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ABSTRACT The vast development of the Internet of Things (IoT) and cloud-enabled data processing
solutions provide the opportunity to build novel and fascinating smart, connected healthcare systems. Smart
healthcare systems analyze the IoT-generated patient data to both enhance the quality of patient care and
reduce healthcare costs. A major challenge for these systems is how the Cloud of Things can handle the
data generated from billions of connected IoT devices. Edge computing infrastructure offers a promising
solution by operating as a middle layer between the IoT devices and cloud computing. The Edge of
Things (EoT) can offer small-scale real-time computing and storage capabilities that ensures low latency
and optimal utilization of the IoT resources. However, the EoT has privacy-preservation issues, which is a
significant concern for the healthcare systems that contain sensitive patient data. This paper introduces a
novel EoT computing framework for secure and smart healthcare surveillance services. Fully homomorphic
encryption preserves data privacy and is stored and processed within an EoT framework. A distributed
approach for clustering-based techniques is developed for the proposed EoT frameworkwith the scalability to
aggregate and analyze the large-scale and heterogeneous data in the distributed EoT devices independently
before it is sent to the cloud. We demonstrate the proposed framework by evaluating a case study for the
patient biosignal data. Our framework rapidly accelerates the analysis response time and performance of the
encrypted data processing while preserving a high level of analysis accuracy and data privacy.

INDEX TERMS Smart healthcare, Internet of Things, edge computing, homomorphic encryption.

I. INTRODUCTION
In recent years, there have been remarkable advances in the
Internet of Things (IoT). Smart healthcare technology has
similarly advanced alongside a rapid growth in the amount
of biomedical data and the rise of ‘smart’ healthcare com-
munities. As a result, the provision of smarter and more
cost-effective healthcare services has now become essen-
tial. Utilizing technology to improve healthcare services can
enhance the quality of patient care and reduce health care
costs. Developments in the integration of the Internet of
Things (IoT) and cloud computing paradigms, referred to
as Cloud-of-Things (CoT), are spurring the development
of smart connected healthcare systems that can monitor,
aggregate, and diagnose massive amounts of biosignal data
and provide convenient analytical tools for smart healthcare
communities [1], [2]. However, in such systems IoT devices
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generate massive amounts of data and the nature of the CoT
paradigm means that it relies completely on cloud computing
to store and process data. These factors combined pose sig-
nificant storage and processing issues that can significantly
hinder the development of time-critical analytical services,
such as those required in healthcare services.

Edge-of-Things (EoT) is a new computing paradigm that
represents a middle computing layer between IoT devices and
cloud computing, bringing computing power (e.g., IoT gate-
ways) closer to IoT devices [3]. The EoT layer is not only use-
ful for basic transmitted functionality, but can also perform
real-time analytic services and smart decision-making within
a local smart community domain. Moreover, healthcare data
can be sent through the EoT layer to cloud computing for fur-
ther global data processing. Figure 1 shows the architecture of
our secure EoT framework for smart healthcare surveillance.
Such a framework allows for the early detection and treatment
of diseases; potentially reducing the harm caused by diseases
and prolonging many lives. Machine learning techniques,
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FIGURE 1. The architecture of our secure EoT framework for smart healthcare surveillance. The members’ biosignal data of each
smart community are sent to the edge IoT gateway upon being encrypted for analysis in a local community and then sent to the
cloud computing for further global analysis of multiple smart communities data. The community members’ data is analyzed based on
a secure machine learning algorithms, and smart clinical decisions are made and sent to the healthcare professionals.

FIGURE 2. An example of the patient information structure and its
personal and vital functions data. Personal data is required to be secured.
The vital function data is used for analysis purposes in a secure manner.

such as clustering-based algorithms, are widely used for ana-
lyzing biosignal data and classifying patients into different
groups according to specific health conditions, with the abil-
ity to detect abnormal patterns. Figure 2 shows an example
of the patient information structures, which contain patients’

personal and biosignal data. Analysis of biosignal data can
predict several chronic diseases. For example, the classifica-
tion of different types of chest pain and blood pressure can
indicate the presence of heart disease. Clustering-based tech-
niques are an efficient analytic tool that can support clinical
decision-making in healthcare communities. The clustering
of community members’ data allows for the discovery of new
health insights and the development of clinal treatment plans.

