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ABSTRACT Energy conservation is one of the most important challenges in wireless sensor net-
works (WSNs). Therefore, compared with the traditional networks, the WSNs not only need high-quality
services with high throughput or low transmission delay, but also pay greater attention to energy utilization
to extend network lifetime. The clustering routing algorithm is considered to be among the effective ways
to collect and transmit data in WSNs. Cluster head (CH) plays a vital role in the cluster which is in charge
of data aggregation and data transmission, so their energy consumption is higher than non-CH nodes. The
traditional clustering algorithm tends to have the same size in each cluster. However, due to the randomness of
the node distribution, the equal clustering mechanism obviously cannot reduce energy consumption. In order
to solve this problem, this paper contributes a new unequal clustering algorithm, an energy-aware adaptive
kernel density estimation algorithm (EAKDE), which aims to balance the energy dissipation among the CHs.
EAKDE utilizes fuzzy logic to determine the priority of nodes competing for CH. In order to adapt the
dynamic change of node conditions, adaptive kernel density estimation algorithm is utilized to assign the
appropriate unequal cluster radius to sensor nodes. The simulation results demonstrate that, in different
scenarios, EAKDE outperforms the other well-known algorithms in terms of network stability, network
lifetime, and energy efficiency.

INDEX TERMS Unequal clustering, fuzzy logic, kernel density estimation, wireless sensor networks.

I. INTRODUCTION
With the development of micro-electro-mechanical sys-
tems (MEMS) technology [1], wireless communications and
Internet of Things (IoT), there are many applications for
wireless sensor networks (WSNs), such as traffic control,
smart city, environmental monitoring, health care and disaster
area monitoring [2]. In order to detect the environment factors
(e.g., temperature, moisture, pressure and electromagnetic
environment) for the region of interest, a large number of
sensor nodes are deployed in the field. Sensor nodes report
to the base station (BS) when an event is detected. The BS is
a gateway between the end user and the sensor node, where
the user can acquire the related information from BS through
the Internet.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jing Liang.

Typically, sensor nodes are cheap and small-sized devices
with small memory; hence, their energy supply and pro-
cessing power are very limited. In addition, sensor nodes
are usually dispersed in extremely harsh environments that
are access-limited to humans, which makes it impractical to
replace the node battery. Therefore, the energy efficiency of
sensor nodes is critical to the network lifetime. Node energy is
primarily consumed in environmental sensing, data process-
ing, and data transmission. Compared to data transmission,
other overhead is relatively little. That is what makes the
choice of routing protocols extremely critical. In the litera-
ture [40], [41], many clustering routing algorithms have been
proposed.

In order to overcome the huge energy consumption for
direct transmission to BS, cluster-based transmission pro-
tocols are widely researched and applied [3]. The WSNs
is divided into a group of clusters, each of which has a
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coordinator called the cluster head (CH). The sensing data
collected by cluster member (CM) nodes are not directly sent
to BS, but the corresponding CH. The responsibilities of the
CHs are aggregating data from CMs and forwarding it to BS.

Some clustering routing algorithms are proposed in the
literature. These methods aim at reducing energy consump-
tion in WSNs and improving the entire network lifetime.
LEACH [4] employs random CH selection mechanism and
periodically rotates the role of CHs to balance energy con-
sumption. EAMR [20] forms clusters in a LEACH-like
manner, with the difference that EAMR utilizes fixed clus-
tering, multi-hop routing, and threshold-based CH selec-
tion mechanism. The improved K-means routing scheme
(imp-K-means) [19], based on the K-means, adopts the equal
clustering mechanism to set up clusters. EAUCF [31] is based
on a purely probabilistic model to select tentative CHs, and
takes advantage of fuzzy logic to allocate competition radius.
DFCR [32] is proposed to solve the hot spot problem. It takes
the energy level, neighbor density, intra-cluster transmis-
sion cost and distance to BS, as the reference basis for CH
selection and cluster radius calculation.

In this paper, we propose an energy aware adaptive kernel
density estimation algorithm (EAKDE) to unequal clustering.
Different from the traditional random CH selection method,
EAKDE considers the residual energy and distance to BS,
and employs fuzzy-logic-based approach to determine the
priority of a node to compete for CH. Then, according to
the local node information, EAKDE adaptively decides the
cluster radius. After the cluster is formed, EAKDE utilizes a
multi-hop routing protocol. The CH transmits data between
the clusters through a relay node, and finally sends it to
BS. These mechanisms significantly reduce the energy over-
head of sensor nodes, so the network lifetime is ultimately
increased.

To evaluate the proposed algorithm, EAKDE will be com-
pared to some popular algorithms proposed in the literature,
namely LEACH, EAMR, imp-K-means, EAUCF, and DFCR.
Simulation experiments are performed on two different sce-
narios. The simulation results show that EAKDE performs
better than the other advanced algorithms in terms of network
stability, network lifetime and energy efficiency.

The rest of this paper is organized as follows. In the next
section, related research on some clustering routing algo-
rithms in WSNs is given briefly. In Section 3, the network
model and the energy consumption model used in this paper
are introduced. In Section 4, the proposed algorithm EAKDE
and its four main phases are discussed in detail. In Section 5,
in order to evaluate EAKDE, it is compared with LEACH,
EAMR, imp-K-means, EAUCF and DFCR, and the detailed
experimental results are given. Finally, the conclusions and
future works are drawn in Section 6.

