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ABSTRACT We present the greedy optimal algorithm for contention resolution (GOAL-CR), a greedy
algorithm that solves a variant of the standard contention resolution problem where a set of nodes want to
access a shared resource only once, and the objective is to minimize the time it takes for all the nodes to
access the resource successfully. These assumptions hold, for instance, in event reporting applications or in
the cluster formation phase of wireless sensor networks. We formally prove that the GOAL-CR computes
access policies that minimize the expected contention resolution time. We also show, numerically, that the
performance of the greedy policies is close to that of a protocol with complete information about the exact
number of nodes that have not yet accessed the resource; this latter assumption is hard to fulfill in practice
but allows the derivation of a lower bound for the problem. In addition, we show how to adapt the algorithm
to scenarios where there is uncertainty in the initial number of nodes and to scenarios where nodes have very
limited memory. Finally, we use simulations to show the robustness of the GOAL-CR against asynchronous
starts.

INDEX TERMS Algorithms, contention resolution, greedy algorithms, optimization, random algorithms,
wireless sensor networks.

I. INTRODUCTION
The standard contention resolution problem consists of devis-
ing a protocol that allows a set of n nodes to access a shared
resource when there is no form of communication among
them. The synchronous version of the problem assumes that
time is divided into discrete time slots and that the resource
can be accessed by at most one node in every single slot, that
is, if two or more entities attempt to access simultaneously
they lock each other out, and none can access the resource
during the slot. This problem occurs, for example, in dis-
tributed systems where a set of n processes want to access
a shared database or in wireless networks where nodes share
a communication channel.

The most common solution for the contention resolution
problem uses randomization as follows: during each slot,
each of the nodes tries to access the resource with probability
p > 0 independently of the other nodes. The value of p = 1/n
is the one that maximizes the probability that exactly one,
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out of n nodes, tries to access the resource [1]. In this paper,
we solve a variant of the standard contention resolution prob-
lem in which the nodes need to access the shared resource
only once, and the goal is to minimize the expected value of
the number of slots needed for all nodes to access the resource
successfully, hereafter defined as contention resolution time.
Since the number of nodes decreases each time a successful
access occurs, it is suboptimal to use a fixed probability p
during the whole duration of the contention. Instead, nodes
should try to access the resource at each slot t with probability
pt = 1/At where At is the number of active nodes at slot t .
However, because nodes cannot communicate among them-
selves, they cannot know the current number of active nodes
At . In this work, we address the problem of computing the
sequence of probabilities {pt }, which we will refer as policy,
that minimizes the expected value of the contention resolution
time without assuming that the nodes know, or can estimate,
the value At .

The primary motivating application for this variant of the
problem is the cluster formation phase of routing protocols
for wireless sensor networks (WSNs). Routing in a WSN is
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different from other wireless networks because sensors have
energy constraints and they can be randomly deployed. For
such scenarios, protocols like LEACH [2] are implemented to
periodically produce strategic clusters that allow to establish
hierarchical routing schemes and to balance the sensors’
energy consumption. Each time the clusters are reorganized,
the protocols run a set-up phase in which each sensor sends
a single packet through a broadcast communication chan-
nel with information about its current location and energy
level. Minimizing the contention resolution time of the set-up
phases not only impacts metrics like channel utilization,
throughput, and energy consumption but also impacts critical
metrics like the response time of a WSN to a catastrophe like
a wildfire or an earthquake [3].

In the context of WSNs, it is common that nodes attempt
transmissions following a CSMA protocol with a fixed trans-
mission probability p. The value of p is appropriately selected
at the beginning of the network operation for some particular
condition, and then, the nodes use it all along the random
access [4]; in [5], for example, the nodes attempt transmis-
sions with the value that maximizes their chances of suc-
cessfully transmitting a message within a delivery deadline.
Unfortunately, although the use of a fixed optimal value of
p saves energy by avoiding extra computation in the nodes,
it entails a sub-optimal average contention resolution time
of O(n log n) and ω(n1−ε log n) slots for any ε > 0 (see
Appendix B-2). On the other hand, adaptive strategies that
maximize channel utilization by tuning the value of p at run-
time, e.g., [6]–[8], entail an increased cost regarding energy
utilization since they require the nodes to estimate the net-
work traffic conditions continuously. In [6], the nodes sense
the channel to measure the average number of idle slots
and the average number of slots that resulted in a collision.
Backoff approaches like [7] also require to keep track of
past trials of transmission. Bruno et al. [8] show that the
optimal capacity of p-persistent CSMA is achieved when
p = 1/At and point out that, in general, it is difficult to
have a precise knowledge of the number of active nodes.
An alternative solution consists in continuously computing
the current number of active nodes at the base station and
then broadcasting the optimal value of p; however, this infor-
mation would have to be reliably transmitted to the remain-
ing sensors, which increases delay and reduces throughput.
Therefore, new approaches must be developed to approxi-
mate the optimal contention resolution time without neither
increasing energy consumption nor using extra bandwidth.

