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ABSTRACT Massive multiple-input multiple-output (MIMO) and nonorthogonal multiple access (NOMA)-
based technologies are considered as essential parts in the 5G systems to fulfill the escalating demands
of higher connectivity and data rates for emerging wireless applications. In this paper, a new approach
of massive MIMO-NOMA with receive antenna selection (RAS) is considered for the uplink channel
to significantly increase the number of connected devices and overall sum rate capacity with improved
user-fairness and less complexity. The proposed scheme is designed from two multiuser MIMO (MU-
MIMO) clusters, based on the available number of radio frequency chains (RFCs) at the base station and
channel conditions, followed by power-domain NOMA for the simultaneous signal transmission. We derive
the sum rate and capacity region expressions for MIMO-NOMA with RAS over Rayleigh fading channels.
Then, an optimal and three highly efficient sub-optimal dynamic user clustering, RAS, and power allocation
algorithms are proposed for sum rate maximization under received power constraints and minimum rate
requirements of the allowed users. The effectiveness of designed algorithms is verified through extensive
analysis and numerical simulations compared to the reference MU-MIMO and MIMO-NOMA systems.
The achieved results show a substantial increase in connectivity, up to two-fold for the accessible number
of RFCs, and overall sum rate capacity while satisfying the minimum users’ rates. Besides, important
tradeoffs can be realized between system performances, hardware and computational complexities, and
desired user-fairness in terms of serving more users with equal/unequal rates.

INDEX TERMS Massive MIMO-NOMA, massive connectivity, user clustering, antenna selection, power
allocation, channel capacity, capacity region, user fairness.

I. INTRODUCTION
By 2020, the emergence of fifth generation (5G) mobile
systems will be reality to counter the rapid explosion of
global data traffic, driven mainly by the massive use of smart-
phones, laptops, and other smart devices/machines to get
advantages of various new wireless services. Mobile Internet
and massive machine-type communications (mMTC), also
known as the Internet of things (IoT), are examples of such
important applications that poses critical requirements for 5G
cellular networks such asmassive connectivity, fiber-like data
rate transmission, ultra-reliable low-latency communications,
wider coverage, improved user-fairness, and flexible multiple
access (MA) schemes [1]–[4]. Therefore, several promising
techniques have been proposed by the research and industrial
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communities to meet these critical challenges. In particular
and due to the limited wireless spectrum and power resources,
it is highly envisioned that massive (or large scale) multiple-
input multiple-output (MIMO) [3], [4] and nonorthogonal
multiple access (NOMA) [1], [2] will be the key components
for 5G and beyond. The early versions of these technolo-
gies have been already adopted in Releases 13 and 14 of
Third Generation Partnership Project (3GPP) Long Term
Evolution Advanced Pro (LTE-A Pro) [5], [6]. Furthermore,
enhanced specifications are incorporated in the first specifi-
cation of 5G New Radio (NR) standard under Release 15 of
non-standalone and standalone operations [3], [4], [7].

A. BACKGROUND
Massive MIMO is achieved by equipping the base sta-
tion (BS) with hundreds to thousands of antennas associated
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with radio frequency chains (RFCs) to enhance the spatial
degree of freedom (DoF) and array gain considerably. This
approach allows simultaneous transmission of tens to hun-
dreds of mobile user equipments (UEs) without consuming
extra power and subdivision in the scarce resources of time,
frequency, and codes [8], [9]. It has been confirmed, through
extensive analysis and results, that massive MIMO sys-
tems enable significant improvement in spectral efficiency,
reliability, and link latency [10]–[15]. At present, Releases
13 and 14 of LTE-A Pro standards support up to 16 and
32 antennas at the BS, respectively with an increased number
of up to 8 co-scheduled UEs. In addition, Release 15 of
the 5G NR expands the BS with 64 to hundreds of anten-
nas [4], [5]. So far, several designs have shown the possibility
of implementing large number of antennas however at the
cost of high complexity and power consumption owing to the
need for same number of associated RFCs [10], [11], [13].
Therefore, antenna selection (AS) has been considered as an
effective solution to reduce the impact of these critical prob-
lems [16], [17] and becomes an essential part of multiantenna
systems [10]–[14], [18]–[21]. This technique has been inves-
tigated over different channel conditions by exploiting the
spatial diversity, represented by the difference between higher
number of antennas and available RFCs, and demonstrated
significant performance gains [11], [19].

On the other hand, power-domain NOMA schemes based
on superposition coding (SC) at the transmit side and
successive interference cancellation (SIC) at the receiver
has been recognized lately as a promising technology to
simultaneously serve multiple users with different channel
conditions at the same time, frequency, code, and spatial
DoF [22]–[25]. Compared with the most efficient orthogonal
MA (OMA) schemes represented by orthogonal frequency
division MA (OFDMA) in 4G networks, it enables extra
number of connected UEs, higher spectral efficiency, and
diverse quality-of-service (QoS) [2]. Therefore, NOMA has
been considered in 3GPP LTE-A Pro for the downlink under
multiuser superposition transmission (MUST) scheme [1].
Moreover, it is envisioned that 5G NR will support the
application of uplink NOMA to provide large-scale con-
nectivity for mMTC and other applications [7]. However,
NOMA has many research challenges that need careful inves-
tigations such as optimal/sub-optimal resource allocations,
dynamic user clustering algorithms, low complexity SIC
based receivers and multiuser detection (MUD) methods,
and in-depth capacity analysis when combined with MIMO
systems [2], [26]–[30].

The integration of NOMA concepts in MIMO systems
can support extra UEs and enhance the performance gains
compared with the existing MIMO-OMA schemes due to the
additional DoFs. Therefore, MIMO-NOMA becomes a hot
research topic and attracted high attention for both down-
link and uplink channels [31]–[38]. To achieve the promised
gains, the allowed users are usually grouped in clusters based
on their propagation channel conditions, and different strate-
gies have been proposed for power allocation [29], [39], [40],

cluster/group formation [35], [38], [41], and signal precoding
and detection [31], [33], [34], [37]. Massive MIMO-NOMA
designs are also considered for different targets such as
achievable rate enhancement [1], multiresolution multicast
services [29], extending the user capacity with low receiver
complexity [38], maintaining performance gains with par-
tial channel state information (CSI) [42], robust vehicu-
lar communications with spatial modulation [43], resource
allocations when combined with relaying schemes [44],
joint beamforming and power allocation [45], and secu-
rity for opportunistic multicast transmissions [46]. Neverthe-
less, more research activities are required for critical system
designs that take into account the aforesaid challenges for
massive MIMO-NOMA systems.

B. AIMS AND CONTRIBUTIONS
To provide effective solutions for the requirements of 5G
systems without excess in spectrum and power resources,
this work aims to maximize the connectivity and sum rate
capacity of massive MIMO-NOMA uplink channel with
enhanced user-fairness and less system complexity. User-
fairness can be viewed in terms of equal rate distribu-
tion among all connected UEs regardless of their channel
conditions or unequal users’ rates by serving strong chan-
nel users with maximum rates and satisfying the minimum
rate target (QoS) of weak channel users [22], [23], [35].
On the other hand, system complexity represents a key issue
to minimize the consumed power towards safe and green
communications [11], [12], [47]. For instance, the hardware
complexity, in terms of utilized RFCs, is responsible for
50-80% of the total power consumption at the BS [12], while
the essential computational efforts consume about 20% of
the rest power [47]. Thus, reducing the number of RFCs and
computational burden represent crucial factors for given user
connectivity and sum rate capacity targets.

In this paper, a new approach of massive MIMO-NOMA
uplink with receive AS (RAS) is considered based on the
adopted design in our recent works [14], [38] without
use of signal alignment [31], channel coding [33], [37],
multicarrier transmission [36], or signal precoding [34].
The allowed users are divided into two multiuser MIMO
(MU-MIMO) clusters based on the accessible number of
RFCs and channel conditions, denoted as high power clus-
ter (HPC) and low power cluster (LPC). Simultaneous
signal transmission from both clusters is maintained by
employing power-domain NOMA with efficient inter-cluster
and intra-cluster power allocation strategies. At the BS,
the received superimposed signals associated with RAS are
estimated reliably using two low complexity linear MUD
stages and SIC process.

The main contributions of this paper are summarized as
follows:

• We derive the sum rate capacity for the uplink massive
MIMO-NOMA channel with RAS over Rayleigh fading
environment. In addition, we provide the capacity region
expressions for the achievable clusters’ sum rates and

31866 VOLUME 7, 2019



W. A. Al-Hussaibi, F. H. Ali: Efficient User Clustering, RAS, and Power Allocation Algorithms for Massive MIMO-NOMA Systems

present the optimal operating point that maximize the
overall sum rate capacity. This important point identi-
fies the optimal tradeoffs between the overall sum rate,
clusters’ sum rates, users’ rates, and user overloading
(i.e. size of LPC).