II. RELATED WORK
Sensing data transmission is deemed to be the most impor-
tant energy consumption of sensor nodes in WSNs. Cluster-
ing routing protocols not only extend the network lifetime,

but also increase the network scalability. In this section, many
clustering routing algorithms proposed in recent years are
briefly explained.

LEACH [4] is a well-known distributed clustering algo-
rithm. LEACH operates on rounds where each round divided
into two phases: the setup phase and the steady state phase.
During the setup phase, LEACH uses a pure probability
model to select CHs. Each sensor node has a certain prob-
ability of acting as a CH per round. With attention on energy
dissipation, the CHs take a rotation among all sensor nodes in
each round. When a node is decided to be CH, it broadcasts
an advertisement message, with the node id and a header.
Non-CHs decide to join the cluster according to the strength
of received signal. In the steady state phase, the CHs aggre-
gate data packets received from their CMs and forward them
to BS directly.

Based on LEACH, many variants have been proposed to
further improve its performance. The LEACH-based clus-
tering protocols mainly extend the network lifetime from
the perspective of CH selection and cluster formation. The
improved LEACH (ModLEACH) [7] proposes a CH replace-
ment scheme. When the CH’s energy is below a given thresh-
old, the CH is re-elected, otherwise, it will continue to act
as CH. LEACH-C [5] adopts a centralized mechanism to
select CHs based on the residual energy of each node and
location awareness information. LEACH-E [6] uses mini-
mum spanning tree technology to select CHs based on resid-
ual energy of each node. In addition, some protocols consider
combining heuristic-based algorithms, namely PSO [10],
GA [8], and ACO [10], [12]. For example, LEACH-GA [8]
employs a genetic algorithm to select CHs with optimal prob-
ability. HAS [13] adopts a centralized protocol, which aims
to minimize the total distance between the CH and its CMs,
thereby further enhancing the network lifetime.

After given the number of CHs, K-means [16]–[18] algo-
rithm usually considers the Euclidean distance to deter-
mine the centroid position, and the node closest to the
centroid serves as CH. Imp-K-means [19] is divided into two
phases. The first phase is similar to K-means, except that
imp-K-means considers the residual energy of each node to
optimize CH selection. The next stage of imp-K-means uti-
lizes equal clustering schemes to ensure that the clusters have
the same size. This approach sounds good for the uniform
distribution of nodes. However, in most scenarios, the node
location distribution and energy distribution are often uneven,
so the equal clusteringmechanism is obviously not applicable
to most of the WSNs applications. To solve this problem,
the unequal clustering mechanism is proposed. EEUC [9]
utilizes a probabilistic model to determine whether a sensor
node participates in CH selection. If a sensor node takes part
in the campaign, it will act as a temporary CH and participate
in the campaign within a pre-specified competitive radius to
become an actual CH. The competition radius is proportional
to its distance to BS. The sensor node near BS has a smaller
competition radius. Therefore, EEUC is a distributed unequal
clustering algorithm.
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Multi-hop routing protocols in WSNs tend to consume
less power than traditional single-hop communication pro-
tocols. In addition, multi-hop routing protocols can effec-
tively overcome signal propagation effects in remote wireless
communications, and improve communication quality of ser-
vice (QoS). EAMR is an energy-efficient multi-hop routing
protocol. EAMRminimizes the communication overhead for
exchanging control information by reducing the number of
CH rotations. When the residual energy of a CH is less than
a given threshold, another node is randomly selected from its
CMs to serve as CH. Therefore, the CMs are fixed throughout
the process. In addition, EAMR uses a relay node (RN) for
data packet transmission between clusters. In each round,
the CH far from BS transmits data to BS through RN, and
the CH close to BS directly transmits to BS.

The research application of fuzzy logic [23]–[28] inWSNs
is currently more popular. FCM was proposed by Bezdek
in 1981 [21], which allows sensor nodes to belong to mul-
tiple clusters. Each node has a membership degree of each
cluster in the interval [0, 1] [22]. This method divides all
nodes in WSNs into a given number of clusters. In addition,
many algorithms utilize fuzzy logic to solve CH selection
and cluster radius calculation problems. CHEF [29] uses the
residual energy of each node and local distance as fuzzy input
descriptors to select CHs in a distributed manner. The local
distance refers to the distance between the temporary CH and
the CMs within its competition radius. EAUCF [31] utilizes
fuzzy logic to deal with the uncertainties in the competition
radius and solves the hot spot problem in multi-hop routing.
EAUCF uses the node residual energy and distance to BS to
adjust the competition radius, so the competition radius of
each round is dynamically changed.

DUCF [30] and DFCR [32] which are based on EAUCF,
consider more fuzzy input parameters and mapping rules.
DUCF takes the residual energy of each node, node degree
and distance to BS as fuzzy input parameters. The fuzzy
output result serves as a reference for CH selection and
competition radius calculation. Node degree is the number of
neighbor nodes within a given communication radius. How-
ever, DFCR considers four fuzzy input parameters, includ-
ing the primary parameters: the energy level and distance
to BS, and the secondary parameters: neighbor density and
neighbor cost. The CH selection is determined by the primary
parameters, while the cluster radius is calculated according to
the primary parameters and the secondary parameters. This
approach effectively enhances the network lifetime. However,
more fuzzy input parameters and if-then mapping rules are
adopted, which makes DFCR greatly influenced by human
experience.