Numerous healthcare surveillance frameworks have been
proposed in the literature, such as [4]–[6]. However, the exist-
ing cloud-enabled systems have several limitations that pre-
vent their use in real-world applications. These include issues
in latency (particularly problematic in time-critical health-
care applications), communication overhead between health-
care entities and cloud computing, and privacy concerns
regarding the aggregated of sensitive data [7]. The EoT
paradigm can reduce latency and bandwidth consumption
through bringing computing power closer to the data source
and delegating some of the time-critical computation tasks to
edge devices while moving other computation-intensive tasks
to cloud computing resources. With regard to the privacy
issue, Personal Health Information (PHI) is the demographic
and healthcare information collected by health professionals.
PHI is considered to have one of the highest levels of sensitiv-
ity and is protected by the laws and regulations of the United
States (US). The Health Insurance Portability and Account-
ability Act (HIPAA) [8] complies with strict regulations to
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ensure the security and privacy of PHI and to prevent it from
being misused.

In this paper, we develop an innovative and secure
EoT framework for smart healthcare surveillance. We use
clustering-based techniques to analyze biosignal data
(e.g., electrocardiogram ECG data for heart healthcare) that is
collected from IoT connected sensors for patients within both
single and multiple smart communities. Community mem-
bers include patients in hospitals, elderly people in Ambient
Assisted Living (AAL) environments, and healthy people in
smart homes who are concerned about their health. Hospi-
tals, doctors and nurses are caregiver members who provide
all types of patient monitoring assessments and maintain
ubiquitous communication. In our framework, data privacy
is ensued though Fully Homomorphic Encryption (FHE)
that has ability to provide end-to-end privacy for mem-
bers’ data. Unlike previous approaches, FHE both protects
stored data and performs analytic tasks in an encrypted
domain. However, this can tremendously increase the size
of the data that is being transferred from data source to the
cloud. Our framework uses edge IoT devices to perform part
of the analytic tasks, thereby enhancing the performance of
encrypted analysis computations and reducing the size of
transferred data through EoT framework to the cloud. In the
future, the 5G wireless network can be used transfer massive
amounts of encrypted data with an even lower latency rate
in a cloud-enabled framework. An overview of our proposed
framework is presented in Figure 1.

II. MOTIVATION
The main motivation of this paper is to build a secure and
effective EoT framework for smart health surveillance that
can be used in diversified smart healthcare platforms [9]
using the advanced edge computing layer. Edge computing
devices (e.g., IoT gateways) are located in a middle com-
puting layer between IoT sensor devices and cloud comput-
ing. This edge layer is considered an extension of the CoT
paradigm, which can significantly enhance the performance
in various application domains, such as smart grid, healthcare
and industry. The edge layer offers several advantages in
our EoT healthcare surveillance framework, including real-
time diagnosis services with very low latency, reducing the
amount of data transmitted over networks (by processing part
of the data in IoT edge devices), optimizing utilization of
computational IoT devices and minimizing the cost of cloud
recourses [10]. In the EoT paradigm, sensitive healthcare data
is exposed to various external and internal attacks and possi-
ble leakage during exchange among different parties. In our
framework, we adapt Fully Homomorphic Encryption (FHE)
to ensure end-to-end data privacy and while it is stored in EoT
databases or the cloud. FHE also performs analytic tasks in
an encrypted domain without the need to decrypt data at any
stage of processing. In our framework, edge IoT devices play
a critical role to improve the processing response time and
reduce the amount of encrypted data needed to be sent to
cloud computing.

III. CONTRIBUTIONS
The main contributions of this paper are as follows.
• We develop a secure EoT framework for smart health
surveillance. The framework can aggregate, monitor and
perform real-time analysis of biosignal data. Clustering-
based machine learning techniques are used to analyze
and detect abnormality changes in biosignal data. The
privacy of members’ sensitive data is ensured by Fully
Homomorphic Encryption (FHE) that can perform ana-
lytic services in an encrypted domain.

• We develop an innovative distributed approach for
adapting clustering-based techniques in the EoT
paradigm. This approach is capable of running indepen-
dent analytic services in the edge layer that receives data
for distributed IoT devices. This approach is applied in
clustering-based techniques, including K-means (KMC)
clustering and Fuzzy c-means (FCM) clustering tech-
niques. However, it can also be extended to various
machine learning techniques.

• We demonstrate a comprehensive evaluation of the pro-
posed framework in terms of analysis performance and
accuracy. The experimental outcomes show that our
framework can rapidly accelerate performance while
achieving a high level of accuracy of the overall analysis
process in a secure manner.