A. PROPOSED SOLUTION
In this paper, we introduce the Greedy Optimal Algorithm for
Contention Resolution (GOAL-CR). GOAL-CR attempts to
provide the advantages of both fixed and adaptive schemes
while reducing their respective disadvantages; to achieve
this, our algorithm considers the probable evolution of the
contention and computes, offline, the appropriate sequence
of access probabilities. In this way, the nodes do not need to
waste energy computing the right access probabilities during

the run-time of the contention, and still use access proba-
bilities that result in contention resolution times close to the
optimal.

More specifically, GOAL-CR maintains a probability dis-
tribution of the number of active nodes and, for each time
slot t , chooses as access probability the one that maximizes
the likelihood of a successful resource acquisition given the
current distribution of active nodes. We prove that the com-
puted sequences minimize the expected contention resolution
time. Moreover, we show, using simulations, that GOAL-CR
achieves contention resolution times close to the resolution
times of a protocol with perfect information, where nodes
know the exact number of active nodes At at all times. The
perfect-information protocol has expected resolution time of
order 2(n) (see Appendix B-1). In this sense, GOAL-CR
performs similarly to the best possible protocol.

In addition to minimizing the contention resolution time,
GOAL-CR has another useful property. It can be used in sce-
narios where the exact number of nodes that will participate
in the contention is not known for sure. For example, when
a group of sensors is deployed from an aircraft to track the
dynamics of a wildfire, some of themmay fail. In such a case,
a probabilistic model of the number of surviving sensors can
be proposed and incorporated into the algorithm as the initial
distribution of active nodes.

II. GOAL-CR: GREEDY OPTIMAL ALGORITHM FOR
CONTENTION RESOLUTION
As we mentioned, the objective of GOAL-CR is to build
a sequence of access probabilities (or policy) that mini-
mizes the expected contention resolution time. In order to
use combinatorial optimization methods, we constrained the
available access probabilities pt to be in a finite set B. This
discretization is similar to how actions and states are dis-
cretized when one wants to use reinforcement learning in
continuous environments [9]. The resulting discrete problem
can be modeled as a partially observable Markov decision
process (POMDP) [10] where the partial observability is in
the uncertainty about the number of active nodes and the
decisions are the probabilities chosen at each step. Solv-
ing a general POMDP is computationally hard (in [11] this
problem is shown to be PSPACE-complete), however, in this
paper we show that the specific instances that result from
minimizing the expected contention resolution time can be
solved in polynomial time using GOAL-CR.

GOAL-CR is a greedy algorithm that at each step selects
the access probabilities that minimize the expected value of
the number of active nodes at slot t+1, given the distribution
(or belief) of active nodes at slot t . This is equivalent to
maximizing the probability of having a successful access at
slot t (see Proposition 1 of Appendix A). More precisely, let
π = (g1, . . . , gT ) denote a particular policy computed by
GOAL-CR, and let Aπt denote the random variable that counts
the number of active nodes at slot t when following policy
π . GOAL-CR (see Algorithm 1) receives an initial belief a[·]
with valuesP(Aπt=0 = i), i.e., a vector denoting the probability
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Algorithm 1 GOAL-CR
Input: a = initial belief of active nodes, T = length of the

policy, B = finite set of available access probabilities.
1: for t = 1 to T do
2: gt = argmaxq∈B

∑
i iq(1− q)

i−1a[i]
3: for all i do
4: failure = (1− igt (1− gt )i−1)a[i]
5: success = (i+ 1)gt (1− gt )ia[i+ 1]
6: a′[i] = success+ failure
7: end for
8: a[·]← a′[·]
9: end for

Output: π = {g1, g2, · · · , gT }

of having i active nodes at the beginning of the network
operation. Then, the purpose of each iteration t of the outer
for-loop is to add a new access probability to policy π and
to maintain an updated belief of active nodes. Accordingly,
GOAL-CR chooses the probability gt from B that maximizes
the chances of having a successful resource acquisition

(
i.e.,∑

i iq(1 − q)
i−1P(Aπt = i), line 2

)
and updates the belief of

active nodes based on its current choice. The belief-updating
procedure is computed in the inner for-loop using the obser-
vation that Aπt+1 takes a particular value i with probability:

P(Aπt+1 = i) = P(Aπt+1 = i|Aπt = i)P(Aπt = i)

+P(Aπt+1 = i|Aπt = i+ 1)P(Aπt = i+ 1)

where P(Aπt+1 = i|Aπt = i) = 1 − igt (1 − gt )i−1 (line 4)
and P(Aπt+1 = i|Aπt = i + 1) = (i + 1)gt (1 − gt )i (line 5)
are the probabilities of having a failed or a successful access
respectively.

In Theorem 1 (see Section III), we show that our algorithm
gives a policy that yields the minimum expected number of
active nodes for all time slots t among all policies that only
use probabilities in the set B. Therefore, we can think of
GOAL-CR as an algorithm that produces both, a rigorous
upper bound on the (global) minimum expected number of
active nodes for any time slot t and set B, and a policy that
achieves such upper bound. To get a reasonable upper bound,
we included in B the values of the probabilities that nodes
would use if they knew the exact number of active nodes at
each time slot, i.e., B = {1/n, 1/(n − 1), . . . , 1/2, 1}. Our
simulation results show that this choice of B gives results very
close to the performance of a perfect-information protocol
that knows the exact number of active nodes at all time slots.