• For overall sum rate maximization under received power
restrictions and minimum rate requests of HPC and LPC
users, we present an optimal algorithm for the dynamic
user clustering, RAS, and power allocation based on
the joint exhaustive search. To mitigate the ultra-high
computational efforts, we propose three highly efficient
sub-optimal algorithms by splitting the joint problem
into low complexity components. Detailed complexity
analysis of all designed algorithms is presented.

• Since the 5G NR supports backward compatibility with
the 3GPP LTE systems [4], [7], we demonstrate the
effectiveness of the proposed algorithms through exten-
sive analysis and numerical simulations for different
moderate and large scale system scenarios compared
with the conventional MU-MIMO and MIMO-NOMA
schemes in [48] and [49]. The achieved outcomes val-
idate massive increase in connected users, up to dou-
ble number of utilized RFCs, and higher overall sum
rate capacity. Moreover, vital tradeoffs are demonstrated
between achieved connectivity, overall sum rate, clus-
ters’ sum rates, required number of RFCs, computa-
tional complexity, and user-fairness of equal/unequal
rate distribution.

The rest of this paper is organized as follows: In Section II,
the system design of massive MIMO-NOMA is described.
Section III presents the sum rate and capacity region anal-
ysis of the considered system. Section IV deals with the
dynamic user clustering, RAS, and power allocation by pro-
viding the problem formulation, proposed algorithms, and
related complexity analysis. The conducted results are shown
in Section V. Finally, Section VI concludes the paper.
Notations: Bold-face uppercase and lowercase letters

denote matrices and vectors, respectively. Plain lowercase
letters stand for scalars. Cm×u denotes complex m× u matrix
whileRm×uis for realm×umatrix. Superscripts [.]∗, [.]H, [.]T

and [.]† stand for complex conjugate, conjugate transposition,
transposition, and pseudoinverse, respectively. E [.] stands
for the expectation operator. Im is m × m identity matrix
and ‖.‖ stands for the Euclidean vector norm. |.| denote the
determinant for matrices and magnitude for vectors.

II. SYSTEM DESIGN OF MASSIVE MIMO-NOMA
A. SYSTEM MODEL
Consider an uplink massive MIMO-NOMA scenario in a sin-
gle cell cellular system of K randomly deployed users com-
municating simultaneously over flat Rayleigh fading channel
with one common BS. Each mobile UE has a single-antenna
while the BS which is equipped with a large array of M
antennas andMs RFCs employs RAS to select the best subset
of antennas (Ms ≤ M) based on their channel conditions.

As in [29], [31]–[35], [37], [41], and [43], we assume perfect
synchronization and CSI at the receiver with fading rate
much less than the data rate (i.e. slowly varying) to isolate
the impact of these parameters and show the actual gain of
proposed approach. It should be noted that imperfect CSI
and synchronization between the users are important practical
issues [18], [21] however beyond the scope of this paper.

In the context of spectrally efficient wireless systems,
mobile users of strong channel gains have the priority of the
accessible communication links in contrast to those of weak
channel conditions. On the other hand, a balance between
spectral efficiency and fairness in distributing the system
resources among connected UEs should be maintained to ful-
fill the requirements of next-generation networks [31], [35].
Motivated by these facts, user partitioning is considered in
this work by dividing the allowed users dynamically into two
MU-MIMO clusters based on their received signal power
namely, HPC of strong channel users and LPC of weak
channel users. In this scenario, power-domain NOMA is per-
formed for signal transmission of HPC and LPC by employ-
ing power control under total received power constraint P
during every transmission time interval. At the BS, a low
complexity layered MUD is used for the received superim-
posed signals. It consists of two stages of linear MUD to
estimate HPC signals first considering the interference from
LPC as a background noise, followed by SIC to remove the
contribution of HPC from received signal vector. The second
stage of MUD will be used for estimating LPC signals.

Themodel of the received superimposed signal vector from
HPC and LPC at M receive antennas r ∈ CM×1 is given as

r =
K∑
k=1

hk
√
pksk + n (1)

where hk ∈ CM×1 is the composite channel vector of user k
whose entries hmk represent the complex gains between user
k and mth receive antenna due to large scale path loss and
small scale fading, sk denotes the transmitted symbol of user k
with E

[
sks∗k

]
= 1, pk denotes the transmitted power of user k

subject to maximum power constraint that the UE can handle
and/or the spectrum regulations allow, and n ∈ CM×1 is i.i.d
complex additive white Gaussian noise (AWGN) vector with
elements having zero mean and variance σ 2

n . The channel
vector hk can be represented as [31]

hk =
gk

√
L (dk)

(2)

L (dk) =

{
dζk , dk > d0
dζ0 , dk ≤ d0

(3)

where gk = [g1k · · · gMk ]T ∈ CM×1 is the Rayleigh fading
channel vector of user k whose entries gmk are zero mean
unit variance complex Gaussian coefficient between user k
and mth receive antenna, L (dk) denotes the path loss of user
k located at a distance dk from the BS and assumed to be
the same at each receive antenna, d0 is the reference distance
according to cell size, and ζ denotes the path loss exponent.
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B. DYNAMIC USER CLUSTERING
In view of the fact that each of the two considered linearMUD
stages has total DoFs equal toMs RFCs, the allowed number
of connected UEs (streams) is upper bounded by K ≤ 2M s.
User clustering in HPC is formed from T = Ms users of
highest received powers to satisfy the channel rank condition
and preserve the maximum connectivity and sum rate of the
generic MU-MIMO with linear MUD. On the other hand,
LPC is configured from the rest of users U = (K − T ) ≤ Ms
of lowest powers to attain the user-fairness with acceptable
interference level to HPC users. Note that the additional U
users of weak channel conditions are commonly terminated
in the basic MU-MIMO schemes. Therefore, the range of
supported UEs in the considered massive MIMO-NOMA
system is bounded by Ms < K ≤ 2M s.
Practically, dynamic user clustering can be achieved based

on the channel path loss for each user L (dk) ; k = 1, . . . ,K
which is inversely proportional to the average received signal
power. By adopting this strategy, users near to the BS are
highly probable to be included in HPC due to strong chan-
nel conditions in contrast to those located at far distances,
which results in an improved spectral efficiency and user-
fairness. Consequently, for full hardware complexity system
of Ms = M , the basic design criterion for cluster formation
can be given as follows:

1) Calculate the channel path losses L (dk) ;
k = 1, . . . ,K .

2) Define 9 = [1, 2, . . . ,K ] as the set of all active
users, sorted according to their path loss parameters in
ascending order, i.e. L (d1) < L (d2) < . . . < L (dK ).

3) Construct the set of HPC as 8 = [1, . . . ,T ] from the
first T elements in 9 that represent strong users.

4) Construct the set of LPC as 2 = [1, . . . ,U ] from the
rest U elements in 9 that represent weak users.

5) Repeat steps 1 to 4 whenever users’ locations changed
(i.e. path losses) to update the sets 8 and 2.

Considering the designed HPC and LPC for full complex-
ity system, the signal model (1) can be rewritten as

r =
T∑

i=1,i ∈8

hi
√
pisi︸ ︷︷ ︸

HPC

+

U∑
j=1,j∈2

hj
√
pjsj + n

︸ ︷︷ ︸
LPC

= HHxH +HLxL + n (4)

where HH = [h1· · · hT ] ∈ CM×T and HL = [h1· · · hU ] ∈
CM×U are the subchannels of HPC and LPC, respectively,
xH =

[√
p1s1· · ·

√
pT sT

]T ∈ CT×1 is the transmitted signal

vector from HPC, and xL =
[
√
p1s1· · ·

√
pU sU

]T
∈ CU×1

is the transmitted signal vector from LPC.

