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ABSTRACT Earthquake prediction is an important and complex task in the real world. Although many data
mining-based methods have been proposed to solve this problem, the prediction accuracy is still far from
satisfactory due to the deficiency of feature extraction techniques. To this end, in this paper, we propose a
precursory pattern-based feature extraction method to enhance the performance of earthquake prediction.
Especially, the raw seismic data is firstly divided into fixed day time periods, and the magnitude of the
largest earthquake in each fixed time period is labeled as the main shock. The precursory pattern is a part
of the seismic sequence before the main shock, on which the existing mathematical statistic features can
be directly generated as seismic indicators. Based on these precursory pattern-based features, a simple yet
effective classification and regression tree algorithm is adopted to predict the label of the main shock in a pre-
defined future time period. The experimental results on two historical earthquake records of the Changding-
Garzê and Wudu-Mabian seismic zones of China demonstrate the effectiveness of the proposed precursory
pattern-based features with the selected CART algorithm for earthquake prediction.

INDEX TERMS Earthquake prediction, pattern discovery, time series, precursory pattern, CART.

I. INTRODUCTION
Earthquake is one of the devastating events in natural hazards
that causes great casualties and property damage every day in
the world since that it is hard to predict. With the increasing
amount of earthquake datasets collected, many researchers
try to solve the task of predicting the earthquake in the future
time. Earthquake prediction is to estimate the time, location
and magnitude of the future earthquake, which is one of
the theoretical foundation of geophysics, geology, computer
science and so on [1]–[4]. With the development of data
mining techniques, a large number of scholars have devoted
to discover the earthquake patterns from seismic time series
based on various feature extraction methods and achieved
some success [5], [6].

Since Gutenberg and Richter [7] designed seismic
indicators based on mathematical statistical methods, e.g.
earthquake magnitude, earthquake energy, earthquake accel-
eration, b-value and so on, a lot of researchers have proposed
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different feature extraction methods to obtain indicators for
earthquake prediction. One category is based on the fixed
number of seismic events. For example, Nuannin et al. [8]
applied the sliding time and space windows containing a fixed
number of seismic events to obtain earthquake indicators.
Based on this method, Florido et al. [6] considered a fixed
number of seismic events before main earthquake as the
precursory pattern to extract features, which is useful for
analyzing the trend of earthquakes. However, this feature
extraction method cannot detect the range of earthquake
magnitude of main shock well. The work in [5], similarly,
extracted features from the fixed length seismic sequences
before main earthquake, which can estimate the magnitude
of earthquakes. However, the methods mentioned above can-
not infer the effective time range of earthquake prediction
results. Thus, another feature extraction method based on the
fixed length of time before main shock is proposed to make
earthquake prediction. Specifically, the historical earthquake
records for a given region are divided into a number of pre-
defined equal time periods such as one month or 15 days
in [9]. The advantage of this method is that the
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representative training samples can be obtained, which is
critical for the learning of earthquake prediction models. But
the fixed time window cannot make full use of the events
before the main shock in current time period and lead to
unsatisfactory prediction results.

To this end, in this paper, we propose a precursory pat-
tern based feature extraction method for earthquake predic-
tion, which can predict both the magnitude range of future
earthquakes and obtain the effective time range of prediction
results. In this study, earthquake precursor refers to a part of
seismic records before the main shock, which is represented
as the precursory pattern of earthquake. In order to obtain
the representative learning samples, the raw seismic data is
firstly divided into a set of fixed day time periods and the
magnitude of the largest earthquake of each time period called
main shock is as the label of the fixed period according
to [9]. Then the sequence composed of the last w(w > 0)
events in the last time period before the current time and
the events before the main shock in current time period is
treated as earthquake precursory pattern. And the seismic
indicators based on the obtained precursory patterns with a
selected classification and regression tree algorithm named
CART [10] can lead to satisfactory earthquake prediction
results on two real-world seismic datasets of Changding-
Garzê and Wudu-Mabian zones. In summary, the contribu-
tions of this paper can be summarized as follows:
• Wepropose a precursory pattern based feature extraction
method to better capture the characteristics of earth-
quake, thus can be used to enhance earthquake pre-
diction. Noting that the proposed method can not only
obtain the seismic features, but also be used to estimate
the effective time period of prediction results.