IV. RELATED WORK
The integration of Internet of Things (IoT) and cloud com-
puting paradigms (CoT) is a mega trend in next-generation
technologies that can impact all aspects of daily living. The
interconnection between smart objects and devices within the
internet infrastructure can provide convenient solutions for
various application domains, such as healthcare, smart grid
and industrial control [11], [12]. In our framework, we focus
on healthcare IoT applications. Healthcare represents one of
more attractive domains [13] because the CoT paradigm has
the potential to significantly advance healthcare technology
and improve human health by remote health surveillance,
early detection of chronic diseases and elderly care. Cloud
computing empowers healthcare entities (e.g., patients and
healthcare institutions) to move their data from billions of
distributed healthcare IoT devices, including body sensors,
diagnostic and imaging devices, to the cloud to signifi-
cantly improve the quality of healthcare services and reduce
costs [14].

The edge computing paradigm is introduced as a solution
for some of the CoT paradigm limitations, including latency,
bandwidth consumption and the large volume of transmitted
data between IoT devices and cloud computing [15]. Sev-
eral edge computing frameworks have been proposed for
healthcare applications. Salahuddin et al. [2] developed a
smart healthcare system that uses edge gateways devices as
a bridge in an edge layer between public connected networks
and Wireless Sensor Network (WSN). These smart gate-
ways support data-driven decisions and notify caregivers in
emergency cases. Yang and Gerla [16] introduced a personal
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health monitoring that uses a smart phone as a gateway
device that aggregates and sends healthcare data to process-
ing servers through the bluetooth technology. The proposed
system uses sensors attached tomedical equipments to collect
patient data and sends the data to the cloud, providing ubiq-
uitous access. Mohapatra and Rekha [17] introduced a hybrid
remote healthcare monitoring system that takes advantage
of cloud computing resources for aggregating and upload-
ing patient data through medical sensors, thus providing
on-demand access privileges for both patients and caregivers.
A ubiquitous healthcare system based on mobile gateways
using ZigBee and Bluetooth where the gateways provide
notification and analysis services of healthcare data [18].
Similarly, Park and Pak [19] introduce healthcare model that
aggregates data through personal health devices by using
USB, ZigBee and Bluetooth.

In this paper, we focus on privacy-preserving solutions
for storing and processing sensitive healthcare data in the
EoT paradigm. EoT is exposed to numerous external and
internal malicious attacks and possible abuse by shared par-
ties. Privacy and security mechanisms, including authen-
tication, authorization, anonymisation, access control and
cryptography techniques, can be used as defense layers to
preserve the privacy of sensitive healthcare data [20]–[22].
During the early stages of healthcare development, anonymi-
sation techniques are used to protect both users’ identities
and their healthcare data [23], [24]. Although anonymisa-
tion techniques are efficient for data processing, they can
lead to unavoidable privacy breaches [25]. Access control
mechanisms are considered to control access healthcare data
among interacting entities, including healthcare institutions,
data owners and laboratories and other caregivers. Hyped
access control mechanisms, such as a role-based access
control (RBAC), support the most comprehensive privacy-
preserving healthcare systems, but even they have limitations.
For example, RBAC can be used to identify family members’
access permission in healthcare systems, but family members
may require different access level for healthcare data which
makes such mechanisms complicated to be used in healthcare
domain [26]. Sun et al. [27] proposed an access control mech-
anism that allowed patients to provide leveled access per-
missions (e.g., doctors, laboratories, insurance companies)
for their healthcare information. Although promising, it is
suffered from delegation issues for different levels of access
permissions, which incorrectly led to overlap between roles
and lack of permissions on others [7].

Compared with the aforementioned techniques,
cryptography-based solutions are considered to be the most
convenient tools to preserve the privacy of stored and pro-
cessed data in the EoT paradigm. They can be categorized
into two main cryptographic techniques: Secure Multi-party
Computation (SMC) and Homomorphic Encryption (HE).
The former was introduced by Yao [28] in 1982 and its
objective is to build a secure, shared environment among
several parties to perform certain functions on encrypted
data in a secure manner. Most existing SMC applications are

based on semi-honest models, where adversaries follow the
protocol but they are also able to obtain information during
communication. In their current form, the SMC applications
based on malicious adversarial models are not suitable for
real-time monitoring and analysis applications. HE has the
ability to carry out computations in an encrypted domain and
has two main approaches: Partially Homomorphic Encryp-
tion (PHE) and Fully Homomorphic Encryption (FHE). The
PHE approach is suitable for a limited number of real-
world applications due to its limited arithmetic operational
capabilities. Furthermore, it carries a large communication
overhead to perform computations that cannot be conducted
in an encrypted domain. In contrast, the FHE approach has
the ability to perform an unlimited number of encrypted
computations and the encrypted data can be sent only once
to the Cloud Service Provider (CSP). Furthermore, all the
clustering-based mining computation tasks are performed
in a secure manner, without interacting with data own-
ers or any Trusted Third Parties (TTP). However, early
FHE schemes are considered as computationally intensive
and remain impractical to use in real-world applications.
The recently developed FHE schemes have been improved
from a performance efficiency perspective. Recently, the
Brakerski-Gentry-Vaikuntanathan (BGV) scheme [29] and its
implementation HElib library have been identified as promis-
ing candidates for a practical FHE scheme. We take advan-
tage of the FHE approach to develop a privacy-preserving
EoT framework for smart healthcare surveillance while
eliminating the majority of vulnerabilities in the existing
work.

