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ABSTRACT This paper addresses the asymptotic behavior of a particular type of information-plus-noise-
type matrices, where the column and row numbers of the matrices are large and of the same order, while
signals have diverged and the time delays of the channel are fixed. We prove that the empirical spectral
distribution of the large dimension sample covariancematrix and awell-studied spiked centralWishart matrix
converge to the same distribution. As an application, an asymptotic power function is presented for the
generalized likelihood ratio statistics for testing the presence of the signal in large array signal processing.

INDEX TERMS Large antenna array, MIMO, detection, random matrices, LRT.

I. INTRODUCTION
The signal detection of information-plus-noise-type matri-
ces is fundamental to modern wireless communication net-
works. Due to the growing scale of network and limited time
resource, the available sample sizes cannot be quite larger
than the dimensions. For this issue, the traditional covariance
matrix theory is actually not applicable, which needs much
larger sample sizes than signal dimensions [1]. Thus, random
matrix theory (RMT) has been used in resolving the high
dimension estimation problems in signal processing [8], [9].

The work [9] and [11] studied the user detection and signal
detection algorithms using large dimension signal-plus-noise
matrices. It was shown that the randommatrix theory on large
dimension signal-plus-noise matrices could guide the large
antenna array signal processing very well. On the other hand,
the work [5] researched the empirical spectral distribution
(ESD) convergence behavior of three large dimension sample
covariance matrices (SCM) categories. Given a P×PHermi-
tian matrix R, for any real x, the ESD, F(x), is defined by

F(x)←
1
P
#{λj : λj < x} (1)
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where #E denotes the cardinality of the set E , λj is the
j-th eigenvalue. References [3] and [6] investigated the gen-
eral likelihood ratio test (GLRT) for linear spectral statistics
of the eigenvalues of high-dimensional SCM from Gaussian
populations. There is a gap between the traditional signal
detection model as [11] and state-of-art random matrices
theory [3], which, hopefully, can be connected by our
research as a bridge.

In this work, a simple kind of information-plus-noise-type
matrices with isotropic noise and limited signal dimension
is studied. It is proved that the ESD of the received
SCM converges in distribution to the ESD of central spike
Wishart matrix [2]. Based on this feature, GLRT in [6] has
been used in hypothesis test of the signal detection for mas-
sive MIMO systems. In this paper, the GLRT tests were
applied in time domain to support the hybrid transmission
scheme such as filter bank multicarrier (FBMC) or filtered
multitone (FMT) modulation [7]. Except the scenario in this
paper, the results could be used widely from MIMO detec-
tion [8] to multiuser detection [11].

By proposed hypothesis test method, we evaluate the
detection performance of large antenna array using the same
number of antennas but the different number of samples. it is
found that the simulation results highly agree with those from
the theoretical analysis.
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In this paper, P is the antenna number and N is the sample
number which are N and n in [5] and Lemma 1, s(n) is the
n-th element of sequence s, s is the row vector,
[x1; x2; · · · ; xn] means constructing a matrix by xl as rows,
diag(v) returns a square diagonal matrix with the elements of
vector v on the main diagonal, ∗ is the Hermitian transpose
operator, X is the received signal matrix, X(i, l) is the i,
l-th element of X which is Xi,l in [5] and Lemma 1,
N (0, 1) is the Normal distribution, CN (0, 1) is the complex
Normal distribution, C and R are complex number field and
real number field, respectively.

II. SYSTEM MODEL
In signal detection, SCM analysis is used to explore the
fundamental limits of communication [11]. Consider that
there is a single transmitter which sends the signal s(n) to
P receivers (or antenna elements) in an L-length channel as
in [8]. For single antenna element of i, the received signal xi is
the summation of the L tap delayed transmitted signal vector s
with propagation as hi,l , where l = 0, ...,L−1. Accordingly,
N -length points are sampled from each antenna, which is
written as

xi =
L−1∑
l=0

hi,lsl + wi (2)

where h is the concatenate factor of transmitter amplifier
and channel, hi,l ∼ CN (0, σ 2), s(n) is the transmit signal
and follows the Binomial distribution as P(s(n) = K ) =
(1/2)1−(K+1)/2(1/2)(1+K )/2,K ∈ {−1, 1} or Normal dis-
tribution as N (0, 1). wi is the noise vector at the receiver
containing independent identically distributed (i.i.d.) com-
plex entries and unit variance, σ 2 is the signal power on
each taps. Suppose the receiver truncates length-N signal for
detection. The length of channel delay is not larger than L
samples. The l − lag of the signal vector has elements as
sl = {s(−l), · · · , s(N − l + 1)}.