• We evaluate the effectiveness of the proposed feature
extraction method with CART algorithm on two real-
world seismic datasets of the Changding-Garzê and
Wudu-Mabian zones in China. The experimental results
show the superior performance of our method over
the comparison algorithms, which indicates that the
proposed precursory pattern based feature extraction
method with selected CART is a promising method for
accurate earthquake prediction.

The rest of this paper is structured as follows, we first
give the formulation of earthquake prediction problem and
the related work in Section II. In Section III, we present the
proposed precursory pattern based feature extraction method
and the adopted CART algorithm, in which the precursory
pattern is described in detail. We describe the seismic dataset,
evaluation metrics, comparison algorithms and the experi-
mental results to demonstrate the effectiveness of the pre-
cursory pattern based feature extraction method with CART
algorithm in Section IV and the conclusions drawn from this
study are finally shown in Section V.

II. PROBLEM FORMULATION AND RELATED WORK
In this section, some preliminaries about earthquake predic-
tion are firstly described, and then the related work about

earth prediction with feature extraction techniques is
introduced.

A. PROBLEM FORMULATION
In order to predict the magnitude range of future earthquakes
as well as obtain the effective time range of prediction results,
we formulate the seismic sequence based problem as follows.
Specifically, assuming that the sequence of historical seismic
records is denoted as 8:

8 = {Ei|i = 1, 2, 3, . . . ,m}

Ei = 〈fi1, fi2, . . . , fij, . . . , fik 〉 (1)

where Ei is the i-th earthquake event and m is the total
number of earthquakes. Besides, fij is the j-th seismic feature
of event Ei and k is the total number of features. Usually,
each record Ei contains at least two seismic features, i.e.
earthquake magnitude Ms and time t . Similar to the work
of [9], the historical earthquake sequence 8 can be divided
into a number of fixed pre-defined N days. The earthquake
with the largest magnitude that occurred during each time
period is called main shock, denoted as Emj (1 ≤ j ≤ n),
where n the total number of main shocks in 8.
Based on the above notations, the problem of earthquake

prediction is formally defined as:
Definition 1 (Earthquake Prediction): Given the histori-

cal earthquake sequence 8 and the pre-defined N days, sup-
pose 8 can be divided into a set of N days-periods with the
size of n and Emj is the main shock with the largest magnitude
that occurred during each time period (1 ≤ j ≤ n), the task of
earthquake prediction is to predict the magnitude of the main
shock in the futureN days-period based on lastN days-period
sequence data before the current time.

In the above task, one of key challenges is the feature
extraction technique. In other words, how to extract effective
features before main shocks is the key factor for accurate
earthquake prediction. For example, Florido et al. [6] pro-
posed to use a set of fixed length of events (denoted as SL)
before main shocks to generate seismic indicators. To be
specific, suppose there are w earthquakes chosen before main
shock, then SL can be defined as:

SL = {SLj|j = 1, 2, 3, . . . , n}

SLj = 〈Ep−1,Ep−2, . . . ,Ep−w|p > w〉 (2)

where n is the number of SLj and p is the serial number
of Emj in 8. Thus, 8 is transformed into sets of SLj and
Emj . As shown in Figure 1, there are 99 events in 8 and
SL with the size n can be obtained when w = 4. In this
example, the 4 events before each main shock is considered
as precursory pattern, which can be used to generate seismic
indicators. Suppose we can get the seismic indicators for
the precursory pattern before each main shock. Then SL can
be split into two parts: the first one is the training data set
〈SLi,Emi 〉 for i ∈ [1, t], and the other one is the testing data
set 〈SLj,Emj 〉 for j ∈ [t + 1, n]. Based on training data set,
various predictionmodels are constructed tomake earthquake
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FIGURE 1. The seismic sequence based framework of earthquake prediction process for w = 4.

prediction such as ANN [5], [11], RBF [12], BP [13] and so
on. Noting that the difference between Em

′

j and Emj can be

used to evaluate the earthquake prediction models, where Em
′

j
is the prediction result of SLj and Emj is the real event.
In Section III, we will propose a new precursory pattern,

based on which effective seismic indicators can be generated.
Based on these precursory pattern based features, a simple
yet effective CART algorithm can be used to make accurate
earthquake prediction.

B. RELATED WORK
In this section, the related work on earthquake prediction
is presented, in which the feature extraction methods are
described in detail.