C. POWER ALLOCATION
Based on the basic implementation principles of power-
domainNOMA [22], [31], [41], the power difference between
received signals from designed HPC and LPC is essential to
manage the inter-cluster interference and perform efficient

SIC process at the receiver. In addition, total average received
power constraint P represents a crucial design criterion to
reduce the power consumption at the UEs (i.e. prolongs the
batteries lifetime) and minimize the intra-cell as well as
inter-cell interference. Therefore, the average received pow-
ers at full complexity BS fromHPCusers (PH ) and LPC users
(PL) are specified during every transmission time period as
PH+PL = P, andmaintained through the inter-cluster power
allocation policy to satisfy target user rates as

PH = βHP =

T∑
i=1,i∈8

pi
α

L (di)
(5)

PL = βLP =

U∑
j=1,j∈2

pj
α

L
(
dj
) (6)

where the factor α is used to insure that the transmitted power
from each UE do not exceed its maximum rating, βH and βL
are dynamic power allocation coefficients for HPC and LPC,
respectively with βH + βL = 1 and βH > βL > 0.
For users within each cluster, statistics-aware intra-cluster

power allocation is used to compensate the disparities
between users’ signal attenuations. This strategy has the
advantage of allowing uniform user performance within each
cluster due to equal effective channel gains for supported UEs
as
{
piα
/
L (di) = PH

/
T
}T
i=1 and

{
pjα
/
L
(
dj
)
= PL

/
U
}U
j=1

for HPC and LPC, respectively. Consequently, the allocated
transmit power for each user can be expressed in terms of the
associated path loss and premeditated cluster’s parameters as

pi =
βHP

αT
L (di) ; i ∈ 8, i = 1, . . . ,T (7)

pj =
βLP

αU
L
(
dj
)
; j ∈ 2, j = 1, . . . ,U . (8)

D. RAS TECHNIQUE
In MIMO systems, implementing more RFCs to support
massive number of UEs is impractical in terms of hard-
ware requirements, consumed power, and increased receiver
size [17]. Therefore, AS is usually used to capture most
of the massive MIMO gains when the number of utilized
antennas is higher than available RFCs by utilizing inexpen-
sive RF switches and digital signal processing circuitry [13].
In the literature, different AS algorithms have been pro-
posed to select the best subset of antennas, mostly based
on highest received power [11], [38] or capacity maximiza-
tion [12]–[14], [19]. The latter approach is known to offer
optimal/near-optimal performance compared with the former
at the cost of exhaustive search requirements for antenna
subset selection (grows exponentially with M ), which is
computationally prohibitive [10]. But, the presented sum rate
capacity results in [11] for power based selection (PBS)
over real propagation environment demonstrated very close
performance to that of near-optimal capacity based selection
(CBS). Based on this finding, a simplified binary switching
has been used for AS in [13] tomaximize the channel capacity
and shows significant complexity reduction compared with
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the full switching scheme at the cost of small performance
loss.

In this work, RAS is utilized to achieve massive increase
in sum rate capacity of designed system with affordable
complexity. For this purpose, PBS and CBS techniques are
proposed in Section 4 to select the best subset ofMs fromM
receive antennas as l ∈ S, whereS =

{
1, . . . , l, . . . , |S|

}
represent the set of all potential subsets whose cardinality

is |S| =
(
M
Ms

)
=

M !
Ms!(M−Ms)!

. The selection process is

based on the overall channel matrixH ∈ CM×K of considered
system represented as

H = [h1 · · · hk · · · hK ] = [b1, · · · ,bm, · · · ,bM ]T (9)

where hk ∈ CM×1 is the k th column corresponding to user k
and bm ∈ C1×K is the mth row corresponding to mth receive
antenna.

From (4), the received signal vector associated with user
clustering and RAS can be written as

ř =
T∑

i=1,i∈8

ȟi
√
pisi +

U∑
j=1,j∈2

ȟj
√
pjsj + ň

= ȞHxH+ȞLxL+ň (10)

where ř ∈ CMs×1, ȟk ∈ CMs×1, and ň ∈ CMs×1 denote
received signal, k th user channel, and noise vectors after
selection, respectively, ȞH ∈ CMs×T and ȞL ∈ CMs×U are
HPC and LPC channels associated with RAS, respectively
and can be used to characterize the overall channel matrix
after user clustering and RAS as Ȟ =

[
ȞH ȞL

]
∈ CMs×K .

III. SUM RATE AND CAPACITY REGION ANALYSIS
A. SUM RATE CAPACITY
The sum rate capacity of the proposed massive MIMO-
NOMA without RAS is given in terms of the achievable sum
rates of HPC (RH ) and LPC (RL) as

Rsum = RH + RL =
T∑

i=1,i∈8

Ri +
U∑

j=1,j∈2

Rj (11)

where Ri and Rj are the achievable rates of ith user and jth

user within HPC and LPC, respectively according to their
allocated transmit powers and bounded by Ri ≥ Rj ≥ R0;
∀i, j, where R0 stands for the considered minimum user rate
constraint to warrant the QoS requirements. It should be
noted that users in each cluster will have equal average rate
distribution since they have equal effective channel gains.

Based on the capacity of uplink MU-MIMO chan-
nel [48], [49], the sum rate capacity of signal model (4) can
be given for constant channel realization as

Rsum ≤ log2

∣∣∣∣∣∣∣∣IM +
1
σ 2
n

 T∑
i=1,
i∈8

hipihHi +
U∑
j=1,
j∈2

hjpjhHj


∣∣∣∣∣∣∣∣. (12)

Using (7) and (8) of the allocated users’ powers, the above
equation can be written in terms of power allocation coeffi-
cients βH and βL as

Rsum ≤ log2

∣∣∣∣∣∣IM + γα
βH
T

T∑
i=1,i∈8

L (di)hihHi

+
βL

U

U∑
j=1,j∈2

L
(
dj
)
hjhHj

∣∣∣∣∣∣ (13)

Rsum ≤ log2

∣∣∣∣IM + γα
(
βH

T
DH +

βL

U
DL

)∣∣∣∣ (14)

where γ = P/σ 2
n is the average SNR at each receive antenna

while the matricesDH =
∑T

i=1,i∈8 L (di)hih
H
i ∈ CM×M and

DL =
∑U

j=1,j∈2 L
(
dj
)
hjhHj ∈ CM×M are related to HPC and

LPC, respectively.
With RAS, the sum rate Rssum can be maximized as

Rssum≤ max
l∈S

l=1,...,|S|

{
log2

∣∣∣∣IMs +
γ

α

(
βH

T
ĎH +

βL

U
ĎL

)∣∣∣∣} (15)

where the maximization process is performed over subset
l ∈ S; l = 1, . . . , |S|, and the matrices ĎH ∈ CMs×Ms and
ĎL ∈ CMs×Ms associated with RAS can be found as

ĎH =

T∑
i=1,i∈8

L (di) ȟiȟHi (16)

ĎL =

U∑
j=1,j∈2

L
(
dj
)
ȟjȟHj (17)

Therefore, the resulting ergodic sum rate over randomly vary-
ing channel realizations is given by

E
[
Rssum

]
≤ E

 max
l∈S

l=1,...,|S|

{
log2

∣∣∣∣IMs +
γ

α

(
βH

T
ĎH +

βL

U
ĎL

)∣∣∣∣}
 .
(18)

B. CAPACITY REGION
Considering the sum rates of designed clusters, RH and RL ,
capacity region of massive MIMO-NOMA system without
RAS (M = Ms) and over constant channel realization can
be given based on the capacity expressions of MU-MIMO
schemes [49] and (14) as the set of all sum rates (RH ,RL)
satisfying the following three constraints

RH ≤ log2

∣∣∣∣IM + γβHαT DH

∣∣∣∣ (19)

RL ≤ log2

∣∣∣∣IM + γβLαU
DL

∣∣∣∣ (20)

Rsum = RH + RL ≤ log2

∣∣∣∣IM + γα
(
βH

T
DH +

βL

U
DL

)∣∣∣∣ .
(21)
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FIGURE 1. Capacity region of massive MIMO-NOMA system for M ≥ Ms.

The capacity region is shown in Fig. 1 where the maximum
sum rate points RH (B) for HPC and RL(A) for LPC can be
achieved through (19) and (20), respectively as if the other
cluster is absent from the system. On the other hand, con-
straint (21) is related to the achievable overall sum rate when
users of both clusters are communicating simultaneously with
the BS receiver. The corner points, A = (RH ,RL) and
B = (RH ,RL), can be achieved by applying SIC whereas
all other points on the line AB can be realized through SIC
with time or frequency sharing.

For the considered system, signals of HPC are designed to
be decoded first with the presence of interference from LPC,
followed by SIC to decode the signals of LPC. Therefore,
the achievable sum rate capacity of the optimal operating
point A is given as

RH (A) = log2

∣∣∣∣∣IM + γβHαT
[
IM +

γβL

αU
DL

]−1
DH

∣∣∣∣∣ (22)

RL (A) = log2

∣∣∣∣IM + γβLαU
DL

∣∣∣∣ . (23)

Note that if the detection process is reversed by estimating
signals of LPC first with HPC interference (not feasible for
this system but for illustration purpose), the sum rate point B
can be given as

RH (B) = log2

∣∣∣∣IM + γβHαT DH

∣∣∣∣ (24)

RL (B) = log2

∣∣∣∣∣IM + γβLαU

[
IM +

γβH

αT
DH

]−1
DL

∣∣∣∣∣ . (25)

The considered operating point A on the capacity region
can be used to characterize the optimal tradeoff between the
overall achievable sum rate, clusters’ sum rates, users’ rates,
and user overloading U (i.e. size of LPC).