The proposed algorithm EAKDE in this paper is mainly
divided into four phases:
• Cluster head election: Using fuzzy logic theory, EAKDE
calculates the priority of each node competing for CH
based on the node residual energy and distance to BS.

• Cluster radius calculation: According to the local sen-
sor nodes information, the adaptive kernel density

estimation algorithm is adopted to determine the cluster
radius of sensor nodes.

• Cluster formation: Each CH sends a broadcast message
within its cluster radius calculated in step 2. For a non-
CH node that receives multiple messages from CHs,
it considers four parameters, (i.e., distance of CH from
non-CH, residual energy of CH, direction of CH to BS,
and distance of CH from BS) and decides to join the
optimal cluster.

• Routing process: The CH node level is measured by the
distance of CH from BS. Following the principle that the
CH node can only select the lower-level CH node as RN,
the multi-hop routing backbone network is established.

III. SYSTEM MODEL
A. NETWORK MODEL
Before describing the given algorithm in detail, the net-
work model employed in the experiment is introduced. Some
related network model assumptions are given per below:
• All sensor nodes are randomly deployed in the target
region, and after the deployment phase, both the sensor
nodes and the BSs are stationary.

• All sensor nodes know their location clearly after the
deployment phase.

• All sensor nodes are able to change the transmission
power according to the distance to the receiver nodes.

• The initial energy of all sensor nodes is the same.
• The processing power and energy supply of the BS are
infinite.

B. ENERGY MODEL
The energy dissipation model in simulation employs the first
order radio model [4]. Equation (1) represents the energy
consumption in transmitting l bits of data to d distance.

ETx (l, d) =

{
lEelec + lεfsd2 d < d0
lEelec + lεmpd4 d ≥ d0

(1)

Equation (2) represents the energy consumption in receiv-
ing l bits of data.

ERx (l, d) = lEelec (2)

Here, l is the number of transmitted information bits, d is
the distance between the transmitter and the receiver, d0 is
the transmission distance threshold. Eelec indicates the energy
consumed to run the transmitter or receiver circuitry. If the
distance between the transmitter and the receiver is less than
a threshold d0, εfs indicates the energy consumed in the free
space model; otherwise, εmp refers to the multi-path model is
used. The value of d0 is usually calculated as:

d0 =
√
εfs

εmp
(3)

Taking into account the correlation between the sensing
data of nearby nodes, the CH nodes utilize data aggrega-
tion technology [33]–[35] to aggregate intra-cluster data to
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reduce data redundancy. Assuming global time synchroniza-
tion, the data aggregation mechanism can effectively reduce
network traffic, but it will increase the network communica-
tion delay. Data aggregation is divided into constant aggrega-
tion [14] and increasing aggregation [15] according to the size
of the aggregated data packet. This paper utilizes the increas-
ing aggregation (IA) model. The CH nodes form smaller data
packet according to a certain aggregation ratio. The length of
the aggregated data is calculated by the following equation:

Lagg = Lrec + Lrec × ε × N (4)

where Lagg represents the length of the aggregated data
packet, Lrec represents the length of the received data packet,
ε(0 ≤ ε ≤ 1) is the aggregation ratio and N is the number
of CMs.

Energy consumption in data aggregation is represented
by EDA. In summary, the energy dissipation of the CH node
is expressed by the following equation:

ECH = ERx + EDA + ETx (5)

The energy dissipation of the non-CHnode is calculated using
Equation (6).

Enon−CH = ETx (6)

IV. PROPOSED ALGORITHM
In this section, the proposed algorithm EAKDE is described
in detail. EAKDE is a distributed unequal clustering routing
algorithm. In order to determine the priority of a node to com-
pete for CH, EAKDE is based on fuzzy logic which is taking
both residual energy and distance to BS parameters into
consideration.Moreover, EAKDE utilizes the adaptive kernel
density estimation algorithm [37], [38] to assign appropriate
cluster radius according to the local node conditions in each
round. After the clustering phase, a multi-hop routing back-
bone network is established to perform data transmission.
EAKDE consists of the following phases: cluster head elec-
tion, cluster radius calculation, cluster formation and routing
process.

A. CLUSTER HEAD ELECTION
After the sensor nodes are randomly deployed, each node can
locate its own location [39]. The BS periodically broadcasts
a BS_ADV message, including the base station id and the
base station location. After receiving a BS_ADV message,
node S(i) stores the base station id and the base station
location information, and calculates the distance to BS using
Equation (7).

DistBS (Si) =
√
(Xi − XBS )2 + (Yi − YBS )2 (7)

If a sensor node is closer to BS, it has higher ability
to compete for CH and the greater probability of becom-
ing a hot spot. In addition, it is obvious that the residual
energy of the node is positively correlated with the ability to
compete for CH. Therefore, EAKDE employs both residual
energy and distance to BS to determine the priority of each

TABLE 1. Fuzzy if-then mapping rules for CH priority competition in
EAKDE.