In recent years, many data mining methods have been
proposed tomake earthquake prediction based on various fea-
ture extraction methods since the seismic indicators based on
statistical methodology are firstly proposed by [7]. In order to
detect the precursors for large earthquakes, Nuannin et al. [8]
used the sliding time-windows containing a constant number
of events to examine the spatial distribution of b-value. Partic-
ularly, observed variations in b reveals a precursory potential
which could be used in medium-term (months, years) earth-
quake prediction. However, this method is designed for large
earthquakes (magnitude greater than 7) and does not provide
the specific precursory pattern for earthquakes.

Florido et al. [6] proposed to enhance earthquake pre-
diction by detecting the precursory patterns, which is an
improvement on the basis of [8]. Specifically, the data are
first grouped into the set of five chronologically ordered
earthquakes according to [8], and then the sighed variation

on the b-values in the time interval for the five earthquakes is
used to discover the precursory patterns of earthquakes with
magnitude larger than a constant. The results showed that the
precursory patterns are useful for earthquakes with magni-
tude larger than 4.4. Unfortunately, these precursor signals
extracted from the earthquakes with magnitude exceeding a
fixed threshold cannot obtain the specific magnitude range of
earthquakes.

To solve the above problem, the task of earthquake
prediction can be converted into the classification prob-
lem of earthquake magnitude [5], [13], [14]. For example,
Narayanakumar and Raja [13] extracted seismic features of a
fixed number of events beforemain shock tomake earthquake
prediction with BP neural network technique. The histor-
ical earthquake catalog with Richter magnitudes between
3.0 and 8.6 is divided into fifteen groups where each group
is comprised of earthquakes of magnitude in a 0.4 Richter
range, and the category tag is considered as predicted target.
The results show that this method can provide better accuracy
for medium-large earthquakes, but still cannot achieve satis-
factory prediction results for large earthquake. Besides, this
feature extraction method cannot estimate the effective time
range of the predicted earthquakes.

To address the problem of magnitude range prediction
and the effective time range of prediction results, Adeli and
Panakkat [9] proposed a novel feature extraction method.
To be specific, the historical records for a given region are
divided into fixed day time periods such as 15 days or one
month, and the earthquake with the largest magnitude in each
time period is labeled as main shock. And then the author
predicted the magnitude range of the largest earthquake in the
following pre-defined day time periods. Thus, the problem of
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the effective time range of prediction results is well handled.
Moreover, the author claimed that this feature extraction
method with selected probabilistic neural network(PNN) can
provide good prediction results for earthquakes with magni-
tude between 4.5 and 6.0 Richter. Similarly, Mirrashid [15]
investigated the prediction of earthquakes with magnitude
5.5 or more based on the adaptive neuro-fuzzy inference
system (ANFIS), and the experimental results validated that
ANFIS can obtain the best results in terms of precision
comparing to the baseline algorithms. Asencio et al. [16]
proposed to use a clustering method for seismogenic zones
partitioning, and then use different machine learning tech-
niques to make earthquake prediction, including KNN, ANN,
NB, C4.5 decision trees and SVM, which can build reliable
and general earthquake prediction systems.

In order to improve the precision of earthquake predic-
tion, many researchers used feature selection techniques to
eliminate redundant features, for example, Mart et al. [17]
adopted the information gain of each seismic indicator for
feature selection. Later, Asim et al. [18] designed a hybrid
embedded feature selection method, which can be used to
make accurate earthquake prediction. In addition, Hamze-
Ziabari and Bakhshpoori [4] recently proposed an efficient
bagging ensemble model of M5’ and CART algorithms to
predict ground motion parameters such as Peak Ground
Acceleration, Peak Ground Velocity, and Peak Ground Dis-
placement. These parameters are well known to characterize
an earthquake, which are very helpful for seismic analysis of
structures and risk assessment.

Noting that the method in [6] is useful for discovering
the earthquake precursory patterns, but it cannot provide the
effective time range of earthquake prediction results. Besides,
the feature extraction method proposed in [9] can obtain the
specific magnitude range of prediction results and provide
the reference time range of the predicted earthquakes, but
it does not consider the earthquakes before main shock in
the current time window. Moreover, traditional data mining
methods exposed their limitations on mining data with com-
plex nonlinear correlation and the lack of data. Different from
the above works, this paper proposed a precursory pattern
based feature extraction method with the selected CART
algorithm to enhance earthquake prediction, which can not
only solve the shortcomings of [9] and [6], but also reduce
the influence of redundant features.