The task is to detect whether the signal is presented by
processing the SCM of the receiver. It turns to be a hypothesis
testing problem, where H0 means that the signal does not
exist, andH1 means that the signal exists. The received signal
samples under the hypothesis test are given, respectively, as

H0 : xi = wi;

H1 : xi =
L−1∑
l=0

hi,lsl + wi. (3)

Furthermore, it is assumed that the noise and channel
propagation are uncorrelated. The complex Gaussian noise
has the property as

E(w(i)) = 0;E(wiw∗j(6=i)) = 0;E(w∗i wi) = IN ; (4)

The channel propagation has the same property.
In large scale antenna systems, the signal detection could

be based on the joint operation of the sampled signal from
each antenna element, such as in [8]. The sample vector xn

FIGURE 1. MP law under P = 256, (a) c = 1/2 and (b) c = 1/8.

from each antenna elements is formed by N samples, and it
could construct a matrix as

X = [x1; x2; · · · ; xP] (5)

whereX has a dimension of P×N with element asX(i, j) and
P→∞, N →∞, P/N → c. The maximum channel length
L = O(1) is a fixed value regardless the value of N . The
SCM of (5) is

Rx = XX∗/N . (6)

Note F(x) as the ESD of the SCM. Under hypothesis H0,
the SCM is not a good approximate of the covariance
matrix (4). As stated by Machenko-Pastur theorem, almost
surely

F ′(x) =
1

2πxc

√
(b− x)(x − a), a < x < b, (7)

and a = (1 −
√
c)2, b = (1 +

√
c)2 when 0 < c ≤ 1.

When c > 1, there is an additional Dirac measure at x = 0
of mass 1− 1

c . The F
′(x) is also named as Machenko-Pastur

(M-P) Law [4]. Its shape is demonstrated in Fig. 1, which has
parameter as P = 256, c = 1/2 and 1/8.

III. SAMPLE COVARIANCE MATRIX ANALYSIS
Under hypothesis H1, the similar ESD analysis of the
SCM has been proposed, such as in [8]. However, they did
not provide the ESD when L > 1, and the method is quite
explicit [3]. Here, we provide a theoretical result that the ESD
of H1 is the same as that of a central Wishart matrix, which
has been studied extensively.

The received signal matrix X is further decomposed as
X = Sr + W, where Sr is the unknown signal matrix
transmitted in X, so

Rx = (SrS∗r + SrW∗ +WS∗r +WW∗)/N , (8)

where Sr = HSL , H is a P × L matrix with elements as hi,l
in (2), SL = [s0; · · · ; sL−1] has a size of L × N , and the last
part of Rx is the correlation of white Gaussian noise.
The SCM in (6) is analyzed as

Rx = T+WW∗/N , (9)
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where

T = HSLS∗LH
∗/+ (HSLW∗ +WS∗LH

∗)/N

= HH∗ + (HQ+Q∗H∗)/
√
N ), (10)

where Q = SLW∗/
√
N is a random matrix with dimension

L × P. In (10), lim
n→∞

SLS∗L/N = IN , and lim
n→∞

HSLS∗L
H∗/N = HH∗.
For the convenience of portraying the matrix entires, it is

assumed that s(i) follows Binary distribution asP(s(i) = k) =
1/2, k ∈ {−1, 1}. Random variable rv = SL(l, j)W(j, p)
follows CN (0, 1), because if s(n) and w(n) follows Binary
distribution and standard complex Normal distribution,

P{s(n)w(n) > T } =
P{w(n) > T }

2
−
P{w(n) < −T }

2
= P{w(n) > T } (11)

Entries Q(l, p) =
∑N−1

j=0 (SL(l, j)W(j, p))/
√
N follows

CN (0, 1). Entries in Q∗ have the same character.
If the signal follows Normal distribution,Q(l, p) converges

to Normal distribution according to Law of Large Number.
Simulations show that the Normal distributed signal has the
same character as Binary distributed ones but with a slower
convergence speed.
Lemma 1 (Perturbation on SCM [5], Theorem 1.1): For

N = 1, 2, · · · , XN =
1
√
N
(XNi,j), N × n, X

N
i,j ∈ C, identically

distributed, independent across n, i, j for each N , E|X1
11 −

EX1
11|

2
= 1, n/N → c > 0 as N →∞.