FIGURE 1. Fuzzy set - fuzzy input variable residual energy.

FIGURE 2. Fuzzy set - fuzzy input variable distance to BS.

node to compete for CH. The CH competition uncertainty
is handled by predefined fuzzy if-then mapping rules. These
fuzzy if-then mapping rules are given in Table 1. The fuzzy
inference technique uses theMamdani method, and the center
of area (COA) method is used for defuzzification of CH
competition.

The ability of a node to act as CH, denoted as ‘chance’,
changes dynamically, because EAKDE employs residual
energy and distance to BS as fuzzy input variables. The
fuzzy set of residual energy as input variable is demonstrated
in Figure 1. The fuzzy linguistic variables for this fuzzy set
are Low, Medium and High. The membership functions of
Low and High are trapezoidal membership functions, and the
trigonometric membership function is used for Medium.

Another fuzzy input variable is the distance to BS. The
fuzzy set that describes the distance to BS input variable is
depicted in Figure 2. Near,Medium and Far are the linguistic
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variables of this fuzzy set. Near and Far linguistic variables
have a trapezoidal membership function, and Medium has a
trigonometric membership function.

FIGURE 3. Fuzzy set - fuzzy output variable ‘chance’.

The ‘chance’ as the only fuzzy output variable is denoted
as ui. The fuzzy set of ‘chance’ is illustrated in detail per
Figure 3. There are 9 linguistic variables, i.e., Very Weak,
Weak, Rather Weak,MediumWeak,Medium,Medium Strong,
Rather Strong, Strong, Very Strong. Very Weak and Very
Strong have the trapezoidal membership function, and the
other linguistic variables have the trigonometric membership
function.

There will be the strongest ability to act as CH for a node
which has the most residual energy and is closest to BS.
Conversely, the node with the least residual energy and the
farthest from BS has the weakest CH competition ability. The
ability of other nodes lies between these two extremes.

Each sensor node introduces a time delay Ti [32]. Once the
timer of a node expires, it elects itself as CH and advertises a
CH_ADV message. The specific calculation method of Ti is
as follows:

Ti = α × (1− ui)× TC (8)

where Tc is the maximum allowed waiting time. α, a random
variable in [0.9,1], is mainly utilized to distinguish ui, because
there may be different nodes with the same ‘chance’. Obvi-
ously, Ti decreases as ui increases, meaning that the ‘chance’
of node S(i) is greater.

B. CLUSTER RADIUS CALCULATION
The cluster radius is critical to the network lifetime. For
calculating the cluster radius, mainly significant parameters
are considered and described as follows:

1) NEIGHBOR NODE DENSITY
Assuming a local area, the sensor nodes are more densely
distributed, then the cluster radius should be decreased to
reduce the energy consumption of the CH node and avoid
it failing too fast. Conversely, for a local area where the
sensor nodes are sparsely distributed, the cluster radius can
be appropriately expanded. A node transmits a SN_ADVmes-
sage with a fixed radius, including the node id and node loca-
tion. Once neighbor nodes receiving the broadcast message,

they will return a SN_ACK message, including the residual
energy, node id, and node location. Then this node stores
each neighbor node information in a corresponding location
in the neighbor list. The list is updated according to the
current neighbors conditions at each round. The neighbor
node density (node degree) is calculated by Equation (9),
where N is the number of all sensor nodes in WSNs.

Density (i) =
|Neighbor(i)|

N
(9)

2) NEIGHBOR NODE DISPERSION
The dispersion of the neighbors affects the size of cluster
radius. It can be seen as another representation of local
distance. The dispersion of the neighbors is computed by
Equation (10).

Nei_Disp (i) =
∑

j∈Neighbor(i)
exp(−Dist(Si, Sj)2/2σ̂ 2) (10)

where σ̂ is the standard deviation of the abscissa and ordinate
values in the neighbors of node S(i).
The energy dissipation of CMs for transmitting data

packets is positively correlated with the distance to CH.
This means that, the node distribution is relatively discrete,
the CMs need to consume more energy to transmit data pack-
ets to CH. Therefore, the cluster radius should be appropri-
ately decreased to reduce the intra-cluster energy dissipation.
On the contrary, for the casewhere the node distribution is rel-
atively concentrated, the cluster radius can be appropriately
increased.

3) NODE RELATIVE RESIDUAL ENERGY
It is easy to understand that the more residual energy in the
CH node, the larger the cluster radius should be. As network
usage time passes, energy is continuously consumed, result-
ing in a decrease in the cluster radius. The relative residual
energy, i.e., Energy(i), is expressed as Energyres(i)

Energyinit (i)
. The nearby

nodes generally have the same characteristics. So if a local
area has more average relative residual energy, the area has a
larger cluster radius.

4) RELATIVE DISTANCE TO BS
Considering the hot spot problem in WSNs, the CH nodes
near to BS will bear higher data traffic, which leads to earlier
death of CHs. Therefore, for the region closer to BS, decreas-
ing cluster radius can effectively reduce the load of CHs.
Assume that the sensor deployment region is a rectangular
area. As shown in Figure 4, the point farthest from BS is
the four vertices of the region, i.e., (0, 0), (X, 0), (0, Y),
and (X, Y).