III. METHODOLOGY
In this section, we first introduce the proposed precursory pat-
tern based feature extraction methodology, and then briefly
describe the CART algorithm applied to seismic prediction.

A. PRECURSORY PATTERN BASED FEATURES EXTRACTION
The method proposed by [6] is useful for detecting potential
earthquake precursory patterns, and the feature extraction
method proposed by [9] can estimate the time range of the
prediction results. In order to predict both the magnitude
range of future earthquakes as well as obtain the effective

time range of prediction results, we propose a precursory
pattern based features extraction method by combining the
advantages of these two methods.

To be specific, the sequence of historical seismic records
8 is firstly divided into N -day time period according to [9].
The magnitude range of the largest earthquake in the corre-
sponding time period is the prediction target (i.e. main shock),
labeled as Emi . Different from the work [6] that a set of
fixed length of events before main shock is defined as the
precursory pattern, in this paper, the precursory pattern is
the pattern sequence before the main shock that consists two
part, i.e. the internal pattern sequence PIi and the external
pattern sequence PEwi . Here, w is the length of PEi. The
internal pattern sequence PIi is the sequence of events before
main shock in the current time period i, thus, the length of
PIi may be different for different time periods since that the
position of Emi in each time period may be different. The
external pattern sequence PEwi is the sequence of events with
the fixed size w in the last time period before the current time
period. The precursory pattern combining both PIi and PEwi
can generate effective seismic indicators. The union of PE
and PI , denoted as SL, is used to calculate seismic indicators.
Formally, the definition of SL is given in the following:

SL = {SLi|i = 1, 2, . . . , n},

SLi = 〈PEi ∪ PIi〉 (3)

Figure 2 gives an example of generated precursory patterns
when w is set to 2. Based on the obtained SL, the mathemat-
ical statistics based earthquake features can be generated as
the seismic indicators. There are eight indicators that can be
selected as the features. In the following, we will give the
formal definition for each indicator.

The first indicator is time1T , which is the time span over
n events. And 1T is the time span of seismic records in SL.
The equation for 1T is given by below:

1Ti = tp−1 − tp−n, s.t. p > n, (4)

where p is the index of Emi in 8 and n represents the number
of elements in SLi.
The second seismic indicator considered is the mean mag-

nitude of earthquakes in SLi and it is related to the magnitude
of the earthquake that occurred before the main shock.

M i =
1
n

∑
SLi

M , (5)

where M is the magnitude of earthquake in SLi.
The third seismic indicator is dE , that is, the rate of square

root of seismic energy released during 1Ti determining the
magnitude of earthquake. Seismic crustal plates drift caused
by motion-class from the kinetic energy of the plate move-
ment and volcanic eruption energy from the center of the earth
are the two main sources of seismic energy. Thus the energy
released obtained through Eq. (6).

dE1/2
i =

√∑
SLi

M4.8+1.5M . (6)
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FIGURE 2. Precursory patterns are generated with w = 2, where Em
i is the main shock of i-th N-day time period.

TABLE 1. Sample training datasets for 10 time periods between 26th October 1973 and 14th March 1974 for the Changding-Garzê seismic zone showing
eight input indicators computed for SL and the corresponding input class based on the magnitude of the largest earthquake that occurred during that
time period.

The fourth seismic indicator is the well-known b-value,
which is the proportional coefficient in relationship between
magnitude and frequency. According to the work [7] and [19],
the equation of b-value is given in Eq. (7).

bi =
log e

Mall −
1
n

∑
SLi M

. (7)

The fifth seismic indicator is the mean square deviation
about the regression line based on Gutenberg-Richter inverse
power law for the events in SL, which is denoted as η. This
indicator is related to the magnitude change of the earthquake
in SL. The equation of η is given in Eq. (8).

ηi =

√√√√1
n

∑
SLi

(M −
1
n

∑
SLi

M )2. (8)

The sixth seismic indicator is the maximum difference of
seismicmagnitude in SL, which is taken as a seismic indicator
obtained from Eq. (9).