V. SECURE EoT FOR SMART HEALTHCARE
SURVEILLANCE FRAMEWORK
In this section, we firstly provide an overview of our frame-
work architecture. We then briefly describe the Fully Homo-
morphic Encryption (FHE) cryptosystem that is applied to
ensure the privacy of users’ sensitive data while it is stored
and processed at different stages in our framework. Then,
we explain how we developed a distributed analysis approach
for clustering-based techniques in EoT paradigm.

A. SYSTEM ARCHITECTURE
We have developed a secure abnormality detection frame-
work for smart healthcare communities based on the FHE
technique. The architecture of our framework relies on dif-
ferent entities interacting to achieve certain analysis tasks,
beginning with data aggregation, storage and finishing with
analysis tasks, all in a privacy-preserving manner. The
architecture has three main entities, as follows.

1) Community Members (CM): This includes healthy
people, elderly patients and hospital patients within the
smart community. Wired/wireless sensors are used to
aggregate biosignals data from CMs which are then
sent to the cloud-enabled storage upon encryption.

2) IoT gateway: This is a smart IoT entity for local
analysis processing within each smart community.
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FIGURE 3. System architecture showing different components of proposed privacy-preserving change detection and abnormality
prediction model in the cloud.

Collected data fromCMs are analyzed for local diagno-
sis feedback within each individual community. Then
each smart gateway sends the encrypted data to the
cloud storage for further analysis with other smart com-
munications data.

3) Cloud-enabled Database (CD): This is a cloud-based
storage for CM’s healthcare data from all smart com-
munities in an encrypted form.

4) Abnormality Detection Model (ADM): This is the
analysis engine in the system where aggregated
encrypted data from multiple smart communities is
analyzed in its encrypted form.

The entities work together to aggregate, store and analyze
biosignal data for abnormality detection purposes. After the
encrypted data is sent to the CD entity, the ADM performs
encrypted analysis tasks on encrypted data securely and in an
independent manner. The CM can receive encrypted feedback
results from the CD entity to be decrypted at the CM securely.
Figure 3 illustrates the main entities of our framework and the
data workflow among them.

B. FULLY HOMOMORPHIC ENCRYPTION (FHE)
FHE is a convenient privacy and security provision mech-
anism to protect data storage and processing in a cloud-
enabled framework for two main reasons: 1) it ensure the
end-to-end data privacy of patient data in a public cloud
storage; and 2) it has encrypted-based computation capa-
bilities that can perform data analysis tasks without inter-
acting with any TTP. The FHE approach can be deployed
in several cloud-based integrated service domains to protect
the privacy of data owners, data and secure cloud-based
frameworks that are exposed to various malicious activities.

Numerous analytic-as-a-service platforms, such as power and
smart grids, health and assisted living and industrial moni-
toring systems, can benefit from such a privacy-preserving
approach to ensure data privacy while processing in a
public cloud computing platform. The Brakerski-Gentry-
Vaikuntanathan (BGV) Cryptosystem is a well-known and
practical FHE scheme. This scheme is classified as asymmet-
ric encryption, the security of which is linked to the difficulty
of the ring-learning with errors (RLWE) problem [30]. Unlike
PHE schemes, the BGV FHE scheme has the ability to per-
form unlimited arithmetic computations on encrypted data.
The basic BGV functions can be shown as follows.
• BGV.KeyGen() → (publickey, secretkey): The outputs
of key generation function are two BGV cryptosystem
keys. secretkey is used to encrypt ciphertexts upon being
sent to public cloud computing storage while publickey
is used to perform arithmetic computations on encrypted
data.

• BGV.Encryption()→ (Ciphertext c): The encryption
function output is a ciphtertext c that is homomorphi-
cally encrypted.

• BGV.Decryption()→ (Plaintext m): The decryption
function output is a plaintext m.

The fact that the BGV scheme has homomorphic properties
means that the following:

m1 op m2 = Dec(Enc(m1) op Enc(m2)) ∀ m1,m2 ∈ Ap

where op is an unlimited number of arithmetic computations.
The BGV scheme is built in order to provide computationally
feasible implementations and certain convenient routines on
top of the basic arithmetic operations.
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FIGURE 4. System architecture showing different components of proposed privacy-preserving change detection and
abnormality prediction model in the cloud.