When RAS of subset l ∈ S; l = 1, . . . , |S| is utilized,
the associated capacity region (see Fig. 1) can be demon-
strated as the set of all sum rates

(
RsH ,R

s
L

)
fulfilling the

following three conditions

RsH ≤ max
l∈S;βH>βL

{
log2

∣∣∣∣IMs +
γβH

αT
ĎH

∣∣∣∣} (26)

RsL ≤ max
l∈S;βH>βL

{
log2

∣∣∣∣IMs +
γβL

αU
ĎL

∣∣∣∣} (27)

Rssum = RsH+R
s
L

≤ max
l∈S;βH>βL

{
log2

∣∣∣∣IMs+
γ

α

(
βH

T
ĎH +

βL

U
ĎL

)∣∣∣∣} .
(28)

In this case, the operating sum rate point Ǎ =
(
RsH ,R

s
L

)
and

the other corner point B̌ =
(
RsH ,R

s
L

)
can be found as

RsH (Ǎ)

= max
l∈S;βH>βL

{
log2

∣∣∣∣∣IMs +
γβH

αT

[
IMs +

γβL

αU
ĎL

]−1
ĎH

∣∣∣∣∣
}

(29)

RsL(Ǎ)

= max
l∈S;βH>βL

{
log2

∣∣∣∣IMs +
γβL

αU
ĎL

∣∣∣∣} (30)

RsH (B̌)

= max
l∈S;βH>βL

{
log2

∣∣∣∣IMs +
γβH

αT
ĎH

∣∣∣∣} (31)

RsL
(
B̌
)

= max
l∈S;βH>βL

{
log2

∣∣∣∣∣IMs +
γβL

αU

[
IMs+

γβH

αT
ĎH

]−1
ĎL

∣∣∣∣∣
}
.

(32)

It should be noted that when M is reduced to Ms, the sum
rates Rssum, R

s
H , and R

s
L will be identical to Rsum, RH , and RL ,

respectively. As a result, the corner points Ǎ and B̌ on the
capacity region will be shifted backwards to points A and B,
respectively (i.e. RsH (Ǎ) = RH (A), RsL(Ǎ) = RL(A), RsH (B̌) =
RH (B), and RsL(B̌) = RL(B)).

IV. DYNAMIC USER CLUSTERING, RAS, AND
POWER ALLOCATION ALGORITHMS
In this section, we propose dynamic user clustering, RAS, and
power allocation algorithms for massive MIMO-NOMA sys-
tem to provide the important tradeoffs between the achieved
performance (Rssum, R

s
H , R

s
L , and additional users U ), system

complexity (number of RFCs and computational efforts), and
user-fairness (equal/unequal user rates).

A. PROBLEM FORMULATION
Efficient user clustering, RAS, and power allocation tech-
niques are developed for the considered system based on the
following power and minimum rate constraints:

1) POWER CONSTRAINTS

C1 : P =
K∑
k=1

pk
α

L (dk)

=

T∑
i=1,i ∈8

pi
α

L (di)︸ ︷︷ ︸
PH=βHP

+

T∑
j=1,j∈2

pj
α

L
(
dj
)

︸ ︷︷ ︸
PL=βLP

(33)
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C2 : PH − PL = (βH − βL)P ≥ Pdif (34)

where constraint C1 is related to the total received power (P)
from both of HPC and LPC users while constraint C2 ensures
the essential minimum power difference Pdif between PH
and PL to handle the inter-cluster interference and perform
efficient SIC process at the receiver.

2) MINIMUM RATE CONSTRAINTS

C3 : RsH =
T∑

i=1,i∈8

Rsi ≥ TR0 (35)

C4 : RsL =
U∑

j=1,j∈2

Rsj ≥ UR0 (36)

where C3 and C4 are used to warrant the minimum sum
rates for HPC and LPC, respectively. Rsi and R

s
j denote the

achievable rates of ith and jth users within HPC and LPC after
RAS, respectively. So, the upper and lower bounds of overall
sum rate, Rssum, can be given based on (28), (35) and (36) as

KR0 ≤ Rssum ≤ max
l∈S;βH>βL

×

{
log2

∣∣∣∣IMs +
γ

α

(
βH

T
ĎH +

βL

U
ĎL

)∣∣∣∣} . (37)

To maximize the overall sum rate for each channel real-
ization under C1− C4, the optimization problem can be for-
mulated in accordance with the user clustering and operating
sum rate point Ǎ =

(
RsH ,R

s
L

)
as

max
(8,2)n∈6
l∈S;βH>βL

log2

∣∣∣∣∣IMs +
γβH

αT

[
IMs +

γβL

αU
ĎL

]1
ĎH

∣∣∣∣∣︸ ︷︷ ︸
RsH

+ log2

∣∣∣∣IMs +
γβL

αU
ĎL

∣∣∣∣︸ ︷︷ ︸
RsL

subject to : C1− C4. (38)

where (8,2)n ∈ 6 is the nth subsets of HPC and
LPC users from the overall possible user clustering set
6 =

{
(8,2)1 , . . . , (8,2)|6|

}
whose cardinality is related

to the number T as |6| =
(
K
T

)
=

(
K
Ms

)
.

Note that the overall sum rate maximization (38) is
mixed-integer nonlinear programming problem that requires
exhaustive search for the optimal joint user clustering and

RAS over all possible combinations
(
K
Ms

)(
M
Ms

)
. Besides,

closed-form solution for the optimal power allocation coef-
ficients (β∗H and β∗L) is very difficult to be derived due to
the determinants operations, interference term in RsH part,
and RAS process. Consequently, an additional search for the
optimal power coefficients is required based on C1 and C2
over the following ranges

P+ Pdif

2P
≤ βH < 1 (39)

0 < βL ≤
P− Pdif

2P
. (40)

Since the range of βL is basically smaller than that of βH ,
the inequality (40) is adopted in this work to reduce the
computational complexity and obtain the optimal β∗L using�
division steps of equal sizes µ =

(
P− Pdif

) /
2P�while β∗H

can be calculated as β∗H = 1 − β∗L . However, the overall

complexity,
(
K
Ms

)(
M
Ms

)
�, becomes significantly high

and practically impossible for massive MIMO-NOMA.
Therefore, we develop three low complexity sub-optimal
methods in the following subsection after presenting the opti-
mal algorithm based on the exhausted search.

B. PROPOSED ALGORITHMS
• Optimal Joint User Clustering, RAS, and Power Allocation
(OJUC-RAS-PA) Scheme (Algorithm 1): The optimization
process is performed by searching for the optimal power
coefficients for all possible subset combinations from sets
6 and S. The subsets, (8,2)n ∈ 6 and l ∈ S, thatmaximize
the sum rate (38) will be selected based on optimal indices
(n, l)∗ to find the corresponding system parameters (i.e. ȞH ,
ȞL , β∗H , β

∗
L , R

s
H (Ǎ), R

s
L(Ǎ), and R

s
sum(Ǎ)). This operation is

dynamically updated whenever the users’ channel realiza-
tions hk ; k = 1, . . . ,K are changed. The pseudocode of this
scheme is shown in Algorithm 1.