1Mi = Mmax
i −Mmin

i , where Mmax
i , Mmin

i ∈ SLi. (9)

The seventh seismic indicator is c, that is the coefficient
of variation of earthquake magnitudes. And it is defined

by Eq. (10).

ci =

√
1
n

∑
SLi M

2 − ( 1n
∑

SLi M )2

1
n

∑
SLi M

(10)

The last seismic indicator is the frequency of earthquake.
Compared with main shock, the magnitude of foreshock
is often large enough, and the frequency of earthquake is
increased before the main shock according to Jones [20].
Thus, the seismic frequency before main shock is considered
as a seismic indicator, and defined as Eq. (11):

frei = #num(SLi). (11)

Table 1 shows the sample of the eight indicators computed
for SL with N = 14 and the corresponding input class for
the ten time periods between 26th October 1973 and 14th
March 1974 for the Changding-Garzê earthquake dataset
used in our experiments.

B. CLASSIFICATION MODEL
Classification and regression tree algorithm(CART) [10] is
an important data mining method [21]. CART is a binary
recursive partitioning procedure capable of splitting the
scalar attributes and processing the continuous and discrete
attributes. Besides, CART is nonparametric and it does not
require variables to be selected in advance because this
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decision tree can do feature selection work automatically.
In addition, CART algorithm can generate understandable
rules and its calculation cost is relatively small. Thus, this
method has been applied inmany fields, such as financial [22]
andmedical [23]. The building process of CART includes two
main steps: the construction of CART and pruning.

1) THE CONSTRUCTION OF CART
In general, a decision tree contains a root node, several inter-
nal nodes and leaf nodes. The leaf node is the decision result,
and other nodes are based on the attribute test. Therefore,
the key of the decision tree algorithm is to select the partition-
ing attribute based on data purity, and there are manymethods
to measure the purity of data, such as information gain, Gini
index, χ2 statistics and so on. Classification and regression
tree(CART) algorithm [10] is based on Gini index. Specifi-
cally, the Gini index of the dataset D is given by Eq. (12).

Gini(D) = 1−
|y|∑
k=1

p2k , (12)

where pk is the proportion of the k-th class in dataset D,
and |y| is the number of samples. The Gini index reflects
the probability that two samples randomly selected from the
dataset D with different category labels. Thus, the purity of
the dataset D with a small Gini index Gini(D) is high.
In the binary partitioning process of the CART algorithm,

the purity of one attribute exceeds the predefined threshold
and is divided into the left subtree, otherwise it is divided
into the right subtree. And the Gini index of the attribute a
is defined as Eq. (13).

Gini_index(D, a) =
V∑
v=1

|Dv|
|D|

Gini(Dv), (13)

where V is the number of nodes when a is used to divide
dataset D, and Dv is the sample of the attribute a on the v-th
branch node. Therefore, the attribute with the smallest Gini
index in candidate attribute set A is regard as the optimal
partition attribute a∗. The optimal attribute a∗ is calculated
as follows.

a∗ = argmin
a∈A

Gini_index(D, a). (14)

2) PRUNING
Pruning is the main means for the decision tree to deal with
overfitting. In the learning process of decision tree, the parti-
tion nodes are frequently generated on order to classify train-
ing samples more correctly. Meanwhile, the excessive branch
of the decision tree leads to overfitting. Thus, it is essential to
pruning the decision tree in order to avoid overfitting prob-
lem. The pruning strategies of the decision tree includes pre-
pruning and post-pruning. The pre-pruning refers to evaluate
each node before partitioning in the process of decision tree
construction. If current node partitioning does not improve
the performance of decision tree, the current node is marked
as leaf node. The post-pruning means that each non-leaf node

FIGURE 3. This picture gives a simple example of applying the CART
algorithm to infer the health status of the body based on blood pressure
and age: normal or high risk.

partitioning is evaluated after the whole decision tree is built.
And the CART algorithm adopts the second pruning strategy.

To demonstrate the decision principle of CART algorithm
more clearly, an example of using the CART algorithm to
infer the health status of body is presented in Figure 3.
As shown in this figure, if the current blood pressure is higher
than 140 mmHg, the patient is at high risk. Moreover, the cur-
rent blood pressure below 140 mmHg does not indicate that
the patient is in a normal state when the age is over 62 years
old. This example shows that the CART algorithm can not
only generate clear decision rules, but also the importance of
attributes can be obtained based on the position in the decision
tree. Thus, in this study, we apply this method to earthquake
prediction problem. Themain procedures of CART algorithm
can be found in Algorithm 1.