C. FULLY HOMOMORPHIC ENCRYPTION FOR
FLOATING-POINT COMPUTATION
A limitation of the BGV fully homomorphic cryptosystem is
the lack of floating-point arithmetic computations and that it
can only support integer numbers. We introduced a conve-
nient solution to overcome this limitation through applying
the IEEE 754 standard for floating-point arithmetic to convert
the representation of floating-point numbers to its integer
representation. The IEEE 754 standard representation for a
floating point number F occupies 32 bits (can be extended to
64 bits) which is arranged as follows. S is the sign bit (a 1-bit
field), E is the exponent field (an 8-bit field) and M is the
mantissa field (a 23-bit field).

The sign bit S is 0 for a positive number, and 1 for a
negative number. The exponent field E is the actual expo-
nent+127, so E should be treated as an unsigned value in the
range [0, 255]. The mantissa field represents a number in the
range [1.0, 2.0), except that the leading 1 is not encoded inM .
Therefore, F can be mathematically expressed as follows:

F = (−1)S × 2E−127 × (1+M ) (1)

All required computations for the analysis process in our
framework can be carried on an encrypted domain by using
IEEE 754 floating-point representations. A detailed descrip-
tion of floating-point arithmetic computation is shown in our
previous work [31].

D. SMART EoT HEALTHCARE SURVEILLANCE MODEL
Our developed EoT healthcare surveillance model relies on a
distributed processing approach that takes into consideration
the distributed nature of IoT healthcare devices. Two unsuper-
vised clustering-based mining learning techniques, including
K-Means Clustering (KMC) and Fuzzy C-Means cluster-
ing (FCMC), are used for healthcare surveillance. By using

clustering-based mining, we can identify regular (normal)
biosignal patterns. Any deviation from these normal patterns
are considered as an abnormal (anomaly) pattern. We illus-
trate how the two clustering-based mining techniques, KMC
(hard clustering) and FCMC (soft clustering), can be built
in a distributed EoT framework for biosignals abnormality
detection in a smart healthcare community.

1) DISTRIBUTED ANALYSIS APPROACH
The distributed approach has two stages: Level-1 ‘‘Edge
(local) processing stage’’, and Level-2 ‘‘Cloud (global) pro-
cessing stage’’. In the first stage, edge IoT devices (e.g., IoT
gateways) analyze the sensed biosignal data within their spe-
cific ranges based on selected clustering-based techniques.
The analysis result of this stage are reported as feedback for
healthcare providers and data owners to identify any abnor-
mality changes. Then, the result is forwarded to cloud com-
puting for further global processing. The second stage merges
aggregated results on different IoT edge devices through two
steps: Normalisation step and Conciliation step. Figure 4
shows the workflow of the proposed distributed approach
stages.
• Edge (local) processing stage: clustering-based tech-
niques, including KMC and FCMC, are performed for
a small set of data within each IoT device. We briefly
describe KMC and FCMC techniques as follows.
– K-Means Clustering (KMC): The KMC algo-

rithm [32] is an unsupervised clustering technique
that classifies a set of data objects into different
disjointed k clusters. KMC is also known as the
hard clustering technique, where each data object
belongs to a cluster with a shortest distance from
the object to the cluster centroid. The square of the
Euclidean distance is used to measure the distance
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Algorithm 1 K-Means Clustering (KMC) Algorithm
1: Inputs: Encrypted data objects (x1), . . . , (xn)
2: Outputs: Encrypted set of cluster centroids

(c1), . . . , (ck )
3: Initialization: Choose a random set of clusters centroids

(c1), . . . , (ck ) from a given data objects.
4: while Not converged do
5: for all the data objects 1, .., n do
6: for all the cluster centroids 1, .., k do
7: calculated the distance between each data object

and each cluster centroid.
8: end for
9: Assign each data object to a cluster centroid with the

minimum Euclidean distance.
10: end for
11: for all the cluster centroids 1, .., k do
12: calculated the average of each cluster based on the

data objects that assign to it.
13: end for
14: end while

between the data objects and cluster centroids. FHE
is applied to protect data and KMC analysis tasks in
our EoT framework. We illustrate the main KMC
steps as follows.

1) Let (x1), . . . , (xn) be the number of encrypted
data objects. The algorithm selects (c1), . . . , (ck )
number of cluster centroids.

2) Calculate the Euclidean distance (dij) between
each data object (pi) and each cluster cen-
troid (cj).