Regarding the input parameter T , we chose a sufficiently
large value so that the expected number of active nodes at
time slot T is close to zero. Our empirical evidence shows
that

∑
i iP(A

π
T = i) ≈ 0 when T ≈ 3 · n. This motivates us to

formally show, in future works, that the expected contention
resolution time of GOAL-CR is O(n).
To illustrate the behavior of the proposed algorithm,

in Fig. 1 we show the evolution of the distribution of active
nodes Aπt when using a greedy policy and an optimal fixed

Algorithm 2 Continuous GOAL-CR
Input: a = initial belief of active nodes, T = length of the

policy.
1: for t = 1 to T do
2: gt = argmaxq∈[0,1]

∑
i iq(1− q)

i−1a[i]
3: for all i do
4: failure = (1− igt (1− gt )i−1)a[i]
5: success = (i+ 1)gt (1− gt )ia[i+ 1]
6: a′[i] = success+ failure
7: end for
8: a[·]← a′[·]
9: end for

Output: π = {g1, g2, · · · , gT }

probability to solve the contention in a network of size n =
200. Observe that the probability mass moves from n to
0 in both cases, but moves faster when using the greedy
policy. Also, notice that the distribution of active nodes tends
to be concentrated around its mean, this property increases
the chance of selecting the right access probability at each
time slot and explains why the performance of the greedy
policies is close to the performance of the perfect-information
protocol.

The running time of GOAL-CR isO(T · (n ·b+n)) where b
is the cardinality of B. Thus, our choice of B = {1/n, 1/(n−
1), . . . , 1/2, 1} results in a running time ofO(T ·n2).We could
obtain slightly better bounds if we increased the granularity
of the set B but at the cost of increasing the running time. The
final granularity of the setBwill depend on the computational
resources at hand. As an example, consider the scenario
where a WSN is deployed, and the sensors try to inform
a base station of its existence. The policies could either:
i) be computed by a node designated as base station and
then broadcasted to the remaining nodes; or ii) be computed
prior the network deployment by a powerful computer and
then stored in the memory of the nodes. In the former case,
the computational capacity, memory, and energy are very
restricted and hence, having a low complexity algorithm is
of paramount importance. In the latter case, the plentiful of
computational resources allows to trade more complexity for
performance gains.

A. CONTINUOUS GOAL-CR
In this section, we introduce amodification ofGOAL-CR (see
Algorithm 2) where we replaced the optimization problem
of line 2 of Algorithm 1 with a continuous optimization
problem, i.e., instead of optimizing over the discrete set
B, continuous GOAL-CR optimizes over the whole interval
[0, 1], namely

gt = argmaxq∈[0,1]
n∑
i=0

iq(1− q)i−1a[i] (1)

In Section III, we argue that the proof of correctness of
the basic algorithm still applies in the continuous case as
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FIGURE 1. Evolution of the distribution of active nodes given a network of size n = 200. During the run-time of the contention,
the nodes either (a) adjust their access probability following a policy computed by GOAL-CR or (b) attempt to access the resource
with a fixed optimal probability computed at the beginning of the network operation.

long as we have a method to solve the above optimization
problem. Fortunately, the function defined in (1) is a poly-
nomial of degree n + 1 of a single variable q. Thus, to find
the value of q that maximizes the likelihood of a successful
resource acquisition, we just need to compute all the real
roots in [0, 1] of the polynomial of degree n that results
from differentiating (1) and picking the one that achieves
the maximum. The problem of finding all the real roots of
a polynomial of degree n on a given interval is a funda-
mental task in computer algebra, and many methods have
been developed to solve it. The best-known algorithm has
bit complexity of O(n3 + rn2) where r is the number of bits
needed to represent the coefficients of the polynomial [12].
Hence, the overall complexity of continuous GOAL-CR is
O(T ·n3+T ·rn2), which is an order of magnitude worse than
the basic GOAL-CR. Nevertheless, this continuous version
computes global optimal policies, i.e., policies that mini-
mize the average contention resolution time over all possible
policies and not just over the policies where each access
probability is restricted to be in the set B. Besides, although in
the worst case we need to pay an extra order of magnitude to
compute global optimal policies, in practice, the optimization
problem is usually a unimodal function of q. As an example,
observe the plots in Fig. 2 that correspond to the optimization
problem (1) at different times of the execution of GOAL-CR

given a network of size n = 100. Due to this property,
a fast optimization algorithm that simply finds local optima,
like quasi-newton, would suffice to compute global optimal
policies.

III. ANALYSIS
The main objective of the proof of correctness of GOAL-CR
is to formalize the intuitive notion that maximizing the proba-
bility that exactly one node tries to access the resource at each
slot is always the correct decision if onewants tominimize the
expected contention resolution time. Or alternatively, that it
is not possible to increase the likelihood of having successful
accesses in future slots by not using the probability that maxi-
mizes the chances of having a successful access at the current
slot. The analysis is organized as follows. First, we show in
Proposition 1 (see Appendix A) that given the belief of active
nodes at slot t , minimizing the expected number of active
nodes at slot t+1 is equivalent to maximizing the probability
of having a successful access at slot t . Next, in Proposition 2
(see Appendix A) we show that, independently of the policy,
the difference between the expected values of the number of
successful accesses, when the number of initial nodes differs
by one, is small (less than one). Lastly, in Theorem 1 we
combine both results with an exchange argument to show the
optimality of the greedy algorithm.
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FIGURE 2. Plots of the optimization problem (1) at different times t of
the execution of GOAL-CR, given a network of size n = 100.