Note that Algorithm 1 is optimal for the considered detec-
tion technique which consists of two linear MUD stages
(for HPC and LPC) and SIC process for NOMA. How-
ever, it requires ultra-high computational complexity due
to exhaustive search prerequisite for the optimal solution.
To mitigate this critical drawback, the following sub-optimal
algorithms are proposed by splitting the joint problem of
sum rate maximization into three separate steps of the main
components (i.e. user clustering, RAS, and power allocation).
• User Clustering, RAS, and Power Allocation (UC-RAS-

PA) Scheme (Algorithm 2): A simple user clustering tech-
nique is performed first to find 8 and 2 sets based on the
users’ channel path loss parameters. The channel matrix asso-
ciated with user clustering is constructed as H = [HHHL].
This operation is followed by RAS using low complexity PBS
method to choose the best subset of receive antennas l ∈ S
and construct the subchannels of HPC and LPC associated
with user clustering and RAS as ȞH and ȞL , respectively.
Then, search for the optimal power coefficients (β∗H and β∗L)
that maximize (38) is adopted, and the corresponding system
parameters (i.e. RsH (Ǎ), R

s
L(Ǎ), and Rssum(Ǎ) ) are obtained

accordingly. The procedure of this technique is repeated once
the users’ channels are changed. The pseudocode of this
scheme is shown in Algorithm 2. It demonstrate the low-
est overall computational efforts as can be seen in the next
subsection.
• User Clustering, Power Allocation, and Power Based

RAS (UC-PA-PBRAS) Scheme (Algorithm 3): User clustering
is executed first to locate 8 and 2 sets based on the users’
path losses, and the associated channel matrix is constructed
accordingly as H = [HHHL]. This operation is followed by
searching for the optimal power coefficients (β∗H and β∗L) that
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maximize RH using (22) and RL using (23). Subsequently, a
simple PBRAS method is carried out to find the best subset
of receive antennas sl ∈ S and construct the subchannels of
HPC and LPC associated with user clustering and RAS as ȞH
and ȞL , respectively. The corresponding system parameters
can be found accordingly as: RsH

(
Ǎ
)
using (29), RsL

(
Ǎ
)

using (30), and Rssum
(
Ǎ
)
= RsH

(
Ǎ
)
+ RsL

(
Ǎ
)
. The pro-

cedure of this algorithm is repeated once the users’ chan-
nels are changed. The pseudocode of this scheme is shown
in Algorithm 3.
• User Clustering, Power Allocation, and Capacity Based

RAS (UC-PA-CBRAS) Scheme (Algorithm 4): The steps of
user clustering and power allocation are similar to that
of Algorithm 3. But, CBRAS (of higher complexity than
PBRAS) is performed by calculating the clusters’ sum rates,
RsH(l) using (29) and R

s
L(l) using (30), for each antenna subset

l ∈ S. The antenna subset that maximize the sum rate
Rssum(l) = RsH(l) + RsL(l) will be selected as the optimal
with index l∗ to find the corresponding system parameters
(i.e. ȞH , ȞL , RsH (Ǎ), R

s
L(Ǎ), and Rssum(Ǎ)). The procedure

of this method is repeated whenever the users’ channels
are changed. The pseudocode of this scheme is shown
in Algorithm 4.

C. COMPLEXITY ANALYSIS
The complexity of proposed algorithms is presented in this
subsection considering the dominant efforts of complex-
valued multiplications. For this purpose, it should be noted
that each multiplication process of any two matrices, A ∈
CN×N and B ∈ CN×N , involves N 3 calculations while the
inverse of a matrix A requires Eigenvalue decomposition
of N 3

/
6 computations [38]. Besides, to find each of ĎH

and ĎL using (16) and (17), respectively we need a num-
ber of M2

s calculations whereas M2 is required for each of
DH and DL based on (13) and (14). In Table 1, summary
of the total multiplications essential for each main item
in Algorithms 1-4 is presented. These results are used to find
the total computational efforts and complexity order for each
algorithm as shown in Table 2.

TABLE 1. Summary of the total complex-valued multiplications for each
main item in Algorithms 1-4.

As can be seen from Table 2, OJUC-RAS-PA scheme
involves highest computational efforts of O(
M3
s

(
K
Ms

)(
M
Ms

)
�

)
due to exhaustive search for the opti-

TABLE 2. Complexity comparison of the proposed algorithms.

mal solution whereas UC-RAS-PA can achieve the lowest
complexity of O

(
K 2M +M3

s �
)
. It should be noted that the

numberM is usually much larger thanMs in massive MIMO-
NOMA systems and thus has more impact on the complexity
of proposed algorithms. Therefore, a significant complexity
reduction can be achieved when RAS is performed before the
power allocation procedure. For instance when M = 100,
Ms = 10, K = 20, and � = 10, OJUC-RAS-PA requires
ultra-high complexity of about 3.198 × 1022 multiplications
compared to 50, 000 for UC-RAS-PA algorithm. When the
power allocation is executed before RAS, the complexity
order depends on the utilized RAS technique as 10, 041, 000
for UC-PA-PBRAS compared to 1.73 × 1016 for UC-PA-
CBRAS scheme.

V. NUMERICAL RESULTS
In this section, numerical results of the achieved overall sum
rate, clusters’ sum rates, user rate, and capacity region are pre-
sented in bit/s/Hz using Monte Carlo simulations to demon-
strate the effectiveness of proposed algorithms for massive
MIMO-NOMA towards 5G requirements. Using different
moderate and large scale system scenarios and for notational
convenience,K × M/Ms denotes MIMO-NOMA scheme of
K users, M receive antennas, and Ms RFCs. In addition,
Algorithms 1, 2, 3, and 4 are represented in the legends of
figures as a1, a2, a3, and a4, respectively. For fair compar-
isons and validation of results, we consider the reference
MU-MIMO and MIMO-NOMA systems in [48] and [49].
The MU-MIMO of T = Ms single-antenna users (maximum
connectivity) and PBS is represented as T × M/Ms. For
the reference MIMO-NOMA with PBS, two users with total
number of transmit antennas K (T = Ms for strong user
and U = K − T for weak user) are considered, and rep-
resented as T ,U ,M/Ms. All presented results are averaged
over 104 channel realizations and all schemes under investi-
gation are assumed to have same total average received power
of P = 1. The adopted simulation parameters for the uplink
MIMO-NOMA systems in a single cell cellular network are:
inter-site distance of 500m (i.e. the distance between the BS
and cell-edge); d0 = 50m; ζ = 3.8; α = Ms; Pdif = 0.6P;
� = 20; and R0 = 0.1 bit/s/Hz.

31872 VOLUME 7, 2019



W. A. Al-Hussaibi, F. H. Ali: Efficient User Clustering, RAS, and Power Allocation Algorithms for Massive MIMO-NOMA Systems

Algorithm 1 OJUC-RAS-PA Scheme

Input: K ,M ,Ms,P,Pdif , σ
2
n , �,R0, α, and

hk ; k = 1, . . . ,K .
1: Define 9 = [1, . . . ,K ] as the set of all active users,
8 = [1, . . . ,T ] as a set of HPC users, 2 = [1, . . . ,U ]
as a set of LPC users, and ϒ = [1, . . . ,M ] as the set of
all receive antennas.

2: Use 9 to construct the set of all possible subset
combinations of HPC and LPC users as
6 =

{
(8,2)1 , . . . , (8,2)|6|

}
.

3: Useϒ to construct the set of all potential selected receive
antenna subsets S =

{
1, . . . , |S|

}
.

4: Find |6| = K !
/
Ms! (K −Ms)!,

|S| = M !
/
Ms! (M −Ms)!, and µ =

(
P− Pdif

) /
2P�.

5: for n = 1 to |6| do
6: for l = 1 to |S| do
7: Set βL = 0 and Rssum(n,l) = 0.

8: Construct ȞH(n,l) and ȞL(n,l) according to (8,2)n
and l .

9: for q = 1 to � do
10: Update βL = βL + µ.
11: Find: βH = 1− βL and both terms RsH and RsL

in (38).
12: if

(
RsH ≥ TR0

)
AND

(
RsL ≥ UR0

)
AND(

RsH + R
s
L > Rssum(n,l)

)
then

13: Update Rssum(n,l) = RsH + R
s
L , R

s
H(n,l) = RsH ,

RsL(n,l) = RsL , and βL(n,l) = βL .
14: end if
15: end for
16: end for
17: end for
18: Choose the indices that satisfy the optimization

problem (38):

(n, l)∗ = arg max
n∈{1,...,|6|}
n∈{1,...,|S|}

Rssum(n,l).

19: Find the corresponding system parameters:
ȞH = ȞH(n,l)∗ , ȞL = ȞL(n,l)∗ , β

∗
L = βL(n,l)∗ , β

∗
H =

1− β∗L ,R
s
H

(
Ǎ
)
= RsH(n,l)∗ ,R

s
L

(
Ǎ
)
= RsL(n,l)∗

and Rssum
(
Ǎ
)
= Rssum(n,l)∗ .

Output: ȞH , ȞL , β
∗
H , β

∗
L ,R

s
H (Ǎ),R

s
L(Ǎ), and R

s
sum(Ǎ).

A. RESULTS OF MODERAT SCALE MIMO-NOMA SCHEMES
In this part and without loss of generality, we consider 8 ×
12/4, 8 × 4/4, 8 × 12/6, and 6 × 12/4 MIMO-NOMA
configurations compared with the reference 4×12/4, 4×4/4,
6 × 12/6, 4, 4, 12/4, 4, 4, 4/4, 6, 2, 12/6, and 4, 2, 12/4
schemes.