The relative distance to BS is calculated by Equation (11).

Dist_BS(i) =
DistBS (Si)

max (d1, d2, d3, d4)
(11)

According to the above four primary parameters, EAKDE
calculates the adaptive cluster radius based on the local neigh-
bor nodes conditions. The calculation of cluster radius is
mainly divided into three steps.
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FIGURE 4. Sensor nodes and BS location architecture diagram.

Step 1 (Kernel density estimation): First, we give a kernel
density estimate based on a fixed bandwidth under the global
conditions. The pilot estimation f̂H (l |E,D) of the distribu-
tion of sensor nodes on a position l is given by

f̂H (l |E,D)=
1
M

∑N

i=1
[

Density(i)
Dist_BS(i) · Energy(i)

·KH (l−li)]

(12)

in which

Density (i) =
|Neighbor (i)|

N
(13)

M =
∑N

i=1

Density(i)
Dist_BS(i) · Energy(i)

(14)

KH (l − li) =
1

2πH1H2
exp

(
−
(x − xi)2

2H2
1

−
(y− yi)2

2H2
2

)
(15)

where li(i = 1, 2 · · ·N ) represents the geographic location
of sensor nodes in WSNs, and KH (l − li) is a normal kernel
function with a fixed bandwidth. The fixed bandwidth H
consists of two global bandwidths (H1,H2). According to the
mean integrated squared error minimization [38], the optimal
(H1,H2) is given by

H1 ≈ 1.06N−
1
5 σ̂x (16)

H2 ≈ 1.06N−
1
5 σ̂y (17)

where the standard deviation of the abscissa of node S(i) is
given in (18), as shown at the bottom of this page, and the
standard deviation of the ordinate of node S(i) is given in (19),
as shown at the bottom of this page.

Step 2 (Local bandwidth determination): The pilot estima-
tion function f̂H (l |E,D) is mainly affected by four param-
eters: Dist_BS (i), Nei_Disp(i), Density (i) and Energy(i).
It can be found that when node S (i) is far from the position
to be estimated, the kernel function KH (l − li) is close to
zero, and the contribution of this node to the pilot estima-
tion function f̂H (l |E,D) is almost zero. Therefore, it is
very redundant to calculate the cumulative contribution of
all nodes under global conditions. Considering the low pro-
cessing power and small memory of sensor nodes, it is obvi-
ously not feasible to calculate f̂H (l |E,D) under the global
conditions. Therefore, the Nth-order nearest-neighbor of the
location to be estimated is considered. While reducing the
computational complexity, the space of neighbor list is saved.
Here, the Nth-order nearest-neighbor of the position to be
estimated is represented by a distance threshold CR (Cluster
Radius).
Step 3 (Adaptive bandwidth determination: The neighbor

nodes distribution of each node is different. Therefore, local
bandwidth is obviously not applicable to calculate the cluster
radius. In order to avoid local bandwidth defects, adaptive
bandwidth determination hi is used which is expressed with
Equation (20).

hi = gγ · f̂H (li |E,D)−γ (20)

where γ is a sensitive factor, with 0 ≤ γ ≤ 1, and the larger
γ indicates that hi is more sensitive to the pilot estimation
function f̂H (l |E,D). g is the geometric mean, which means
the geometric mean of hi is equal to one.

g = n

√∏n

i=1
f̂H (li|E,D), n = |Neighbor(i)| (21)

hi is related to node location, node condition, and analysis
scale. The smaller hi is suitable for revealing the distribution
of local node conditions, while the larger hi can make the
distribution of global node conditions more obvious. Differ-
ent locations should adopt different analysis scales, and the
adaptive bandwidth hi can truly fit the distribution of local
nodes. Therefore, the adaptive bandwidth hi can be used to
fit the cluster radius.

The BS sends the static parameters of Minimum Cluster
Radius (CRmin) and Maximum Cluster Radius (CRmax) to
all nodes in WSNs while advertising a BS_ADV message.
CR(i) denotes the cluster radius in Equation. (22).

CR (i) = hi · CR (22)

σ̂x =

√
1
M

∑N

i=1

(
Density(i)·x i

Dist_BS(i) · Energy(i)
−

1
M

∑N

j=1

Density(j) · xj
Dist_BS(i) · Energy(j)

)2

(18)

σ̂y =

√
1
M

∑N

i=1

(
Density(i)·yi

Dist_BS (i) · Energy(i)
−

1
M

∑N

j=1

Density(j) · yj
Dist_BS(i) · Energy(j)

)2

(19)
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Each node adjusts the size of the cluster radius according
to the static parameters, i.e., CRmin ≤ CR(i) ≤ CRmax .
It can be seen that CR(i) is inversely proportional to the pilot
estimation function f̂H (li |E,D).
In summary, the effects of the four parameters on the

adaptive cluster radius CR(i) are as follows:
• The larger the distribution density of neighbor nodes,
the smaller the cluster radius; on the contrary, the
larger the cluster radius.

