i.e. the real k is 3) under k from 2 to 6 is
evaluated. It can be seen that when the accuracy goes worth
when the k is 2 or 6. Based on the wrong clustering, we also
evaluate the corresponding CCT. When the k is too larger
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FIGURE 7. (a) The RMSSTD of spectral clustering algorithm. (b) The
R-square of spectral clustering algorithm. (c) The CH index of spectral
clustering algorithm.

against the real, the CCT promotion is much worse. This
may because the over-clustering breaks the correlative of the
traffic. And it can be also noticed that comparing the four net-
works, the Tree topology which gets highest promotion when
k is accurate shows severer deterioration when k is incorrect.
To illustrate the reason for this case, we can trace back to the
fixed topology of each network. Each fixed topology shows
different performance originally. For example, in the network
with Lattice topology, the CCT is larger because the traffic
may suffer more hops (e.g. the Lattice network). While in
the network with Tree topology, the CCT increases due to
more probability of congestion. But the Small-World fixed
topology naturally has shorter average network distance, and
the CCT may be lower than other topologies. When the
traffic patterns are accurately recognized, and the topology
is properly reconstructed, the CCT can be accelerated more
(e.g. though the absolute CCT on Tree is lower than the
CCT based on Small-World, the CCT promotion is higher)
because the reconstructed topology can gloss over the natural
defects of fixed topology. On the contrary, when the recog-
nition is bad, and the topology mismatches, the CCT may be
directly influenced by the nature of fixed topology.

But how worse the & is when the classification goes wrong
in CNN. It has also been analyzed. When the is mistakenly
classified, the & is not far from the real one, namely just close
toit (e.g. the real k is 3, the wrong k may be 2 or 4 under large
probability). So, even the CNN is not accurate, but the final
CCT promotion may not be impacted a lot.
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FIGURE 9. The average CCT promotion deterioration caused by
classification error.

How does the clustering error in spectral clustering
algorithm impact the CCT promotion? When recalling the
definition of the clustering accuracy, the wrong, missing
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FIGURE 10. The average CCT promotion deterioration caused by
clustering error.

nodes can increase the error rate. Actually, based on our
analyzation, the wrong nodes are really rare in the spectral
clustering, the missing nodes contribute more to the error
rate. And the missing nodes are caused by the overlap of
the jobs. But what is the incentive in the spectral clustering
that judges the overlap nodes into a certain group? According
to the principle of the spectral clustering, when the traffic
volume between two nodes is larger, the two nodes may be
clustered together more probably. So, the missing nodes may
have weaker connections to a first group, but have stronger
connections to a second group. As a result, these missing
nodes will be clustered to the second group, and then the
accuracy of the first group decreases.

To verify the influence of the missing nodes, the CCTs have
been evaluated under the real group or under the group from
the spectral clustering, as shown in FIGURE 10. The deterio-
ration is not evident. It may be because that the heavy traffic
has been clustered. And compared to the heavy traffic, such
missing nodes with small traffic demands may not strongly
impact the CCTs.

How far is the difference between the clustered traffic
aware topology reconstruction and the b-matching? It has
been compared by the monochrome pictures, as shown
in FIGURE 11. Ranging in partial network nodes (i.e. from
100 to 200), only light paths for one group of traffic are
depicted for more visualization. The black pixel represents
a light path. The FIGURE 11 (a) shows the light path distri-
bution under b-matching, while the FIGURE 11 (b) shows the
light path distribution under traffic patterns -aware strategy.
The distribution of the light paths under two reconstruction
strategies are much difference due to very little coincidence of
the black pixels. We cannot verify to enlarge the throughput
and to accelerate the CCT are contradictions. But they are
really two optimization directions.