IV. RESULTS
In this section, we first give the description of earthquake
dataset. Then we present comparison algorithms and the
evaluationmetrics. Finally, we compare the prediction perfor-
mance of different algorithms through experimental results.

A. DATASET
In this study, we adopt earthquake datasets from two seismic
zones of China. One is the Changding-Garzê seismic zone,
which is an area between geographic coordinating 29 N and
34 N north latitude and 98 E and 103 E east longitude. And
the range of historical records from 5th January 1970 to
26th June 2015. The other is theWudu-Mabian seismic zone,
which is an area between 28 N and 34 N north latitude and
103 E and 105 E east longitude. And the range of historical
records from 20th January 1970 to 2nd August 2015.

For the two datasets, the earthquakes with magnitude
greater than 3.0 in both regions are selected. In this
paper, the pre-defined equal time period is set to 14 days.
For each time period, the magnitude of the largest earthquake
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Algorithm 1 CART Algorithm
Input : The training set

D = {(x1, y1), (x2, y2), . . . , (xm, ym)};
The attribute set A = {a1, a2, . . . , ad };

Process: TreeGenerate(D, a)
1 Generate node;
2 if Only one class C in D then
3 node← C ; return
4 end
5 if A = ∅ or The sample of D has the same value in
A then

6 Label node as leaf node;
7 And mark A as the class with the most samples

in D; return
8 end
9 a∗ = argmina∈AGini_index(D, a);

10 for each av∗ in a∗ do
11 Generate a branch for node;
12 Let Dv denote a subset of D that take a value of

av∗ on a∗;
13 if Dv = ∅ then
14 Label the branch node as the leaf node;
15 And mark A as the class with the most

samples in D; return
16 end
17 else
18 TreeGenerate(Dv,A {a∗}) marked as branch

node;
19 end
20 end

Output :
A decision tree with node as the root node;

TABLE 2. The statistics for the data Changding-Garzê seismic zone of
China.

(i.e. main shock) can be obtained, which can be divided
into five classes: the first class consists of earthquakes
with magnitude less than 4.0 Richter, the second class is
between 4.0 Richter and 4.5 Richter, the third class is between
4.5 Richter and 5.0 Richter, the fourth class is between
5.0 Richter and 5.5 Richter, and the last class is larger than
6.0 Richter. Table 2 and Table 3 present the number of events
available for each class on the two datasets, respectively.

For the two datasets, we re-arrange the obtained events in
random order (i.e. randomly selected the training and testing
data) and use 5 fold cross-validation to evaluate the prediction
results.

TABLE 3. The statistics for the data Wudu-Mabian seismic zone of China.

B. COMPARISON ALGORITHMS
In this paper, we compare the proposed precursory pattern
based feature extraction method with two baseline methods.
The first one is the method used in 2016 [13] called 2016N,
which extracts seismic indicators before the earthquakes with
the magnitude within a specific range. The other baseline
method extracts seismic features by using the earthquakes in
last N -day time period before the main shock in current time
period in 2009 [9] called 2009A.

Besides, based on these feature extraction techniques, there
are five earthquake prediction models chosen to compare
with the selected CART algorithm, including multi-class
SVM [24], BP artificial neural network used in [13], the prob-
abilistic neural network (PNN) used in [9], the adaptive
neuro-fuzzy inference system (ANFIS) used in [15] and the
artificial neural network (ANN) used in [16]. In addition,
to further show the reason why we select CART as the
classification method for earthquake prediction, we also give
the comparison results between CART and genetic algorithm
(GA) [25] with SVM, BP, PNN, ANFIS, ANN as the basic
classifiers.

C. EVALUATION METRICS
In this paper, two well-knownmetrics are used to evaluate the
effectiveness of the proposed method and the baselines.

The first metric is Accuracy [26], which is usually used
to evaluate the classification effect of various classifiers. The
definition of accuracy is given in Eq. (15):

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (15)

where TP is the number of times that upcoming earthquake
has been correctly predicted. TN is the number of times that
neither an earthquake predictionmodel has triggered an alarm
nor an earthquake has occurred. FP is the number of times
that an earthquake prediction model has triggered an alarm
but no earthquake has occurred. FN is the number of times
that a classifier has not triggered an alarm but did not occur.