• If the distribution of neighbor nodes is discrete, the pilot
estimate f̂H (li |E,D) will be larger, and the cluster
radius becomes very smaller. Conversely, for the case
where the neighbor nodes are concentrated, the cluster
radius is larger.

• As the average residual energy of neighbor nodes
decreases, the cluster radius becomes smaller.

• The CH nodes near to BS will bear higher data traffic
and consume their energy. Considering the load balance
of hot spots, the cluster radius of them must be reduced.

The effect of above parameters on the decision to the adap-
tive cluster radius is demonstrated by the examples in Table 2.
In these examples, the BS is placed at the center of region of
internet, and the maximum distance to BS is 70.7m. In exam-
ples 1 and 2, as it approaches the BS, the cluster radius of
the sensor node decreases. In examples 1 and 9, the relative
distance to BS is identical, but energy levels and neighbor
node density are different. The sensor node which has lower
energy and higher neighbor node density has a smaller cluster
radius.

TABLE 2. Sensor node’s information.

C. CLUSTER FORMATION
When the timer Ti is reached, node S(i) elects itself as CH
and calculates its cluster radius according to step 3. A CH
will broadcast a CH_ADV message within its cluster radius,
including the CH id, CH location and CH energy. Once node
S(j) receives the message, it abandons the right to CH selec-
tion and immediately joins the cluster. If multiple CH_ADV
messages are received, node S(j) needs to weigh the energy
consumption of joining each CH. Let CH_Cost(Sj,CH i)
denote the cost value. This cost function takes into account
the following parameters.

1) Distance from CH to BS: The further the CH is
from BS, it means that the CH needs to consume more

energy to transmit data packets. It leads to

CH_Cost(Sj,CH i) ∝ DistBS (CH i) (23)

2) Distance from non-CH to CH: A non-CH node can
only transmit data packets to a CH node, so for a non-
CH node, it is preferred to join the CH closest to it.
It leads to

CH_Cost(Sj,CH i) ∝ Dist(Sj,CH i) (24)

3) Direction of CH to BS: On the basis of parameters
1 and 2, a non-CH node is more inclined to join the
CH towards BS. δ represents the angle between the
S(j) to CH i connection and the S(j) to BS connection.
It leads to

CH_Cost(Sj,CH i) ∝
1

cosδ
(25)

4) Relative residual energy of CH: A non-CH node is
biased towards joining a CH with higher relative resid-
ual energy. It leads to

CH_Cost(Sj,CH i) ∝
1

Energy(CH i)
(26)

In summary, the energy cost value of S(j) to join each
CH can be computed by the following equation.

CH_Cost(Sj,CH i) ∝
DistBS (CH i) · Dist(Sj,CH i)
Energy (CH i) · (1+ cosδ)

(27)

A non-CH node calculates the cost of joining ith
CH and joins the cluster with the lowest cost, i.e.,
Min(CH_Cost(Sj,CH i)). Then it sends a CH_JOINmessage
to the corresponding CH, including node id.

D. ROUTING PROCESS
CMs can only transmit data packets to their corresponding
CH (not directly to BS). A CH node receives data packets
transmitted by CMs and performs data aggregation. A multi-
hop routing protocol is used between CHs to transmit data
packets to BS. In order to minimize the routing path, the next
hop of CH should be toward the direction of BS, thereby
reducing the energy consumption in the routing transmission.
Each CH calculates the routing level according to its distance
to BS, i.e., level(CH i) (rounded up), is given by

level(CH i) =

∣∣∣∣DistBS (CH i)
CRmax

∣∣∣∣ (28)

where level(CH i) = 1, 2, · · · k . Obviously, a CH node with a
higher level is farther away from BS. The CHs with routing
level equal to 1 are directly routed to BS. A high-level CH
node can only use a low-level CH node as a parent node (PN)
and select one of them as a relay node (RN). The CHs
broadcast the RN_ADV message within the range k × CRmax
(initially k = 2). If the RN_ACK message sent by a lower-
level CH is not received, the k value is increased until a
RN_ACK message is received.
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If multiple RN_ACK messages are received, CH i needs
to weigh the cost of sending data packets to each PN.
Cost(CH i,j) denotes the cost value, and it takes into account
some parameters, including the transmitted energy consump-
tion etij, the received energy consumption erij, and the residual
energy of CH i,j [40]. etij and e

r
ij can be calculated according

to Equations (1) and (2). Therefore, the cost of transferring
data packets to the next hop node, is given by

Cost(CH i,j) = etij · Energy (CH i)
−β

+ erij · Energy
(
CH j

)β−1 (29)

where β(0 ≤ β ≤ 1) is the residual energy weight of CH i,j.
According to the cost estimate, a CH node selects the optimal
RN among its PNs. The optimal choice is as follows:

RN (CH i) = min
{
Cost

(
CH i,j

)}
, j ∈ ∀PN (CH i) (30)

Figure 5 illustrates the EAKDE multi-hop routing process
for data packet transmission between CHs. For example, for
node 3, node 9 and node 15 are chosen as the candidate RN.
According to the multi-hop routing protocol, the optimal RN
node 15 is selected. Node 9 and node 15 both utilize node
20 as a RN. The entire multi-hop routing backbone network
in WSNs is shown in Figure 5.

FIGURE 5. Multi-hop routing process in EAKDE.