a) TN = diag(tn1 , · · · , t
n
n ), t

n
i ∈ R and the distribution func-

tion of {tn1 , · · · , t
n
n } converges almost surely in distribution to

a probability distribution function (PDF) H as N →∞.
b) AN is Hermitian N × N for which the ESD F(AN )

converges vaguely to A almost surely, A being a nonrandom
distribution function.

c) XN , TN , and AN are independent.
Let BN = AN + XNTNX∗N . Then, almost surely, F(BN ),

the ESD of BN , converges vaguely, as N → ∞, to a (non-
random) distribution function F̂ , whose Stieltjes transform
m(z)(z ∈ C+) satisfies

m = mA(z− c
∫

t
1+ tm

dH (t)) (12)

According to lemma 1, the ESD of Bn is determined by the
ESD of AN and TN . Then an ideal matrix could be con-
structed, which has the similar ESD as (10) :
Lemma 2: When P→∞,N →∞,P/N → c, for

R̂x = (Ĥ+ Ŵ)(Ĥ+ Ŵ)∗/N

Ĥ =
√
NHEL ∈ CP×N , (13)

where EL = (IL 0L×(N−L)) as a select matrix, Ŵ =

(Q∗ W̃P×(N−L)), where W̃P×(N−L) is the last N − L columns
of W. Then the ESD of (13) and (10) converge to the
same PDF.

Proof: Considering (13), we have

R̂x = T̂+ ŴŴ∗/N (14)

where

T̂ = NHH∗/N + (HELŴ∗ + ŴE∗LH
∗)/
√
N

= HH∗ + (HQ+Q∗H∗)/
√
N . (15)

Thus the entries ofT and T̂ is the same. Obviously the ESD
of T and T̂ is the same, so the eigenvalue of T and
T̂ is the same. On the other hand, according to Theorem 1,
the ESD of WW∗/N and ŴŴ∗/N converges to M-P law.
Using Lemma 1, entries in Rx and R̂x converges to the
same PDF.

In lemma 2, an artificial R̂x is constructed whose ESD
converges to the same distribution as Rx . Though R̂x is
an artificial matrix which is impossible to obtain, it could
be substituted by central spiked Wishart matrices based on
convergence in distribution, which is:
Theorem 1: The ESD of SCM (6) and a central Wishart

matrix Rz converge to the same PDF, where

Rz =
1
N
Z6NZ∗, (16)

and 6N = diag(Nσ 2
+ 1, · · · ,Nσ 2

+ 1︸ ︷︷ ︸
L

, 1, · · · , 1︸ ︷︷ ︸
N−L

),

Z(i, j) ∼ CN (0, 1), i ∈ [0,P− 1], j ∈ [0,N − 1], P/N → c,
σ 2
∈ O(1/N ).
Proof: Let X̂ = Ĥ + Ŵ. The elements of the

first L columns are (Ĥ(i, j) + Ŵ(i, j))/
√
N which follows

CN (0, (Nσ 2
+ 1)/N ).

For random matrix Rz =
1
√
N
Z6N

1/2( 1
√
N
Z6N

1/2)∗,

the entires of first L columns of 1
√
N
Z6N

1/2 follow the dis-

tribution CN (0, (Nσ 2
+ 1)/N ), which is the same as X̂.

The entries of X̂/
√
N and Z6N

1/2/
√
N have the same

distribution, and the ESD of both matrices fits [5, Th. 2].
So the ESD of X̂X̂∗/N and Rz converge to the same PDF.
According to Lemma 2, the ESD of Rx and Rz converge to
the same PDF.

Rz is a central Wishart matrix, with the covariance
matrix 6N. This spike Wishart matrix has been widely
studied [6], which could be used to design hypothesis detector
in wireless communication.

IV. APPLICATION: FUNCTION OF DETECTION
According to Lemma 1, the signal detection in large array
is translated to a standard high dimensional signal detection
problem. Classical methods include detecting the ratio of
biggest and smallest eigenvalue, detecting the trace of covari-
ance matrix [9], and LRT [8]. Among them, LRT has a decent
history and has been widely used.

According to [10, Ch. 10], we assume that Rn is the
SCM formatted by (6), to test the hypothesis H0 : 6 = I,
where 6 is the covariance matrix of a vector X distributed
according to N (µ,6). It is showed that the LRT

Dn = trRn − log(detRn)− P (17)

is unbiased LRT of (4). The detector is researched widely
such as [6].
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To make statistical integration about a parameter θ =∫
f (x)dFM (x). It is natural to use the estimator

θ̂n =

∫
fn(x)dFMn (x) = 1/P

P∑
i=1

fn(λMi ) (18)

The log-liklihood ratio (LLR) could be further rewritten as

Dn =
P−1∑
i=0

λn,i − log
P∏
i=1

λn,i − P =
P∑
i=1

(λn,i − logλn,i − 1)

(19)

where λi is the i-th eigenvalue of tested covariance matrix.
The ESD ofRz has been rarely studied. The work [6] inves-

tigated the fluctuation of linear spectral statistics of form (17),
with the form Rn = Z∗6PZ/N or Rn = 6

1/2
P ZZ∗61/2

P /N
and its results are based on P/N < 1, which is different
from Rz.