The other one is the extension of AUC [27] to multi-
class problems (MAUC) [28], which is very important to
multi-class cost-sensitive learning and imbalanced learning
problems. Thus,MAUC is also used to evaluate the proposed
method. And the equation of MAUC is given as follows.

MAUC =
2

c× (c− 1)

∑
i<j

Aij + Aji
2

, (16)
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TABLE 4. The average Accuracy and MAUC of the six classification methods based on the precursory pattern based method and other feature extraction
methods on the dataset of Changding-Garzê seismic zone in 5-fold cross validation.

FIGURE 4. The Accuracy of each magnitude range (i.e. class) obtained by different prediction models with different feature extraction methods
on Changding-Garzê seismic zone.

where Aij is the AUC between class i calculated from the i-th
column of a n×cmatrixM (n is the number of instances and c
is the number of classes). Note that for multi-class problems,
Aij may not equal to Aji, and thus both of them need to be
involved in the calculation ofMAUC . For both Accuracy and
MAUC , a larger value indicates a better prediction perfor-
mance.

D. RESULTS
1) THE EFFECTIVENESS OF PROPOSED METHOD
a: RESULTS FOR CHANGDING-GARZÊ SEISMIC ZONE
To verify the effectiveness of the proposed feature extraction
method with the selected CART classifier, Table 4 records
the average Accuracy andMAUC of the six comparison clas-
sification methods on Changding-Garzê seismic zone based
on three kinds of feature extraction techniques: 2016N [13],
2009A [9] and the proposed precursory pattern based tech-
nique with different values of w (from 1 to 5 at the step of 1).

From this table, we can observe that the method PNN
obtains the best accuracy based on two baseline feature
extraction techniques, but the MAUC of this algorithm is
still far from satisfactory due to class imbalance problem.
For MAUC , CART based on 2016N obtains the best MAUC
value although its accuracy is lower than PNN. However,
based on the proposed feature extraction method, CART
algorithm obtains the best performance on both Accuracy
and MAUC , that is, 93.26% and 80.84% respectively when
w is set to 2. Moreover, for most baseline methods, their
performance are improved, which can validate the effec-
tiveness of the proposed feature extraction technique. For
example, the Accuracy of ANFIS has improved from 83.10%
to 85.65% even if the MAUC has a slight drop.

Furthermore, we can also find that the accuracy of some
classifiers such as ANFIS and CART with the proposed
precursory pattern based feature extraction method is firstly
increased to the best and then decreased with the parameter
w increasing from 1 to 5 at the interval of 1. For example,
CART obtains the best performance with the proposed pre-
cursory pattern based features when w = 2. In addition,
Figure 4 presents Accuracy of each magnitude range
(i.e. class) obtained by different prediction models with the
three feature extraction methods on Changding-Garzê seis-
mic zone. As shown in this figure, it can be found that
the accuracy of CART on each magnitude range is greatly
improved by using the proposed precursory pattern based
features.

In summary, the above experimental results can validate
the superiority of the proposed feature extraction method
comparing to the two baseline methods.

b: RESULTS FOR WUDU-MABAIN SEISMIC ZONE
In order to further validate the effectiveness of the proposed
feature method with the selected CART algorithm, Table 5
gives the prediction results of the six classification meth-
ods on the Wudu-Mabian seismic zone based on the three
feature extraction techniques. As can be observed from this
table, based on the two baseline feature extraction techniques,
PNN obtains the best Accuracy value 78.68% although its
MAUC is only 51.86%, while ANFIS obtains the bestMAUC
value 63.35% although its Accuracy is only 74.31%, CART
can get better tradeoff results with Accuracy 77.47% and
MACU 61.68%. Based on the proposed feature extraction
technique, among all the baselines, CART can get the best
Accuracy value (i.e. 92.07%)whenw = 2 and the bestMAUC
value (i.e. 88.61%) when w = 1. As shown in Figure 5,
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TABLE 5. The average Accuracy and MAUC of the six classification methods based on the precursory pattern based method and other feature extraction
methods on the dataset of Wudu-Mabian seismic zone in 5-fold cross validation.

the CART algorithm with the proposed feature extraction
method achieves very high percentage of accuracy on each
magnitude range.

Based on the above experiments, we can conclude that the
proposed precursory pattern based features with the selected
CART algorithm can greatly improve the performance of
earthquake prediction in terms of both Accuracy andMAUC .