How about the small Coflow? Someone may argue that
small Coflows are relatively small. How these Coflow can
be recognized. Actually, our work is to treat the Coflow
which has inter-rack communications. So, the relatively small
Coflow is not considered. But if the ignorance will deteriorate
the CCT? Because the jobs with small Coflow may be running

28556

100
90
80
70
60
50
40
30
20
10

20 40 60 80 100
b-matching

(a)
100

90
80
70
60
50
40
30
20
10

20 40 60 80 100
traffic patterns -aware

(b)
FIGURE 11. Light path distribution based on (a) b-matching; (b) traffic

patterns-aware topology reconstruction (a black pixel represents
a light path).

within a rack, so that the inter-rack communications are not
required, and the ignorance may not impact them.

V. EXPERIMENTAL DEMONSTRATION
Then the topology reconstruction strategy is also demon-
strated in an experimental way. In the experiment, 16 nodes
were originally connected as a Tree topology and then the
Small-world topology. Each node had a port to build a light
path. The light path could be reconfigured via control of the
fast optical switching matrix (~300ns). Under each switch-
ing node, two VMs were started up to run the computing
jobs. The Spark was used as the computing framework. The
HiBench [30] was deployed as the computing job bench-
mark. Two types of jobs, the Sort and the WordCount were
mixed to run on the network to generate 20 clustered traffic
patterns (the maximum k is 4). The traffic matrix of each
traffic pattern has been known via previous measure of the
job communications. Based on recognition of these traffic
pattern, the topology strategies were calculated.

We firstly tested the real processing time of clustering and
topology searching. In FIGURE 12. (a), it can be observed
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FIGURE 12. (a) The real computation time of clustering method
(SC: spectral clustering; CC: community clustering). (b) The real
computation time of topology searching; (C: our clustered
approach; G: global approach in [22]).
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FIGURE 13. The JCT evaluation for different number of k (ranges
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FIGURE 14. The JCT evaluation for different types of job (1: the traffic
patterns -aware topology; 2: b-matching topology; 3: TATR; 4: Periodically
reconstruction).

that the processing time of spectral clustering is a little higher
than community clustering. However, the latter method suf-
fers low accuracy rate. The processing time of global search-
ing method in [22] and our clustered approach are shown
in FIGURE 12. (b). The processing time of global searching
is much higher than ours. The efficiency of our work can be
verified then.

Then we evaluated the average JCT of different k, under
periodical strategy, TATR strategy, b-matching strategy and
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the traffic patterns -aware strategy. In FIGURE 13, it can be
confirmed that the absolute JCT on the network with fixed
Small-world topology is lower, but the JCT can be accelerated
more on the network with fixed Tree topology.

The average JCTs of Sort and WordCount are also com-
pared. In FIGURE 14, it can be seen that the Sort job can
obtain better performance. This may be because the Sort
is the network-intensive job [10]; the traffic requests from
Sort job is larger than WordCount. So, if the communication
costs of Sort job are reduced by the topology reconstruction,
the JCT of this job can be much lowered.

In the experiment, the parameter that may influence
the JCT is the clustering result. Follow the simulation
if FIGURE 9, we analyzed the JCTs when the k varies on
the small world network. In the FIGURE 15, it can be found
that the JCT is lowest when the k is correct. And the k is less
accurate, the JCT will be longer.

VI. CONCLUSION

To fully explored the topology flexibility of optical network
to optimize the computing application in DCs, this paper
proposed the traffic patterns -aware topology reconstruction
strategy. To face the challenge of traffic patterns recogni-
tion, the CNN plus spectral clustering model is utilized to
recognize the traffic patterns without prior knowledge from
application. Based on the recognized patterns, the topology
strategy for minimizing the CCT via genetic algorithm has
been verified the good performance through both simulation
and experiment way. Therefore, the performance of comput-
ing system can be promoted. Although the evaluation is based
on a few kinds of networks, such strategy can be utilized in
any other optical architecture which is capable for topology
reconstruction.

On the other side, in some cases, especially when the jobs
are overlapped for larger scale, our approaches suffer perfor-
mance deteriorations. However, such cases are less. In most
cases, our methods can efficiently optimize the computing
jobs.
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