Theorem 1: For any initial distribution of active nodes,
GOAL-CR computes a sequence of access probabilities that
minimize the expected value of the number of active nodes for
all time slots t.

Proof: Consider an optimal sequence of access proba-
bilities π0 = (p1, ..., pt ) that produces the minimum expected
number of active nodes at slot t . We are going to show
that it is possible to gradually transform π0, preserving
its optimality at each step, into a sequence where each
access probability has been selected according to the greedy
rule.

Let r ≤ t be the first time slot when policy π0 does not use
the greedy rule, i.e., the access probability pr is not equal to
gr = argmaxq∈B

∑
i iq(1 − q)i−1P(Aπ0r = i). Let π1 be the

same policy as π0 but with pr replaced with gr . We show that
E[Aπ1t ] ≤ E[Aπ0t ].
Let Wπ

t be a random variable that indicates the number
of successful access up to slot t under policy π . We can
express the number of active nodes at slot t under policy
π as Aπt = n − Wπ

t and therefore, minimizing E[Aπt ]
is equivalent to maximizing E[Wπ

t ]. We write Wπ
t =

Xπ + Zπ + Y π where Xπ , Zπ and Y π count the num-
ber of successful accesses in the interval from 0 to r − 1,
the slot r , and the interval from r + 1 to t respectively.
The expected value of Wπ

t is E[Wπ
t ] = E[Xπ ] + E[Zπ ] +

E[Y π ]. Using the following two observations we show that
E[Wπ1

t ]− E[Wπ0
t ] ≥ 0.

The first observation is that E[Xπ0 ] = E[Xπ1 ] since both
policies are identical up to slot r − 1.
The second observation is that E[Zπ ] is equal to the proba-

bility of a successful access at slot r ; hence,E[Zπ1 ] ≥ E[Zπ0 ]
because π1 is using the greedy rule.

Let Sπr denote an indicator r. v. of a successful access
at slot r under policy π . Let P[Sπr ] and P[Fπr ] denote the

probabilities P[Sπr = 1] and P[Sπr = 0] respectively. We use
the law of total expectation to obtain:

E[Y π ] = P[Sπr ]E[Y
π
|Sπr ]+ (1− P[Sπr ])E[Y

π
|Fπr ]

= E[Y π |Fπr ] + P[Sπr ](E[Y
π
|Sπr ] − E[Y π |Fπr ]).

We claim that E[Y π0 |Sπ0r ] = E[Y π1 |Sπ1r ] because, up to
this point, both policies only differ at slot r , more precisely,

E[Y π0 |Sπ0r ]

=

n∑
i=0

P (Aπ0r = i)E[Y π0 |Sπ0r , A
π0
r = i]

=

n∑
i=0

P (Aπ1r = i)E[Y π0 |Aπ0r+1 = i− 1]

=

n∑
i=0

P (Aπ1r = i)E[Y π1 |Aπ1r+1 = i− 1] = E[Y π1 |Sπ1r ],

where in the second to last step we used the fact that
P(Aπ1r = i) = P(Aπ0r = i), since both policies are the same
before slot r , and that the equality E[Y π0 |Sπ0r ,A

π0
r = i] =

E[Y π0 |Aπ0r+1 = i−1] holds since if at slot r therewas a success
and the number of active nodes was i, then at slot r + 1 the
number of active nodesmust be i−1. Lastly, in the last stepwe
used the equality E[Y π0 |Aπ0r+1 = i− 1] = E[Y π1 |Aπ1r+1 = i−
1] that holds because both policies are the same in the interval
from r+1 to t andwe are conditioning on the number of active
nodes at the beginning of the interval. An analogous argument
shows that E[Y π0 |Fπ0r ] = E[Y π1 |Fπ1r ] is also true. Using the
above results we can write the difference E[Wπ1

t ]− E[Wπ0
t ]

as follows:

E[Wπ1
t ]− E [Wπ0

t ] = (1+ β)(P[Sπ1r ] − P[Sπ0r ]),

where β = E[Y π1 |Sπ1r ] − E[Y π1 |Fπ1r ] = E[Y π0 |Sπ0r ] −
E[Y π0 |Fπ0r ]. Because π1 uses the greedy rule, we know that
P[Sπ1r ] − P[Sπ0r ] ≥ 0; therefore, to finish the proof, it only
remains to show that β is greater or equal to −1:

−β = E[Y π1 |Fπ1r ]− E[Y π1 |Sπ1r ]

=

n∑
i=0

P(Aπ1r = i)(E[Y π1 |Fπ1r ,A
π1
r = i]

−E[Y π1 |Sπ1r ,A
π1
r = i])

=

n∑
i=0

P(Aπ1r = i)(E[Y π1 |Aπ1r+1 = i]

−E[Y π1 |Aπ1r+1 = i− 1])

We can now apply Proposition 2 (see Appendix A) to
the difference inside the parenthesis since one can see
E[Y π1 |Aπ1r+1 = i] as the expected value of a new process that
follows policy π1 starting from slot r+1 and where the initial
number of nodes is i. This gives −β ≤ 1.
We can apply this exchange argument until transforming

π0 into the greedy policy, completing the proof. �
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Corollary 1: If the optimization problem

gt = argmaxq∈[0,1]
n∑
i=0

iq(1− q)i−1a[i]

is solved to optimality, then continuous GOAL-CR computes
a sequence of access probabilities that minimize the expected
value of the number of active nodes for all time slots t.