In Fig. 2, capacity results of 8 × 12/4 scheme
(T = 4;U = 4) using Algorithms 1-4 are shown as a func-
tion of SNR. This configuration demonstrate maximum
connected users based on the utilized number of RFCs

Algorithm 2 UC-RAS-PA Scheme

Input: K ,M ,Ms,P,Pdif , σ
2
n , �,R0, α, and

hk ; k = 1, . . . ,K .
1: Define 9 = [1, 2, . . . ,K ] as the set of all active users,
sorted according to their path loss parameters in
ascending order, i.e. L (d1) < L (d2) < . . . < L (dK ).

2: Use the first T elements in 9 to construct the set 8 =
[1, . . . ,T ] of HPC users and the last U elements to form
the set 2 = [1, . . . ,U ] of LPC users.
3: Construct the channel matrix associated with user
clustering as:

H = [HHHL] = [h1 · · · hThT+1 · · · hK ]
= [b1, · · · ,bM ]T .

4: Define the set of all receive antennas asϒ = [1, . . . ,M ]
with l ∈ ϒ indicating l th antenna.

5: Calculate the power of l th row bl in H corresponding
to l th receive antenna as ‖bl‖2.

6: Sort the elements of ϒ according to their associated
powers in descending order.

7: Choose the first Ms elements in ϒ which represent the
best subset of receive antennas with highest powers.

8: Construct the subchannels of HPC and LPC
associated with user clustering and RAS as ȞH and ȞL ,
respectively.

9: Set µ =
(
P− Pdif

) /
2P�, βL = 0, and Rssum = 0.

10: for q = 1 to � do
11: Update βL = βL + µ.
12: Calculate: βH = 1− βL and both terms RsH and

RsL in the optimization problem (38).
13: if

(
RsH ≥ TR0

)
AND

(
RsL ≥ UR0

)
AND(

RsH + R
s
L > Rssum

)
then

14: Update Rssum = RsH + R
s
L , R

s
H

(
Ǎ
)
= RsH ,

RsL
(
Ǎ
)
= RsL , and β

∗
L = βL .

15: end if
16: end for
17: Find the related system parameters as: β∗H = 1− β∗L

and Rssum
(
Ǎ
)
= RsH

(
Ǎ
)
+ RsL

(
Ǎ
)
.

Output: ȞH , ȞL , β
∗
H , β

∗
L ,R

s
H (Ǎ),R

s
L(Ǎ), and R

s
sum(Ǎ).

(K = 2Ms = 8), and RAS of Ms from M = 3Ms spatial
DoFs. Fig. 2(a) demonstrates the achieved overall sum rate(
Rssum

)
compared with the reference 4× 12/4 and 4, 4, 12/4

schemes. As can be seen, performance of Algorithm 4 is very
close to the optimal (Algorithms 1) and slightly outperforms
Algorithms 3 and 2 for the entire range of SNRs. Besides
and as expected, performance of all proposed algorithms is
higher than that of 4× 12/4 scheme due to U = 4 additional
users and that of 4, 4, 12/4 scheme owing to clustering gain.
Fig. 2(b) shows the average user rate in HPC of T = 4 and
LPC of U = 4 as a function of SNR. It can be seen and for
all designed algorithms that the performance of LPC users is
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Algorithm 3 UC-PA-PBRAS Scheme

Input: K ,M ,Ms,P,Pdif , σ
2
n , �,R0, α, and

hk ; k = 1, . . . ,K .
1: Define 9 = [1, 2, . . . ,K ] as the set of all active users,
sorted according to their path loss parameters in
ascending order, i.e. L (d1) < L (d2) < . . . < L (dK ).

2: Use the first T elements in 9 to construct the set
8 = [1, . . . ,T ] of HPC users and the last U elements
to form the set 2 = [1, . . . ,U ] of LPC users.

3: Construct the channel matrix associated with
user clustering as:

H = [HHHL] = [h1 · · · hThT+1 · · · hK ]
= [b1, · · · ,bM ]T .

4: Set µ =
(
P− Pdif

) /
2P�, βL = 0, and Rsum = 0.

5: for q = 1 to � do
6: Update βL = βL + µ.
7: Calculate: βH = 1− βL , RH using (22), and RL

using (23).
8: if (RH ≥ TR0) AND (RL ≥ UR0) AND

(RH + RL > Rsum) then
9: Update Rsum = RH + RL and β∗L = βL .
10: end if
11: end for
12: Calculate: β∗H = 1− β∗L .
13: Define the set of all receive antennas as
ϒ = [1, . . . ,M ] with l ∈ ϒ indicating l th antenna.

14: Calculate the power of l th row bl in H corresponding
to l th receive antenna as ‖bl‖2.

15: Sort the elements of ϒ according to their associated
powers in descending order and choose the first Ms
elements as the best subset of receive antennas of
highest powers.

16: Construct the subchannels of HPC and LPC associated
with user clustering and RAS as ȞH and ȞL ,
respectively.

17: Find the corresponding system parameters as: RsH
(
Ǎ
)

using (29), RsL
(
Ǎ
)
using (30), and Rssum

(
Ǎ
)

= RsH
(
Ǎ
)
+ RsL

(
Ǎ
)
.

Output: ȞH , ȞL , β
∗
H , β

∗
L ,R

s
H (Ǎ),R

s
L(Ǎ), and R

s
sum(Ǎ).

increased as the SNR increases while results of HPC users
outperforms those of LPC at low to moderate SNRs. It then
demonstrate saturation at high SNRs due to higher LPC inter-
ference compared with the receiver noise power. In this case,
the intersections between achieved HPC and LPC curves
demonstrate the equal rate points of connected users (i.e. user-
fairness of equal rates) based on the utilized algorithms. For
instance, each served user will attain 3.68 bit/s/Hz using the
optimal solution (Algorithm 1) at SNR of 27dB whereas sub-
optimal methods (Algorithms 2-4) show very close and less

Algorithm 4 UC-PA-CBRAS Scheme

Input: K ,M ,Ms,P,Pdif , σ
2
n , �,R0, α, and

hk ; k = 1, . . . ,K .
1: Define 9 = [1, 2, . . . ,K ] as the set of all active users,
sorted according to their path loss parameters in
ascending order, i.e. L (d1) < L (d2) < . . . < L (dK ).

2: Use the first T elements in 9 to construct the set
8 = [1, . . . ,T ] of HPC users and the last U elements
to form the set 2 = [1, . . . ,U ] of LPC users.

3: Construct the channel matrix associated with user
clustering as:

H = [HHHL] = [h1 · · · hThT+1 · · · hK ]
= [b1, · · · ,bM ]T .

4: Set µ =
(
P− Pdif

) /
2P�, βL = 0, and Rsum = 0.

5: for q = 1 to � do
6: Update βL = βL + µ.
7: Calculate: βH = 1− βL , RH using (22), and RL

using (23).
8: if (RH ≥ TR0) AND (RL ≥ UR0) AND

(RH + RL > Rsum) then
9: Update Rsum = RH + RL and β∗L = βL .
10: end if
11: end for
12: Calculate: β∗H = 1− β∗L .
13: Define the set of all receive antennas as
ϒ = [1, . . . ,M ] with l∈ϒ indicating l th antenna.

14: Use ϒ to construct the set of all potential receive
antenna subsets S =

{
1, . . . , |S|

}
with

|S| = M !
/
(Ms! (M −Ms)!).

15: for l = 1 to |S| do
16: Construct both ȞH(l) and ȞL(l) based on l to find
RsH(l) using (29), RsL(l) using (30), and Rssum(l) = RsH(l)
+RsL(l).

17: end for
18: Choose the index that maximize the sum rate

associated with user clustering and RAS as:
l∗ = argmaxl∈{1,...,|S|}Rssum(l).

19: Find the corresponding system parameters as:
ȞH = ȞH(l∗), ȞL = ȞL(l∗),RsH

(
Ǎ
)
= RsH(l∗),

RsL
(
Ǎ
)
= RsL(l∗), and R

s
sum

(
Ǎ
)
= Rssum(l∗).

Output: ȞH , ȞL , β
∗
H , β

∗
L ,R

s
H (Ǎ),R

s
L(Ǎ), and R

s
sum(Ǎ).

results. Other unequal user rate points can be selected based
on the per-user QoS requirements for given SNR targets.