2) THE ROBUSTNESS OF THE SELECTED CART
One key advantage of CART algorithm is that the importance
value of each feature can be obtained when the tree of CART
has been built. In addition, the CART algorithm can automat-
ically select the important feature to split the training data,
thus CART is robust even features are redundant. This is the
reason why the CART algorithm is adopted as the classifier
in this paper for earthquake prediction. To further validate
our analysis here, Table 6 and Table 7 give the importance
values of different features obtained in CART in descending
order based on datasets Changding-Garzê andWudu-Mabian
respectively (w is set to 2 in precursory pattern). As can be
observed from these tables, the feature dE1/2 plays the most
important role in CART for earthquake prediction on both
Changding-Garzê and Wudu-Mabian seismic zones.

TABLE 6. The ranking of the importance of eight seismic indicators based
on CART algorithm in 5-fold cross validation on Changding-Garzê seismic
zone (w = 2).

TABLE 7. The ranking of the importance of eight seismic indicators based
on CART algorithm in 5-fold cross validation on Wudu-Mabian seismic
zone (w = 2).

In order to further validate the robustness of the selected
CART algorithm with redundant features, the genetic algo-
rithm (GA) [25] based baselines (GA+SVM, GA+BP,
GA+PNN, GA+ANFIS, GA+ANN) are compared with
CART. Here, GA is used for feature selection, that is, to select
best subset of features that can be used in basic classifiers

to further improve the final performance. In GA, the fitness
function is the measure Accuracy, the size of population is set
to 100, the maximum generation is set to 10, the cross and the
mutation probabilities are set to 1 and 0.5, respectively.

TABLE 8. Comparison results between CART and GA based baselines on
Changding-Garzê seismic zone in 5-fold cross validation based on the
proposed precursory pattern based features (w = 2 in precursory
pattern).

TABLE 9. Comparison results between CART and GA based baselines on
Wudu-Mabian seismic zone in 5-fold cross validation based on the
proposed precursory pattern based features (w = 2 in precursory
pattern).

Table 8 and Table 9 respectively present the compar-
ison results between CART and GA based baselines on
Changding-Garzê andWudu-Mabian seismic zones in 5-fold
cross validation (w = 2 in precursory pattern based features)
in terms of Accuracy (Acc.) andMAUC , where the element in
each black parenthesis is the performance without GA. From
the two tables, we can find that using GA for feature selection
for optimizing these basic classifiers (i.e. PNN, BP, SVM,
ANFIS and ANN) can clearly improve the performance of
these basic classifiers in terms of both Accuracy andMAUC .
Among the GA-based baselines, GA+SVMandGA+ANFIS
are the top-2 best ones, where the most important feature
dE1/2 obtained by CART is appeared in the best feature
subset obtained by GA+SVM and GA+ANFIS on both two
datasets, which can validate the effectiveness of CART for
obtaining the importance of features. Secondly, although GA
based baselines can improve the final performance, the CART
still get the best performance in terms of both Accuracy
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FIGURE 5. The Accuracy of each magnitude range (i.e. class) obtained by different prediction models with different feature extraction methods
on Wudu-Mabian seismic zone.

and MAUC . The reason is the redundant features has little
effect on CART algorithm since that CART can do feature
selection automatically according to the information gain of
each feature in the process of CART tree building.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a precursory pattern based fea-
ture extraction method with the selected CART approach for
accurate earthquake prediction. To verify the effectiveness of
the proposed method, many state-of-the-art baselines were
compared on the two datasets, i.e. Changding-Garzê and
Wudu-Mabian seismic zones of China. Noting that the pre-
diction accuracy of the proposed method can reach 93.26%
and 92.07% on the two datasets respectively, which is much
better than the other baseline methods. To further analysis
the robustness of the selected CART method, we also com-
pared CARTwithGAbased baselines. From the experimental
results, the performance of all comparison algorithms has
indeed improved by using GA for feature selection. However,
CART with the proposed precursory pattern based feature
extraction method still get the best performance since that
CART can do feature selection automatically according to the
information gain of each feature in the process of CART tree
building. In summary, the proposed precursory pattern based
feature extraction method with the selected CART model is
a promising method for solving the task of earthquake pre-
diction. In the future, more advanced earthquake prediction
model should be designed to further improve the prediction
performance.
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