Proof: The proof of correctness of GOAL-CR only
requires that the algorithm selects the optimal access proba-
bility at each slot t . In the case when B is finite, the optimality
is easily guaranteed by iterating over all possible values in
B. Therefore, if in the continuous case we assume that we
have a method for computing the optimal access probability
in the whole interval [0, 1], then the proof of correctness of
GOAL-CR still follows unchanged. �

IV. ROBUSTNESS OF THE GREEDY ALGORITHM
As we saw in Section III, one of the disadvantages of the
greedy algorithm is that its optimality is based on the sup-
position that all nodes start executing the policy at the same
time. However, there might be scenarios where this suppo-
sition does not hold, like in the wildfire example discussed
in Section I. We ran experiments where we simulated delays
with a geometric distribution of parameter φd and observed
that, although the resolution times obtained by policies gen-
erated using the greedy algorithm increase with φd , they still
outperform the resolution times obtained when using a fixed
optimal probability.

Another disadvantage of the greedy algorithm is that it
requires the nodes to have enough memory to store the whole
sequence of access probabilities, which might be infeasible
for very low-memory sensors. In the next section, we address
this difficulty by proposing a procedure to build a function
of few parameters that approximates the policy obtained by
GOAL-CR. With this approach, the nodes only need to store
the current time slot and the parameters of the function to get
the access probability pt . Moreover, broadcasting a parame-
terized function consumes less resources than broadcasting a
whole policy; hence, this solution is also of practical interest
in scenarios where the sink node has to compute and share the
access policy. Our simulation results show average contention
resolution times close to the ones obtained with GOAL-CR
using just two parameters.

V. LOW-MEMORY NODES
The last decades have seen the successful miniaturization of
sensors for its use in WSNs. Unfortunately, small sensors
usually have storage limitations because memory is the pri-
mary determinant of both chip area and energy budget [13].
Therefore, it is not practical for small sensor devices to
store a whole sequence of access probabilities. Nevertheless,
the policy computed by GOAL-CR can still be used to build
a function

p(t|α1, · · · , αk )

TABLE 1. Standard growth functions that we propose to fit the greedy
policies. The hyperparameter n is the expected size of the network.

of few parameters α1, · · · , αk that gives the access proba-
bilities for each time slot t . To approximate the sequence of
access probabilities obtained by GOAL-CR, we considered
four different models and used the standard weighted nonlin-
ear least squares method [14] to optimize their parameters.
More precisely, our procedure consists of choosing a param-
eterized model p(t|α1, α2), a sequence of weights {wt }, and
then minimizing the weighted square error

T∑
t=1

wt (p(t|α1, α2)− pt )2.

We utilized the weighted version since we needed to give
more importance to the access probabilities as they get closer
to the beginning of the sequence. This is because the opti-
mality of the access probability pt computed by GOAL-CR at
slot t is based on the assumption that the correct probabilities
{p1, · · · , pt−1} where used from slot 1 to slot t − 1, thus
an error in the access probability at slot t would affect the
optimality of all subsequent steps. For this reason, we selected
weights that decay exponentially fast with t , i.e., wt = γ t

where γ is an hyperparameter in (0, 1] that measures the
exponential decay rate.

We tested the parameterized models of the standard growth
functions of Table 1 using the actual average contention reso-
lution time obtained using simulations (see the Experimental
Results section) as performance measure. Specifically, for
each model we:

1) solved the weighted least squares problem for values of
γ between (0, 1] in increments of 0.01,

2) evaluated the resulting functions with respect to the
average contention resolution time, and
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FIGURE 3. Sample avg. contention resolution time for networks of
different sizes. The nodes use a parameterized function to adjust their
access probability during the run-time of the contention.

FIGURE 4. Parametrized functions that approximate a greedy policy
computed to solve the contention in a network of size n = 100.

3) picked the values of the parameters obtained for the
value of γ that gave the smallest average contention
resolution time.

Fig. 3 shows the average contention resolution times of
all the functions in Table 1, where the specific parameters
were selected using the above procedure. Observe that the
sigmoid function had the best performance for all values of
n, which is consistent with Fig. 4 that shows the plots of all
the functions and the optimal policy obtained by GOAL-CR
for n = 100. Here, the sigmoid function is the one that
best captures the trend of the greedy policy. In the next
section we show, using simulations, that the performance of
the sigmoid function (hereafter defined as growth rule) is still

better than the performance of the protocol that uses a fixed
optimal probability and slightly worse than the performance
of GOAL-CR.