3) Assign each data object (pi) to each cluster
centroid (cj) based on the shortest Euclidean
distance between each data object and the clus-
ter centroids.

4) Recalculate the cluster centroids (c1), . . . , (ck )
by obtaining the average of the data objects that
are assigned to each cluster centroid (cj).

5) Repeat steps 2,3 and 4 until the shortest cen-
troids converge. Algorithm 1 illustrates the
basic pseudo-code of the FH-KMC approach.

– Fuzzy C-means clustering (FCMC) algorithm:
The FCMC algorithm [33] is an unsupervised
soft clustering technique and is one of most pop-
ular fuzzy clustering techniques because it can
retain much more information than hard clustering
approaches, especially in the healthcare domain.
In the FCMC algorithm, each data object belongs
to each cluster centroid with a certain degree,
which is called a membership value. Similar to the
KMC algorithm, we apply FHE to preserve data
privacy and to perform FCMC analysis tasks in a
secure manner. We illustrate the main FCMC steps
as follows.

Algorithm 2 Fuzzy C-Means Clustering (FCMC) Algorithm
1: Inputs: Encrypted data objects (x1), . . . , (xn)
2: Outputs: Encrypted set of cluster centroids

(c1), . . . , (ck )
3: Initialization: Choose a random set of clusters centroids

(c1), . . . , (ck ) from a given data objects.
4: while ||U k+1

− U k
|| >= β do

5: for all the data objects 1, .., n do
6: for all the cluster centroids 1, .., k do
7: Calculated the distance between each data object

and each cluster centroid.
8: Calculate the membership value.
9: end for
10: end for
11: for all the cluster centroids 1, .., k do
12: Update each cluster centroid based on the data

objects that assign to it.
13: end for
14: end while

1) Let (x1), . . . , (xn) be the number of encrypted
data objects. The algorithm selects (c1), . . . , (ck )
number of cluster centroids.

2) Calculate the Euclidean distance (dij) between
each data object (pi) and each cluster cen-
troid (cj).

3) Calculate the fuzzy membership value (µik )
that indicates the degree to which each data
point (pi) belongs to each cluster centroid (cj).

4) Update the cluster centroids (c1), . . . , (ck ).
5) Updated the fuzzy membership values of the

data objects and then the cluster centroids based
on steps 3 and 4 until ||U k+1

−U k
|| < β, where

U is the fuzzy membership matrix (µ)n∗c that
contains the membership values between the
data points and cluster centroids and β is the ter-
mination criterion value that is pre-determined.
Algorithm 2 illustrates the basic pseudo-code of
the FCMC algorithm.

– Cloud (global) processing stage:
After the convergence of the edge analysis stage,
analysis results of each edge IoT device (weight
submatrices) are send to cloud computing where
it can be represented as: UN∗C =

∑C
j=1

∑N
i=1 wij

from each edge device. We assume that each of the
submatrices (UN∗C ) is normalized but it is not nec-
essarily the case that all submatrices are reconciled.
In the cloud processing stage, we unify the weight
submatrices into a single global matrix. However,
the resulting matrix (UP∗Q =

∑Q
j=1

∑P
i=1 wij)

needs to be normalized. Since the row sums of
each data object of the submatrices (UN∗C ) is 1.0,
then the row sum of each data object in the global
matrix (UP∗Q) will be a. This is the first issue
that must be resolved by the global process stage.
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The second issue is that we need to have onemerged
set of cluster centersC , but we actually have ab sets
of C cluster centers, potentially leading to as many
as ab× C cluster centers. We need to reconcile the
cluster values such that so there are exactly Q clus-
ter centers. To overcome these issues, we developed
a merging process that has two steps, including
normalization step and conciliation step.
∗ Definition-1(Normalisation Step): If weight
probabilities row sum of a data object V (i) =
rowsum(j,M (i, j)) 6= 1.0, then divide each ele-
ment of row i by V (i).
Although the normalization step is necessary
for global matrix (UP∗Q), it is not sufficient.
To see why this is the case, consider a single
data object (x) whose weight probabilities is
being computed relative to two sets of clusters:
C1 = {c11, . . . , c1q} and C2 = {c21, . . . , c2q}.
When both computations are done, (x) will have
a first set of weight probabilities {µ11, . . . , µ1q}

for C1 and a second set of weight probabilities
{µ21, . . . , µ2q} forC2 where |C1| and |C2| = q.
In theKMC (univalent) case, a data object (x) can
only be assigned to one cluster, so if one of the
(c1j) probabilities is 1 and also one of the (c2j)
probabilities is 1, then we have an inconsistency.
Let us refer to these two clusters as c′1 and c′2.
Since (x) cannot belong to both c′1 and c

′

2, we set
one of these probabilities to 0 and leave the other
probability as 1. To do this, we define a concili-
ation step for both KMC and FCMC algorithms
as follows.