V. EXPERIMENTS AND ANALYSIS
In this section, we use several experiments to evaluate the
proposed algorithm EAKDE. We have performed simulation
experiments in Matlab R2017b. Considering the impact of
the BS location on the experimental results, two different
network scenarios (i.e., Scenario 1 and Scenario 2) are used
here. In Scenario 1, the BS is located at the corner of the
region of interest (ROI), and in Scenario 2, the BS is placed
at the center of ROI. The ROI is 100 m× 100 m, and the total
number of sensor nodes in WSNs is 200. These scenarios are
illustrated respectively in Figure 6 and Figure 7.

In the simulation experiment environment, the network
runs in rounds. Each round is divided into four phases accord-
ing to the proposed algorithm EAKDE: cluster head elec-
tion, cluster radius calculation, cluster formation and routing
process. The other clustering routing algorithm character-
istics used for experimental comparisons in this paper are
shown in Table 3, including LEACH, EAMR, imp-K-means,
EAUCF, and DFCR.

FIGURE 6. Scenario 1 - BS at the corner of ROI.

FIGURE 7. Scenario 2 - BS at the center of ROI.

According to Equation (31) [29], the desired percentage p
of CHs for LEACH, EAMR, and EAUCF is set to 0.2, and the
desired percentage p of CHs for imp-K-means is set to 0.05.
The CH replacement threshold value of EAMR [20] is set
to 0.04 in Scenario 1 and 0.02 in Scenario 2. Imp-K-means
takes into account the residual energy and the distance to the
centroid when elects the CHs, and the parameter weights are
set to 0.8 and 0.2 in all of the scenarios respectively. The
maximum distance to BS is 111.8m and the maximum com-
petition radius [31] is set to 55m in Scenario 1 for EAUCF.
In Scenario 2, the farthest node is 70.7m away from BS and
the maximum competition radius is set to 35m for EAUCF.
The maximum cluster radius of DFCR is set to 20m in all
of the scenarios. For EAKDE, CRmin is set to 10 m, CRmax is
set to 30 m, and the values of weight β and γ are set to
0.5 in all of the scenarios. Figure 8 and Figure 9 illustrate
the resulting cluster layout by using the EAKDE algorithm.

p =
√
n

√
2π
·

√
εfs

εmp
·

√
A

(0.765×
√
A× 0.5)

2 ·
1
n

(31)

The experiment mainly evaluates the algorithm from two
metrics of network lifetime and energy efficiency. The simu-
lation parameters and their values are listed in Table 4.
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TABLE 3. Comparison of the clustering approaches.

FIGURE 8. Scenario 1 - the resulting cluster layout.

FIGURE 9. Scenario 2 - the resulting cluster layout.

A. NETWORK LIFETIME
The most important concern inWSNs is the network lifetime.
Handy et al. [36] used the first node dies (FND), half of the
nodes alive (HNA) and last node dies (LND) to estimate the
network lifetime. However, after more than half of sensor
nodes die, the WSNs almost fails in most cases. Therefore,
only FND and HNA metrics are chosen to evaluate the net-
work lifetime.

In order to ensure the reliability of the results, every
scenario is simulated 50 times, and the average values are
taken. In each round of Scenarios 1 and 2, the distribution
of the number of alive nodes for each algorithm is depicted
in Figure 10 and Figure 11.

Figure 10 and Figure 11 clearly depict that EAKDE is
more stable than other algorithms, because the FND metric

TABLE 4. Simulation parameters and values.

FIGURE 10. Scenario 1 - number of alive sensor nodes per round.

for EAKDE begins later and node death continues linearly.
Although for EAMR death of sensor nodes is earlier than
other algorithms, it has the optimal LND performance. Since
EAMR adopts fixed clusters mechanism, the overhead of
forming new clusters at every round is saved, and the entire
network lifetime is increased. However, in most applications,
after more than half of nodes die, the WSNs is no longer
considered valid. So for EAMR, the network lifetime is not
regarded as optimal.

Imp-K-means is slightly lower than EAUCF and DFCR
for the FND metric, but performs better for the HNA metric.
Since EAUCF and DFCR employ the unequal clustering
mechanism to optimize the cluster size, nodes become useless
later than imp-K-means. Imp-K-means is just the opposite.
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FIGURE 11. Scenario 2 - number of alive sensor nodes per round.

TABLE 5. FND and HNA of clustering algorithms in different scenarios.

It employs the equal clustering mechanism to balance the
entire network load, so it has better performance for the
HNA metric. However, imp-K-means is centralized and only
applies to scenarios where the uniform distribution of nodes.
It does not get good network scalability.

Note that EAKDE is not dominant if the LND metric is
considered, because it has some overhead for exchanging
control information. But on the other hand, EAKDE has
the best FND and HNA metrics, which means it has the
best performance in terms of network stability and network
lifetime. EAKDE considers the distribution of local sensor
nodes dynamic information, adaptively determines the cluster
radius, and effectively equalizes the energy consumption of
sensor nodes in WSNs.

In order to clearly analyze the results, FND and HNA
of each algorithm in Scenarios 1 and 2 have been shown
in Table 5.