VI. EXPERIMENTAL RESULTS
We used simulations to evaluate the performance of
GOAL-CR in terms of the average number of time slots
needed for all the n active nodes to access the resource suc-
cessfully, i.e., the average contention resolution time DCR(n).
First, we built a platform that emulates random accesses to a
shared resource; in our platform, time is divided into discrete
slots, nodes attempt to access the resource at each time slot
independently of each other using an access probability pt ,
and the contention finishes when every node has accessed
the resource successfully. Also, in order to focus on MAC
performance, the channel is assumed to be ideal (i.e., mul-
tiple access interference is the only source of errors). Next,
we allowed nodes of networks of different sizes to follow the
protocols of Table 2 in scenarios of different nature. In our
first scenario, we assumed that the number of active nodes
at slot 0 is known with certainty and that the nodes start to
compete for the resource at the same time. Then, we studied
the performance of GOAL-CR in scenarios in which the
nodes start to compete asynchronously. Finally, we examined
the capability of GOAL-CR to handle uncertainty in the initial
number active nodes.

The code for all experiments is written in MATLAB and
can be found at https://github.com/ItzelOlivos/GOAL-CR.

A. THE INITIAL NUMBER OF NODES IS KNOWN
In our first testing scenario, we assumed that the size of the
network is known with certainty. Accordingly, GOAL-CR
receives a probability distribution concentrated on the total
number of nodes as initial belief. We considered networks
from 80 to 4000 nodes. Fig. 5 shows the sample average
and the sample standard deviation, over 1000 independent
simulations, of the contention resolution times obtained by
each of the five protocols described in Table 2. Observe that
even when the available information is just the probability
distribution of active nodes at each time slot, continuous
GOAL-CR achieves aDCR(n) close to2(n), which is asymp-
totically optimal; besides, observe how the performance of
continuous GOAL-CR is closely followed by the basic ver-
sion of GOAL-CR that computes policies using access prob-
abilities that are restricted to be in the set B = {1/n, 1/(n −
1), · · · , 1/2, 1}. As for the case of the growth rule, it performs
better than the fixed optimal probability and only slightly
worse than the greedy policies. The figure also shows that
the use of a fixed probability is adequate only when the size
of the network is small because it reduces the complexity of
the nodes and the network performance is similar to that of
the schemes with variable probabilities.

B. RANDOM INITIAL DELAYS
The optimality of the greedy algorithm is based on the suppo-
sition that all nodes start executing the policy at the same time.
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TABLE 2. Implementation description of the proposed protocols and
state-of-the-art alternatives.

However, there might be scenarios where this supposition
does not hold strictly and nodes start contending for the
resource after a small delay. In order to study the performance
of GOAL-CR against asynchronous starts, we ran exper-
iments using a geometric distribution with parameter φd ,
i.e., each node starts to compete for the resource after i slots
(where i is a random variable with mean φ−1d and variance
(1−φd )/φ2d . We considered networks from 80 to 4000 nodes
and measured the difference between the average contention
resolution time of each protocol,DCR(n), and the lower bound
of the problemD∗CR(n), i.e., the average contention resolution
time achieved by the perfect-information protocol. As shown

FIGURE 5. Sample avg. contention resolution time, obtained over
1000 independent simulations, for networks of different sizes in the
scenario where the number of active nodes at time slot 0 is known with
certainty.

in Fig. 6, the results obtained by the greedy policies, partic-
ularly for large-size networks, are still better than the ones
obtained by the fixed-optimal-probability protocol even for
delays with large expected values. Also, observe that the
difference in performance of our proposals with respect to the
perfect-information protocol becomes larger as φ−1d increases
(i.e., as we increase both the magnitude and variance of
the random delay), being the growth rule the most affected;
however, both the basic GOAL-CR and its continuous version
can handle significant amounts of noise.

C. UNCERTAINTY IN SIZE OF THE NETWORK
There are situations where the number of active nodes at time
slot 0 is difficult to know with certainty; think, for instance,
in a group of sensors that are deployed to track a wildfire
and some of them are destroyed by flames. However, if the
uncertainty can be described with a probability distribution,
then GOAL-CR can still produce appropriate policies. In this
section, we study the robustness of the protocols against
uncertainty in the initial number of nodes. We ran experi-
ments considering that nodes survive the deployment with
probability λs. Thus, we adapted the protocols of Table 2 as
follows: i) GOAL-CR and continuous GOAL-CR receive a
binomial distribution with parameters n and λs as initial belief
and ii) the growth rule and the fixed-optimal-probability
protocol compute their respective access probabilities con-
sidering that the networks have nλs nodes at slot 0. As in
Section VI-B, we considered the differenceDCR(n)−D∗CR(n)
as the measure of performance. Observe in Fig. 7 that the
greedy policies maintain their difference with respect to the
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FIGURE 6. Performance of the protocols against asynchronous starts,
over 1000 independent simulations, in terms of the difference
DCR (n)− D∗CR (n). The random delays follow a geometric distribution with
parameter φd , i.e., each node starts to compete for the resource after φ−1

d
slots in expectation.

lower bound of the problem despite the increments in the
variance of the initial number of active nodes. In contrast,
the performance of the growth rule is affected as the variance
increases; we presume that GOAL-CR producesmore aggres-
sive policies for small values of λs and that the growth rule
cannot well approximate this behavior due to the simplicity
of its form. It is interesting that the fixed policy improves its
results as the randomness increases. We believe this behavior
might be related with the symmetry of the initial distribution
since the fixed optimal value is based only on the mean.
To test this hypothesis, we also ran experiments where we
controlled the asymmetry of the initial distribution of nodes.