∗ Definition-2(Conciliation Step - KMC): If a data
object appears to belong to more than one clus-
ter, then recalculate the metric distance of that
data object to each of the clusters and choose the
cluster to which it is closest. Set its weight prob-
ability to be 1, and all other weight probabilities
to be zero, in row x of the membership matrix.
For FCMC algorithms, the conciliation step is
more complex. In FCMC algorithms, we wish
to identify the primary cluster to which a data
object belongs. Typically, this cluster will have a
probability weight value> 0.5. However, it may
be the case that none of the probability weights
is greater than 0.5. To address this, we define
conciliation step for FCMC algorithm, which is
used in conjunction with normalization.

∗ Definition-3(Conciliation Step - FCMC): Let µ1
be the largest probability weight, and µ2 be
the second largest weight of a given data point
in the weight matrix UP∗Q. Suppose that after
normalization, it is the case that both µ1 < 0.5
and µ1 < 0.5. Then, we adjust the weight of
µ1 to be 0.5, and adjust the weight of µ2 to be
µ2 + (0.5− µ1).

Given these steps, we can describe the overview of the
distributed analysis approach as follows. First, aggre-
gated data Ui is processed in j edge IoT device inde-
pendently based on selected clustering-based techniques
where 1 ≤ j ≤ m. Each subset weight matrix is defined
as Ui =

∑C
j=1

∑N
i=1 µij and {Ui|1 ≤ i ≤ m}. The global

weight matrix UP∗Q =
∑Q

j=1
∑P

i=1 µij consists of
merged set of overlapping submatrices (U1, . . . ,Um).
Second, given that there are m distributed edge IoT
devices, the data is processed in distributed fashion
among IoT devices and each of them runs independently
to completion. Then, the cloud (global) processing is
performed through the normalization and conciliation
steps to obtain final analysis result.

VI. SECURITY ANALYSIS
This section discusses the privacy related considerations in
our proposed EoT framework and also the security of the
underlying cryptography mechanism. The main objective of
the proposed EoT framework is to perform analysis tasks for
healthcare surveillance on biosignal encrypted data without
revealing users’ sensitive information. The principal algo-
rithms of concern are machine learning algorithms, such as
clustering and anomaly detection.

The EoT healthcare surveillance framework is built based
on a client /server architecture in which only the client rep-
resents a secure side of the architecture and has the abil-
ity to access to the unencrypted (plaintext) data. The threat
model assumes the client generates a cryptography key-pair
(private/public keys) and the public key is distributed to both
edge IoT devices and the server side, which is in this case a
Cloud Service Provider (CSP). The data is first tagged and
then encrypted from its source by using the private key. This
implies that the plaintext data is never transmitted to edge IoT
devices or cloud servers and both perform analysis tasks only
on an encrypted (ciphertext) data. This is possible because the
applied machine learning algorithms (KMC and FCMC) can
work based on Fully Homomorphic Encryption (FHE).

In our proposed framework based on FHE, a set of primi-
tive operations, denoted by where ={ , , , , , },
can be performed on the encrypted data to get the same result
as if it performed on the unencrypted data. Mathematically
this implies that an FHE cryptography has the following
property: A B = Enc(A) Enc(B). The standard imple-
mentation of FHE only operates on the integer numbers, but
we extended it to the floating-point numbers by applying
IEEE 754 standard ( 32-bit - single precision floating point
numbers). The IEEE 754 representation is developed with-
out any modification on the standard FHE functionalities.
Therefore, under the assumption that the underlying imple-
mentation of FHE operations is secure, then the analysis
tasks of the proposed EoT framework are implemented in a
secure manner. We assume, however, that any other data path,
compute edge IoT devices or the cloud servers are completely
insecure, and that an attacker can intercept and expose the
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FIGURE 5. The distribution of male and female patients is shown in Figure 5a (top, left) and the distribution of male and female patients according to
the type of chest pain is shown in Figure 5b (top, right). The abnormality detection for the presence of heart disease is shown in Figure 5c (bottom),
where the red color refers to the male and female patients who had detected heart disease while the blue color refers to healthy patients. (a) The
distribution of male and female patients. (b) The distribution of male and female patients according to the type of chest pain. (c) The abnormality
detection for the presence of heart disease.

contents of a data communication path, or the memory of
edge IoT devices, as well.