Under P/N ≥ 1, it has

Rz =
1
N
Z6NZ∗ =

1
N
(Z∗)∗6NZ∗ (20)

Substituting Z by Z∗, Rz could fit the structure of Rn in [6],
and the results from [6] could be used directly. But in practice,
the number of samples is larger than the antenna number
in most scenario, which means 0 < c < 1 is more
practical.

Under 0 < c < 1 and H0, Rz equals Rw,w and Dn
converges to normal distribution as shown in [6], which is

D→ N (µD,H0 , σ
2
D,H0

) (21)

where

µD,H0 = P(1−
c− 1
c

log(1− c))−
log(1− c)

2
σ 2
D,H0
= −2log(1− c)− 2c (22)

Under 0 < c < 1 andH1, it has
Theorem 2: The ESD of Rz = Z6NZ∗/N and R̃z =

1
N6P

1/2ZZ∗6P
1/2converge to the same PDF, where 6P =

diag(Pσ 2
+ 1,Pσ 2

+ 1, · · · ,Pσ 2
+ 1︸ ︷︷ ︸

L

, 1, · · · , 1︸ ︷︷ ︸
P−L

).

Proof: According to classical matrix theory, the non-
zero eigenvalues of Rz and R̂z =

1
N6N

1/2Z∗Z6N
1/2 are the

same.
As introduced in [2], the outlier eigenvalues of R̂z and R̃z

could be elaborated by 6P and 6N .
For R̃z, according to [2, Th. 1.1], it has

λR̃z,l
→ λ6P,l +

cλ6P,l
λ6P,l − 1

, 0 ≤ l ≤ L − 1 (23)

For R̂z, using the same method as in (20), it is further written
as

R̂z = c×
1
P
6N

1/2Z∗(Z∗)∗6N
1/2 (24)

FIGURE 2. The eigenvalues density of Rx when H1,P = 256,
N = 1024, L = 10, σ2 = 1/100.

FIGURE 3. The Dn (17) distributions with H1 : P = 256,N = 512,
L = 10,SNR = −15.5 dB,H0 : P = 256,N = 1024, simulations and
theoretical, respectively.

According to [2, Th. 1.2], the first L outlier eigenvalues hold

λR̂z,l
→ λ6N ,l × c+

λ6N ,l

λ6N ,l − 1
, 0 ≤ l ≤ L − 1 (25)

According to the definition of 6P and 6N , we have

λ6P,l − 1 = (λ6N ,l − 1)× c (26)

By calculation, it is easy to find that λR̃z,l and λR̂z con-
verge to same limitation when N → ∞, which is λ6P,l +
cλ6P,l
λ6P,l − 1

. The other eigenvalues of both matrices converge

to Machenko-Pastur distribution, as in [2] and [6]. Thus,
the ESD of R̂x and R̃z converge to the same distribution
asymptotically.

Fig. 2 demonstrates the ESD density of Rx . The largest
L eigenvalues are larger than (1 +

√
c)2. The rest follow

M-P Law, which coincides with our analysis. This distri-
bution is quite different with the eigenvalues of covariance
matrix (TP +WW∗), which would stacked at 1 and 3.56.
Combining Theorem 1 and Theorem 2, we have
Corollary: The ESD of SCM (6) and R̃z =

1
N6P

1/2

ZZ∗6P
1/2 converge to the same distribution.
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FIGURE 4. The eigenvalues of Rx , Rz in Th. 1 and R̂z in Th. 2 when H1. (a) P = 1024, SNR = −16 dB,
c = 1/2. (b) P = 256, SNR = −10 dB, c = 1/2. (c) P = 256, SNR = −14 dB, c = 1/2. (d) P = 128,
SNR = −7 dB, c = 1/2.