We studied the performance of the protocols against asym-
metric initial distributions as follows: each distribution is
a discretized mixture of Gaussians with constant variance
and proportion but where the distance between their means
µ1 and µ2 vary (see Fig. 8(a)). GOAL-CR and continuous
GOAL-CR received the discretized mixture of Gaussians as
initial belief, whereas the growth rule and the fixed-optimal-
probability protocol computed their respective access proba-
bilities considering that the networks had (µ1 +µ2)/2 nodes
at slot 0. Fig. 8(b) shows how the protocol that uses a fixed
access probability can handle a certain degree of asymmetry
but then loses dramatically against the greedy policies and the
growth rule.

FIGURE 7. Performance of the protocols against randomness in the size
of the network, over 1000 independent simulations, in terms of the
difference DCR (n)−D∗CR (n). The initial belief of active nodes is a binomial
distribution with parameters n and λs.

VII. CONCLUSIONS
The proposed algorithm solves a variant of the standard con-
tention resolution problem in which the nodes need to access
the shared resource only once and where the objective is to
minimize the time it takes for all the nodes to successfully
access the resource. We model the problem as a POMDP,
and our formal analysis shows that the resulting specific
instances can be optimally solved in polynomial time using
a greedy algorithm. GOAL-CR can compute access poli-
cies that minimize the expected contention resolution time,
DCR(n), without requiring to know the precise number of
active nodes at run-time. This is particularly important in the
context ofWSNs because it greatly reduces the complexity of
the nodes. We also showed that the optimal value of DCR(n)
is in 2(n) when the number of active nodes is known with
certainty andO(n log n) andω(n1−ε log n) for any ε > 0when
nodes attempt to access the resource with a fixed optimal
probability. Additionally, we showed how to use GOAL-CR
in scenarios where nodes do not have enough memory to
store the complete sequence of access probabilities. Lastly,
our experimental results show that the performance of the
proposed algorithm is equivalent to that of the algorithm with
perfect information about the current number of active nodes
when there are not additional sources of randomness, and still
better than the alternatives when both there is uncertainty
in the initial number of active nodes and when the nodes
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FIGURE 8. (a) Mixture of Gaussians describing the initial number of active nodes. (b) Performance of the protocols against randomness in the
size of the network, over 1000 independent simulations, in terms of the difference DCR (n)− D∗CR (n). The initial belief of active nodes is a
discretized mixture of Gaussians with constant variance and proportion but where the distance between their means µ1 and µ2 vary.

start the contention after a small random delay. In future
works, we intend to formally show the relation between the
perfect-information protocol and the policies obtained by
GOAL-CR. In specific, we want to show that the expected
contention resolution time of GOAL-CR is O(n). Addition-
ally, we want to exploit the capabilities of reinforcement
learning methods to supplement our approach by automati-
cally discovering the underlying processes that explain more
dynamic scenarios, e.g., nodes transmitting safety-related
warning messages in Vehicular Ad-Hoc Networks.

APPENDIX A
FOR THE CORRECTNESS OF GOAL-CR
Proposition 1: Given the belief of active nodes at slot t,

the problem of minimizing the expected number of active
nodes at slot t+1 is equivalent to the problem of maximizing
the probability of having a successful access at slot t.

Proof: Let E[Aπt+1] =
∑

i iP(A
π
t+1 = i) be the expected

number of active nodes at slot t + 1 when using the policy
π . Since P(Aπt+1 = i) = P(Aπt+1 = i|Aπt = i)P(Aπt =
i) + P(Aπt+1 = i|Aπt = +1P(A

π
t = i + 1), E[Aπt+1] can be

expressed as:

E[Aπt+1] =
n∑
i=0

i(1− ipt (1− pt )i−1)P(Aπt = i)

+

n∑
i=0

i(i+ 1) pt (1− pt )iP (Aπt = i+ 1) (2)

Rearranging the indexes of the second term of (2), and
noticing that P(Aπt = n + 1) = 0 since the value of Aπt is
at most n, yields:

E[Aπt+1] =
n∑
i=0

iP(Aπt = i)−
n∑
i=0

ipt (1− pt )i−1P(Aπt = i)

(3)

The first term in (3) corresponds to the expected value of
the number of active nodes at slot t and the second term is
equal to minus the probability of a successful access given
the probability distribution of active nodes at slot t . The
probability of a successful access depends only on pt ; thus,
tominimizeE[Aπt+1] we just need tomaximize the probability
of a successful access at slot t . �
Proposition 2: For any policy π

E[Wπ
t |A

π
0 = i] − E[Wπ

t |A
π
0 = i− 1] ≤ 1 (4)