VII. EXPERIMENTAL EVALUATION
We evaluated the proposed secure EoT smart health-
care surveillance framework using the Google Cloud Plat-
form (GCP). We used a real heart disease dataset from the
University of California Irvine’s (UCI) Machine Learning
Repository [34] and synthetic datasets that varied in size and
distribution to provide a comprehensive demonstration of the
proposed framework. The real heart disease dataset contained
information from 303 patients, with 75 features. We used
the following fields: age; gender; chest pain indicator; and
record label (0 = healthy, any other value = unhealthy). The
synthetic datasets were produced based on the model in [35].
These contained two dimensional data for clustering purposes
with varying size and distribution, which can simulate realis-
tic scenarios. A data point is represented by a vector of two
values [x, y].
The main objective of this evaluation was to demonstrate

the performance of the proposed EoT healthcare surveillance
framework in terms of accuracy and execution time using
the KMC algorithm, which can also be extended to FCMC
algorithm. The experiment scenario assumes that data is ana-
lyzed locally in subsets based on distributed edge IoT devices
and that analysis results are sent from all edge devices to

cloud computing for further global analysis. For the real heart
disease dataset, Figure 5a shows the distribution of patients in
the dataset by gender and Figure 5b shows the distribution
of patients based on the type of chest pain. We evaluate
the existence of heart disease based on the KMC algorithm
in Figure 5c.

Figure 6 shows the performance of the proposed frame-
work based on KMC algorithms, with varying sizes of patient
data to demonstrate the scalability of the distributed analytics
approach. We used a Virtual Machine (VM) with a two-
core Intel i5-2500 CPU running at 2.8 GHz with 16 GB and
64 bit linux operating system for local processing with similar
machine type for global processing in our EoT framework.
In the real heart disease dataset, performance of the developed
model achieved linear speedup when the size of the data is
increases. The distributed approach can significantly reduce
the performance overhead in both local and global processing
stages based on the number of VMs. For example, a single
edge IoT device takes about 123 seconds to analyze data
of 40 patients in the local processing stage but can be reduced
to about 68 seconds if two edge IoT devices are used to
process the same amount (size) of data.

The synthetic datasets analysis showed similar results,
where an increase in computing resources can rapidly
improved performance, as shown in Figure 8. The accuracy of
distributed-based analysis for synthetic datasets was slightly
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FIGURE 6. The performance of secure abnormality detection model in local analysis with 1,2 and 4 edge IoT devices with a varying size of
data of the heart disease dataset.

FIGURE 7. 2D synthetic datasets with varying size and distribution. The first row shows raw datasets with 2000, 4000, 6000 and 8000 data points
respectively. The second row shows the datasets after performing analysis based on KMC algorithm.

FIGURE 8. The performance of data analysis in local analysis with varying number of edge IoT
devices and size of datasets.

low compared to centralized-based analysis (see Table 1).
We used data labels to identify four quantities, including True
Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN). These quantities compute the accuracy

level of synthetic datasets as follows.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(2)
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TABLE 1. The analysis accuracy for synthetic datasets with a varying
number of data points.

We found that the accuracy varies between 0.29% to
8.90% based on the size of dataset. Moreover, the accu-
racy level is affected by the number of VMs between 1%
to 18.13%. The performance evaluation shows significant
results where the execution time improves between 49.38%
to 76.06% for 8000 data points, and between 43.02% to
72.83% for 6000 data points, and between 47.42% to 76.42%
for 4000 data points and between 17.41% to 57.20% for
2000 data points when varying the number of VMs from 1, 2
and 4 respectively, as shown in Figure 8.

VIII. CONCLUSION
The smart healthcare technology revolution is constantly
developing better services for healthcare in smart communi-
ties. One of the greatest challenges facing smart healthcare
systems is the protection of sensitive data. In this paper,
we introduced a privacy-preserving EoT framework for
smart healthcare surveillance. Clustering-based techniques
are applied to analyze biosignal data in a secure manner
and developed a distributed analysis approach, appropriate
to the nature of the proposed EoT framework. We adapt
Fully Homomorphic Encryption (FHE) because of its abil-
ity to store and analyze data in an encrypted form. In our
framework, FHE ensured the privacy of outsourced biosignal
data from its source and while it is processed in both edge
IoT devices and cloud computing and encrypted analysis
results can be retrieved by data owners and decrypted in a
secure side. The 5G wireless network promises to address
the challenges associated with the transmission of massive
amounts of encrypted data between different entities in an
EoT paradigm. Future research will improve the proposed
framework in terms of further reducing homomorphic com-
putational overheads and enhancing its capabilities to be
extended for more advanced data mining models.
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