As seen in Table 4, EAKDE performs significantly better
than other algorithms (i.e., LEACH, EAMR, imp-K-means,
EAUCF, and DFCR) considering the FND and HNA metrics
in Scenarios 1 and 2. The FND metric reflects the network
stability of WSNs to some extent. Although EAMR has an
optimal LND , its FND is small. Since EAMR uses a fixed
CH mechanism, the CH is rotated when the CH energy is
lower than a given threshold, thereby reducing the overhead
of forming new clusters, but at the same time resulting in
the node to fail too fast. EAKDE are 147.6% and 116.7%
more efficient than LEACH considering the FND metric in
Scenarios 1 and 2, 99.7% and 47.1% more efficient than
imp-K-means, 55.4% and 36.4%more efficient than EAUCF,
26.0% and 18.1% more efficient than DFCR.

The HNA metric can more accurately reflect the network
lifetime. EAKDE outperforms all of the other algorithms con-
sidering the HNA metric. The HNA performance of EAKDE
is 58.1% and 43.6% higher than LEACH in Scenarios 1 and 2,
that of EAMR 38.7% and 38.5%, that of imp-K-means 5.1%
and 1.9%, that of EAUCF 18.9% and 12.4%, and that of
DFCR 6.7% and 6.4%. It can be observed that under the
premise of ensuring the validity of WSNs, the number of
active nodes in each round of EAKDE is more than LEACH,
EAMR, imp-K-means, EAUCF and DFCR. Therefore, it can
be concluded that EAKDE has better performance than
other algorithms, in terms of network stability and network
lifetime.

B. ENERGY EFFICIENCY
The energy of sensor nodes is one of the critical constraints
of WSNs. The energy consumption rate of a node often
depends on the routing protocol used. Low power consump-
tion means that the entire network lifetime will be extended
and the stability of the network will be enhanced. Figure 12
and Figure 13 show the average residual energy per round of
all nodes inWSNs for EAKDE, and compare it with LEACH,
EMAR, imp-K-means, EAUCF and DFCR.

FIGURE 12. Scenario 1 - average residual energy per round.

FIGURE 13. Scenario 2 - average residual energy per round.

As shown in Figure 12 and Figure 13, EAKDE is the
most energy-efficient algorithm for Scenarios 1 and 2. There-
fore, EAKDE has better network stability. For LEACH,
EMAR, and EAUCF, because of the stochastic mechanism
for CH selection, low energy nodes may be selected as CHs.
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Imp-K-means utilizes the equal clustering mechanism, which
does not effectively reduce energy consumption for non-
uniformly distributed scenarios. In addition, for LEACH,
EMAR and imp-K-means, the cluster formation strategy only
takes into account the distance from non-CH to CH and
the residual energy of CH, while ignoring the optimization
of cluster size. Therefore, they can’t effectively balance the
energy dissipation of CHs.

EAUCF, DFCR and EAKDE all consider the dynamic
changes in the network environment. Some node conditions
are not constant, such as node failure or node movement (due
to external factors like earthquake, storm and etc.), as well
as the cluster radius of each round should change. Based on
the density, dispersion, residual energy and relative distance
to BS of the neighbors, EAKDE adaptively adjusts the cluster
radius of each round, effectively balancing the CH load and
reducing energy consumption. Therefore, EAKDE is more
energy-efficient than other clustering algorithms.

The advantages of EAKDE are summarized as follows:
• For EAKDE, high energy nodes close to BS have the
higher priority of acting as CHs, avoiding the defect that
low energy nodes may be randomly selected as CHs.

• EAKDE is distributed in nature, and has better perfor-
mance in network scalability and stability.

• Compared with other clustering routing algorithms,
EAKDE does not need to set more threshold parameters
or fuzzy if-then mapping rules, thus reducing the impact
of human experience. EAKDE considers the dynamic
change of node information, and adaptively determines
the optimal cluster radius according to the network
scenarios.

• In the cluster formation phase, non-CHs choose to join
the nearest cluster, such as LEACH protocol. However,
EAKDE takes into account the distance from CH to BS,
the distance from non-CH to CH, the residual energy
of CH and the direction of CH to BS, to optimize the
composition of CMs.

VI. CONCLUSIONS AND FUTURE WORKS
A new unequal clustering algorithm EAKDE is proposed
for WSNs in this paper, which aims to balance the work-
load among all sensor nodes. EAKDE consists of four main
phases: cluster head election, cluster radius calculation, clus-
ter formation and routing process. In order to adapt to the
dynamic change of node conditions, EAKDE is commit-
ted to assigning the appropriate cluster radius to the sen-
sor nodes by utilizing adaptive kernel density estimation
algorithm. From the perspective of CH selection and cluster
radius calculation, EAKDE avoids the effects of random
uncertainty and human experience. It is distributed in nature
and has a better performance compared to the other tested
algorithms (i.e., LEACH, EMAR, imp-K-means, EAUCF
and DFCR) in terms of the network lifetime and energy
efficiency. These experimental results imply that EAKDE
is a stable and energy-efficient unequal clustering algorithm
for WSNs. In the future, we will consider using the adaptive

kernel density estimation algorithm to elect the points-of-
interest (POI) of the region. Let POI act as the active CH to
further prolong the network lifetime.
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