For 8 × 4/4 scheme of K = 2Ms = 8 users without RAS
(M = Ms = 4), the capacity outcomes of proposed algo-
rithms are shown in Fig.3 as a function of SNR. In Fig. 3(a),
the sum rates are presented compared with the reference
4 × 4/4 and 4, 4, 4/4 schemes. It can be seen clearly that
the performance curves of Algorithms 2-4 are identical due
to the absence of RAS and similar adopted mechanisms of
user clustering and power allocation in these methods. But,
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FIGURE 2. The capacity of 8× 12/4 scheme using Algorithms 1-4 in
bit/s/Hz as a function of SNR: (a) Achieved sum rate compared with the
reference 4× 12/4 and 4, 4, 12/4 schemes. (b) Average user rate in HPC
and LPC.

Algorithm 1 still provides the optimal Rssum through joint
user clustering and power allocation process. For example,
it achieves 24.34 bit/s/Hz at SNR of 25 dB higher than the
other methods by 1.34 bit/s/Hz and the benchmark 4, 4, 4/4
by 2.86 bit/s/Hz. Accordingly, the performance gap between
Algorithm 1 and other algorithms is reflected to RsL rather
than RsH since the decoding process of LPC signals (after
SIC of HPC signals) is interference-free in contrast to that of
HPCwhich suffers from the interference of LPC signals. This
is shown in Fig. 3(b) of the achieved average user rates for
HPC and LPC users. In this case, Algorithms 2-4 demonstrate
equal user rate point of 2.23 bit/s/Hz at SNR = 20.8dB while
Algorithm 1 attains 1.96 bit/s/Hz at less SNR of 18.1 dB.
In Fig. 4, capacity results of 8 × 12/6 scheme

(T = 6;U = 2) using more RFCs (Ms = 6) are shown as a
function of SNR. This configuration demonstrates the case
of K = 8, less than maximum allowed number of 2Ms = 12

FIGURE 3. The capacity of 8×4/4 scheme using algorithms 1-4 in bit/s/Hz
as a function of SNR. (a) Achieved sum rate compared with the reference
4× 4/4 and 4, 4, 4/4 schemes. (b) Average user rate in HPC and LPC.

users (i.e. low user overloading of U = 2 in LPC), and RAS
of Ms from M = 2Ms spatial DoFs. Fig. 4(a) shows the
achieved sum rates compared with the reference 6 × 12/6
and 6, 2, 12/6 schemes. As can be seen, the achieved results
of Algorithms 2 and 3 are the same for the entire range of
SNRs due to less utilized spatial DoFs. In addition, results
of Algorithm 4 outperform that of Algorithms 2 and 3, and
become more closer to the optimal solution (Algorithms 1).
Performance of all algorithms is also higher than the refer-
ence 6 × 12/6 scheme owing to U = 2 additional users and
that of 6, 2, 12/6 scheme due to user clustering gain. Fig. 4(b)
illustrates the average user rate in HPC and LPC as a function
of SNR. As can be seen and for all utilized algorithms,
the user rate in both clusters grows as the SNR increases,
and LPC users perform better than HPC at moderate to high
SNRs since they benefit from interference-free decoding.
Besides, the curves of HPC users are not saturated at high
SNRs due to low interference level from LPC compared with
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FIGURE 4. The capacity of 8× 12/6 scheme using algorithms 1-4 in
bit/s/Hz as a function of SNR. (a) Achieved sum rate compared with the
reference 6× 12/6 and 6, 2, 12/6 schemes. (b) Average user rate in HPC
and LPC.

the noise power. In this case, close equal user rate points for
Algorithms 1-4 are achieved.

Capacity results of 6 × 12/4 scheme are presented
in Fig. 5 as a function of SNR compared with the reference
4 × 12/4 and 4, 2, 12/4 schemes. This configuration serves
K = 6 users (T = 4;U = 2) less than the allowed num-
ber (2Ms = 8) and employs M = 3Ms. Summary of the
achieved capacity results (bit/s/Hz) of considered schemes
in Figs. 2(a), 3(a), 4(a), and 5(a) using proposed algorithms
at SNR of 25 dB is shown in Table 3 compared with the asso-
ciated reference systems. Furthermore, summary of equal
user rate results (bit/s/Hz) and associated SNRs (dB) for
considered schemes in Figs. 2(b), 3(b), 4(b), and 5(b) are
presented in Table 4.

Capacity regions of above scenarios are also shown
in Figs. 6 and 7 for SNR of 20, 25, and 30 dB. The carried
out results for 8 × M/4 schemes of full user overloading
(T = 4;U = 4) are presented in Fig. 6(a) using M = 3Ms

FIGURE 5. The capacity of 6× 12/4 scheme using algorithms 1-4 in
bit/s/Hz as a function of SNR. (a) Achieved sum rate compared with the
reference 4× 12/4 and 4, 2, 12/4 schemes. (b) Average user rate in HPC
and LPC.

and Fig. 6(b) for the case of M = Ms. As can be seen
for M = 12, the maximum clusters’ sum rates at the
operating point Ǎ =

(
RsH ,R

s
L

)
(please refer to Fig. 1)

and hence the associated user rate and overall sum rate(
Rssum = RsH + R

s
L

)
depend on the utilized algorithm and

SNR. The optimal Rssum performance (line between cor-
ner points ¯̌A ¯̌B) is achieved using Algorithm 1 while Algo-
rithm 2 of lowest complexity demonstrate somewhat less per-
formance than the others over considered SNRs. For instance
at SNR = 20dB, the results (point Ǎ) of Algorithms 1 and
2 are

(
RsH = 11.9,RsL = 8.28

)
and

(
RsH = 10,RsL = 7.9

)
,

respectively. Thus, HPC users have the benefit of more
rate (QoS) compared with LPC users. On the other hand at
SNR = 30dB, the achieved points using Algorithms 1 and 2
are

(
RsH = 15.58,RsL = 17.69

)
and

(
RsH = 12.61,

RsL = 18.18
)
, respectively. Thus, LPC users enjoys more

rate than HPC users. Summary of the realized outcomes is
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TABLE 3. Summary of capacity results of considered schemes in Figs. 2(a), 3(a), 4(a), and 5(a) using proposed algorithms at SNR of 25 dB. The sum rates
of 6, 2, 12/6, 4, 4, 12/4, 4, 2, 12/4, and 4, 4, 4/4 reference schemes are 30.25, 23.80, 23.10, and 21.52 bit/s/Hz, respectively.

TABLE 4. Summary of equal user rates and associated SNRs (dB) of considered schemes in Figs. 2(b), 3(b), 4(b), and 5(b) using proposed algorithms.

TABLE 5. Summary of capacity results of considered schemes in Figs. 6(a) and 7(a) using proposed algorithms at SNR of 20 dB and 30 dB.

presented in Table 5. Notice that similar conclusions can
be found from Fig. 6(b) except that Algorithms 2-4 have
the same performance due to absence of RAS diversity and
similar user clustering and power allocation. The equal rate
points and associated SNRs of these schemes are shown
in Table 4.

Capacity regions of K × 12/Ms schemes with partial user
overloading of U = 2 are shown in Figs. 7(a) and 7(b) using
8 × 12/6 with (M = 2Ms) and 6 × 12/4 with (M = 3Ms),
respectively. It can be seen that RsH performance of all
algorithms is better than RsL due to low interference level

from LPC users. Nevertheless, LPC users attain more rate
than HPC users due to low user overloading, except the
optimal region of 6 × 12/4 using Algorithm 2 at SNR
of 20dB (see Fig. 5(b)). Summary of the achieved results
of 8 × 12/6 scheme is given in Table 5 while the equal
rate points and associated SNRs of these schemes are shown
earlier in Table 4.

B. RESULTS OF LARGE SCALE MIMO-NOMA SCHEMES
In this part, we consider K × 160/Ms schemes with fixed
number of M = 160 antennas to demonstrate the impact
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TABLE 6. Summary of capacity results of considered 80× 160/Ms schemes in Figs. 8(a) and 9(a) using Algorithm 2 at SNR of 30 dB.

FIGURE 6. Capacity region of 8×M/4 schemes using algorithms 1-4 at
SNR = 20, 25, and 30dB: (a) M = 3Ms = 12. (b) M = Ms = 4.

of different user connectivity (K ) and implemented number
of RFCs (Ms) (consequently, diverse user overloading (U)
and/or M/Ms ratios). In particular, two important scenarios
are investigated as 80 × 160/Ms and K × 160/60. For all
implemented schemes, we found that the results of both low
and moderate complexity algorithms (2 and 3, respectively)
are very tight to each other whereas the computational efforts
of Algorithms 1 and 4 are extremely high and cannot be
executed practically. Therefore, we present the results of
lowest complexity technique (Algorithm 2) in Figs. 8–11.