Based on [6], the LLR D in (19) converges asymptotically
to a Normal distribution N (µD,H1 , σ

2
D,H1

) with

µD,H1 = P× (1+
1
P
L(Pσ 2

+ 1)−
L
P

−
1
P
Llog(Pσ 2

+ 1)− (1−
1
c
)log(1− c))

+ log(1− c)/2

σ 2
= −2log(1− c)− 2c (27)

Fig. 3 shows the distribution of Dn under H0 and H1,
with P = 256,N = 512,L = 10, SNR = −15.5 dB.
The simulated distributions look in good agreement with the
theoretical distributions.

A classical signal detection algorithm is used
( [9, Algorithm 1]) where we use the metric (19) as the core
of algorithm.

As in literature [6], when P→ ∞ and N → ∞, the vari-
ance is the same as that of H0.
Interestingly, from (27), we find that the mean of D is only

related with L and P, and the variance is only related with
c no matter signal present or not.

The choice of threshold γ is a compromise between Pd
and Pfa. The probability of false alarm is

Pfa = P(D > γ |H0)

= P(
D− µD0,H0

σ
> γ )

= Q(γ ) (28)

Algorithm 1 Signal Detection Using GLRT
1: At receiver, gets the received data
from each port synchronously and standardized respec-
tively.
2: Organize the received signals together and form amatrix
as (5) and calculate the sample covariance matrix.
3: Compute G′ using the eigenvalues of
the sample covariance matrix by (19).
4: Determine the probability of false alarm Pfa and
find out the threshold γ via computations.
5: if G > BL then
6: signal exists;
7: else
8: signal does not exist.
9: end if

where the Q function is one minus the cumulative distribution
function of the standardized normal random variable.

Under the limitation of the false alarming probability Pfa,
the false alarm boundary is set as

γ = Q−1(Pfa) (29)

Under H1, using γ as threshold, the distance between Dn
and γ follows Normal distribution as

G′→ N (
µD,H1 − µD,H0

σ
− γ, 1) (30)
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FIGURE 5. Miss probability under different antenna number with
different SNR.

FIGURE 6. ROC curve under L = 1,P = 256, c = 1/2,SNR = −16dB
and −15.5 dB.

the theoretical miss probability is

Pla = 1− Pd = Q(
µD,H1 − µD,H0

σ
− γ ) (31)

V. SIMULATIONS
The first simulation is to test the theoretical results about (6),
(16) and Theorem 2. A channel with 10 taps is used.
We choose P = 128, 256, 1024, c = 1/2, SNR =

−7,−10,−16 dB, respectively. Then from Fig. 4, it is obvi-
ous that the eigenvalues of (6), (14) and Theorem 2 coincide
with each other, and the ESD of the three matrices are the
same. In Fig. 4, the gaps between the largest eigenvalues of
the three matrices are smaller than 5% of the value. With
the increment of P and decrement of SNR, these gaps are
smaller.

The second part of simulations is to detect LLR G′.
In Fig. 5, we choose P = 256 and N = 512, 1024, 2048,
respectively. The Pfa is set as 0.05. Using (30), the theoretical
miss probability is obtained. The algorithm aided by signal
detection simulations is based on Algorithm 1 and (19). It is
shown that, with the increment of sample number, the detec-
tion performance of the algorithm is improved. With the
sample doubled, the detection threshold would reduce 2 dB.
In simulations, though the results of theoretical derivations
and simulations are very close, the theoretical results look

over-optimized the detection by smaller than 0.4 dB. Fig. 6 is
the ROC (receiver operating characteristic) curve with L = 1,
P = 256, c = 1/2, SNR = −16 dB and −15.5 dB.
In Fig. 6, the over-optimization is also found, where the ROC
in theoretical is slightly better than empirical.

The gaps in Fig. 4, 5 and 6 are brought by the infinite
approximation of P, as well as the approximation character
of variance estimation which is referred from [6]. Reviewing
Fig. 3, the variance under H1 looks larger than under H0,
which makes the empirical density ofH0 higher thanH1 but
the theoretical variance is still the same. So even the variance
analysis of [6, eq. (24)] is the most accurate work till now,
there still has room to improve.

VI. CONCLUSION
In this paper, we have proposed a detection algorithm in
the large antenna array system when the antenna number
and the samples number are comparable. Two theorems have
been presented to connect the detection with the newest
statistical results. Furthermore, we have given a new detec-
tion metric which is based on an asymptotic result in RMT.
Simulation results have shown that the model agrees with
real simulations very well. In further works, we would
simplify the complexity using distributed algorithm. This
paper has given results in asymptotic scenario. It is inter-
esting to investigate the bound when P and N are not so
large. Furthermore, these results could be extended to other
applications easily, such as a multiuser with Rician channel
scenario.
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