Proof: The proof is by induction on t . When t = 0,
E[Wπ

0 |A
π
0 = i] is equal to the probability of success at slot

0 given i active nodes, i.e., P[Sπ0 |A
π
0 = i] = ip0(1 − p0)i−1,

where Sπ0 is an indicator r. v. that takes the value of 1 if there is
a successful access at slot 0. Similarly E[Wπ

0 |A
π
0 = i− 1] =

P[Sπ0 |A
π
0 = i − 1] = (i − 1)p0(1 − p0)i−2. Since both are

probabilities, its difference is less than 1.
For the induction step, we will use the following notation:

let π (r) denote the policy that is equal to policy π but without
the first r − 1 probabilities, i.e., the l-th probability of access
in policy π (r) is equal to the (r + l)-th probability in policy
π . We expand the first expected value in the difference of (4)
using the law of total expectation over the indicator r. v. Sπ0 :

E[Wπ
t |A

π
0 = i]− E[Wπ

t |A
π
0 = i− 1]

= P[Sπ0 |A
π
0 = i](1+ E[Wπ (1)

t−1 |A
π (1)
0 = i− 1])

+ (1− P[Sπ0 |A
π
0 = i])E[Wπ (1)

t−1 |A
π (1)
0 = i]

−E[Wπ
t |A

π
0 = i− 1].

Observe that E[Wπ
t |A

π
0 = i− 1] ≥ E[Wπ (1)

t−1 |A
π (1)
0 = i− 1].

Therefore,

E[Wπ
t |A

π
0 = i]− E[Wπ

t |A
π
0

= i− 1] ≤ P[Sπ0 |A
π
0 = i]

+ (1− P[Sπ0 |A
π
0 = i])(E[Wπ (1)

t−1 |A
π (1)
0 = i]
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−E[Wπ (1)
t−1 |A

π (1)
0 = i− 1])

≤ P[Sπ0 |A
π
0 = i]+ (1− P[Sπ0 |A

π
0 = i]) = 1,

where in the last step we used the induction hypothesis. �

APPENDIX B
ASYMPTOTICS FOR THE COMPLETE INFORMATION AND
FIXED OPTIMAL PROBABILITY PROTOCOLS
Lemma 1: The optimal value of DCR(n) is in 2(n) when

the current number of active nodes At is known.
Proof: Let Xk be the r. v. that counts the number of time

slots between the (i−1)th and the ith successful transmission;
hence, DCR(n) =

∑n
k=1 E[Xk ]. The optimal value of DCR(n)

is achieved by maximizing the probability of success p =
Atτ (1− τ )At−1 of each Xk , which results in τ = 1/At . Then

DCR(n) =
n∑

At=1

(1− 1/At )1−At .

The function (1 − 1/n)n−1 decreases monotonically from
1/2 down to 1/e as n increases from 2. Thus, the reciprocal
of the function satisfies (1− 1/n)1−n ≤ e which results in

n∑
At=1

(1− 1/At )1−At ≤
n∑

At=1

e = en.

Hence,DCR(n) isO(n). To show thatDCR(n) is�(n) notice
that (1− 1/At )1−At ≥ 1/2, i.e.

∑n
At=1(1− 1/At )1−At ≥ 2n.

�
Lemma 2: The optimal value of DCR(n) is O(n log n) and

ω(n1−ε log n) for any ε > 0 when the nodes attempt to access
the resource with a fixed optimal probability τ .

Proof: The expected value of the contention resolution
timeDCR(n) is given byDCR(n) =

∑n
i=1(iτ (1−τ )

i−1)−1. Let
τ = c/n and let c∗ be the value of c that minimizes DCR(n)
i.e.,

n
c∗

n∑
i=1

1
i(1− c∗/n)i−1

≤
n
c

n∑
i=1

1
i(1− c/n)i−1

for all c ∈ (0, n]. In particular when c = 1 we get

n
c∗

n∑
i=1

1
i(1− c∗/n)i−1

≤ n
n∑
i=1

1
i(1− 1/n)i−1

.

Using (1− 1/n)1−m ≤ (1− 1/n)1−n ≤ e for m ≤ n results in

n
n∑
i=1

1
i(1− 1/n)i−1

≤ en
n∑
i=1

1
i
≤ en (log n+ 1)

where in the last inequality we used the fact that the harmonic
sum satisfies log(n+1) ≤

∑n
i=1 1/i ≤ 1+ log(n). Therefore,

DCR(n) is O(n log n).
To show that DCR(n) is ω(n1−ε log n) for any ε > 0,

we compute two lower bounds that depend on c. The
first one focuses on the last term in the summation
expressing the expected value of the contention resolution:

c−1(1 − c/n)1−i ≥ c−1ec−c/n. The second one uses the
inequality (1− c/n)1−i ≤ 1 to show that

n
c

n∑
i=1

1
i(1− c/n)i−1

≥
n
c

n∑
i=1

1
i
≥ (n/c) log n.

The first lower bound c−1ec−c/n increases exponentially
with cwhereas the second one (n/c) log n decreases inversely
with c. This means that the optimal value of c∗ must be
in o(nε) otherwise the expected contention resolution time
would grow exponentially contradicting the upper bound
O(n log n) computed before. Hence the optimal expected
contention resolution time must be, using the second lower
bound, ω(n1−ε log n) for any ε > 0.

�
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