In Fig. 8(a), the sum rates of 80 × 160/Ms schemes
are presented as a function of SNR compared with the

FIGURE 7. Capacity region of K × 12/Ms schemes using algorithms 1-4 at
SNR = 20, 25, and 30dB: (a) K = 8 and Ms = 6. (b) K = 6 and Ms = 4.

benchmark systems 40, 40, 160/70, 40, 40, 160/40, 70 ×
160/70, and 40 × 160/40. This set-up demonstrates a fixed
number of connected users (K = 80) and different M/Ms
ratios based on the number of RFCs (Ms = 70 and 40).
As can be seen, the sum rate is increased considerably
as Ms increases (thus, U decreases) for moderate to high
SNRs. For example at SNR = 30dB, the achieved
results are 169.8 and 228.8 bit/s/Hz for Ms = 40 and
Ms = 70, respectively. Besides, these sum rates are higher
than the associated references owing to the additional users
and diversity of user clustering. Fig. 8(b) shows the sum
rate of K × 160/60 schemes as a function of SNR com-
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FIGURE 8. Sum rate capacity of K × 160/Ms schemes using Algorithm 2 in
bit/s/Hz as a function of SNR. (a) Results for K = 80 and Ms = 70 and 40
compared with the references 40, 40, 160/70, 40, 40, 160/40, 70×160/70,
and 40× 160/40; (b) Results for Ms = 60 with K = 120 and 70 compared
with the references 60, 60, 160/60, 60, 10, 160/60, and 60× 160/60.

paredwith the references 60, 60, 160/60, 60, 10, 160/60, and
60 × 160/60. This scenario demonstrates a fixed num-
ber of Ms = 60 RFCs and different number of users as
K = 120 and 70. It can be seen that the performance is
increased considerably as K increases (i.e. U increases) for
moderate to high SNRs and higher than the associated refer-
ence systems. Summary of the achieved results are presented
in Tables 6 and 7.

In Fig. 9(a), the sum rates Rssum, R
s
H , and R

s
L of 80×160/Ms

schemes are shown as a function of Ms for SNR of 25
and 30 dB. It is clear that as Ms increased, the number of
HPC users (T = Ms) will be increased accordingly whereas
the number of LPC users (U) will be decreased and hence
producing less interference to HPC users. This allows RsH to
grow considerably in contrast to RsL which depends on the
allocated users in LPC despite the interference-free decoding.
For instance when Ms = 40 and 70, the achieved results of
RsH at SNR = 30 dB are 88.2 and 192.4 bit/s/Hz, respectively
while 81.6 and 36.4 bit/s/Hz are shown for RsL , respectively.

FIGURE 9. The capacity of 80× 160/Ms schemes using algorithm 2 in
bit/s/Hz as a function of the number of RFCs

(
Ms

)
and for SNR = 25

and 30dB. (a) Sum rate capacity of the considered schemes, HPC,
and LPC. (b) Average user rate in HPC and LPC.

Notice that as Ms increased, the average user rate in LPC is
increased more than HPC as illustrated in Fig. 9(b). Further-
more, the equal user rate point depends on the target SNR.
For example, equal user rate of 1.64 bit/s/Hz is achieved at
SNR = 25 dB using Ms = 54 RFCs (U = 26) compared
to 2.27 bit/s/Hz at SNR = 30 dB with less number of Ms =

44 RFCs (U = 36). This set-up reveal the valuable trade-
offs between achieved overall sum rate, user-fairness (equal
user rate), system complexity (Ms), user overloading (U ),
and SNR. Summary of the achieved results are presented
in Tables 6 and 8.

In Fig. 10(a), the sum ratesRssum,R
s
H , andR

s
L ofK×160/60

configurations are presented as a function of K for SNR of
25 and 30 dB. In this scenario as K increased, the number of
LPC users increases and hence producing more interference
to HPC users. Accordingly, RsH drops noticeably in contrast
to RsL that take advantage of more users (U ) and interference-
free decoding. It can be seen also from Fig. 10(b) that as
K increased, the average user rate in both HPC and LPC is
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TABLE 7. Summary of capacity results of considered K× 160/60 schemes in Figs. 8(b) and 10(a) using algorithm 2 at SNR of 30 dB.

TABLE 8. Summary of equal user rates (bit/s/Hz) of considered schemes in Figs. 9(b) and 10(b) using Algorithm 2 at SNR of 25 dB and 30 dB.

FIGURE 10. The capacity of K × 160/60 schemes using Algorithm 2 in
bit/s/Hz as a function of K and for SNR = 25 and 30dB. (a) Sum rate
capacity of considered schemes, HPC, and LPC. (b) Average user rate in
HPC and LPC.

decreased, and the equal user rate point depends also on the
utilized SNR. For instance, equal user rate of 1.58 bit/s/Hz is
realized at SNR = 25 dB using K = 88 (U = 28) compared
to 2.16 bit/s/Hz at SNR = 30 dB with more number of

FIGURE 11. Capacity region of K × 160/Ms schemes using algorithm 2 in
bit/s/Hz at SNR = 25 and 30dB: (a) K = 80 and Ms = 40, 50, 60, and 70.
(b) Ms = 60 and K = 70, 80, 90, 100, 110, and 120.

K = 102 users ( U = 42). This scenario also make obvious
of the important tradeoffs between achieved overall sum rate,
user-fairness, user overloading, and SNR. Summary of the
achieved results are presented in Tables 7 and 8.
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Finally, capacity regions of considered 80 × 160/Ms and
K × 160/60 schemes are shown for SNR of 25 and 30 dB
in Fig. 11(a) and Fig. 11(b), respectively. The presented
results are inline with those in Fig. 8, 9(a), and 10(a), where
for a given SNR, the maximum achievable clusters’ sum rates
at operating point Ǎ =

(
RsH ,R

s
L

)
, and hence the associ-

ated user rate and overall sum rate, depend on the operating
SNR, numbers of Ms RFCs, and supported users K (see
Tables 6 and 7 for SNR = 30 dB). For instance and for both
SNRs, HPC users have the benefit of more rates compared
with LPC users when Ms = 40 and vice versa for Ms = 70.
In Fig. 11(b) and based on the results of point Ǎ, we can
see that LPC users enjoy higher rates than HPC users when
K = 70 and conversely for K = 120 users.
The presented results validate that the proposed massive

MIMO-NOMA scheme offers high user connectivity and
overall sum rate, flexible clusters’ sum rate distributions for
given SNR and desired QoS, and significantly low system
complexity. For instance, users of weak channel conditions
can be served fairly as those of high channel conditions with
equal rates. Thus, the inherent near-far problem in cellular
systems can be efficiently exploited to allow more users, and
hence less latency. Note that for the existing cellular systems,
transmit power of weak users (e.g. near the cell edge) should
be raised to enhance their data rate, but at cost of high co-
channel interference with the other cells, which affects the
overall network performance.

VI. CONCLUSION
This paper investigated massive MIMO-NOMA with RAS
as a promising technology for 5G cellular networks to
deliver higher connectivity and sum rate capacity, improved
user-fairness, and least implementation complexity. In this
scheme, simultaneous transmission of the MU-MIMO sig-
nals from HPC and LPC is attained using NOMA with
efficient power allocation policy. For the performance eval-
uation, the sum rate and capacity region expressions have
been derived for the uplink Rayleigh fading channel, and the
optimal operating point that maximizes the overall sum rate
is demonstrated. The optimal solution for the key problem
of dynamic user clustering, RAS, and power allocation has
been presented based on the exhaustive search for overall sum
rate maximization using OJUC-RAS-PA (Algorithm 1) under
received power constraints and minimum users’ rates targets.
Owing to unaffordable complexity of the optimal algorithm
for large scale schemes, feasible algorithms, namely UC-
RAS-PA (Algorithm 2), UC-PA-PBRAS (Algorithm 3), and
UC-PA-CBRAS (Algorithm 4), have been proposed with
sub-optimal performance by splitting the joint problem into
low complexity components. Least computational efforts
of O

(
K 2M +M3

s �
)

is achieved when Algorithm 2 is
employed. Simulations results of different moderate and
large scale MIMO-NOMA scenarios validated the effective-
ness of the designed low complexity algorithms compared
with the optimal solution and conventional schemes. It has
been demonstrated that a significant increase in connected

users, up to two-fold for the utilized RFCs (≤ 2Ms), can be
achieved with higher overall sum rate capacity and desired
user-fairness of equal/unequal rates. In addition, valuable
tradeoffs can be realized by controlling the optimal operating
point on the capacity region at target SNR using the main
complexity- related parameters (i.e. U ,Ms, andM ). In future
work, the impact of imperfect CSI and user synchronization
on the performance of proposed scheme will be investigated.
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