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ABSTRACT In this short paper, we consider the non-binary quantum codes construction from a class of
linear codes, which are not self-orthogonal over finite fields. As the computational results, new quantum
codes [[8, 0,≥ 4]]3, [[8, 2,≥ 3]]3, [[11, 1,≥ 5]]3, [[10, 0,≥ 5]]4, and [[16, 6,≥ 4]]4 are obtained.

INDEX TERMS Quantum codes, linear codes, Calderbank-Shor-Steane (CSS) construction.

I. INTRODUCTION
Quantum coherence plays an essential role in quantum infor-
mation theory. Decoherence is a property of quantum, which
can destroy quantum coherence. It makes quantum compu-
tation easy to make mistakes. Reducing the decoherence or
controlling the decoherence to an acceptable level is a key
problem that must be solved by scientists. From now on,
quantum error-correcting codes is one of the most effective
ways to overcome decoherence.

Shor [1] constructed the first quantum error-correcting
code [[9, 1, 3]], which can correct 1 bit quantum error
with 9 quantum bits. This code space is a 2-dimensional
complex space. In 1996, two independent research groups
Calderbank and Shor [2] and Steane [3] adopted the
idea of classical linear block error-correcting codes, and
gave a method to construct quantum error-correcting
codes using two classical binary error-correcting codes
called Calderbank-Shor-Steane (CSS) construction method.
In 1998, Calderbank et al. [4] gave the relationship between
quantum codes and self-orthogonal codes on the quaternary
field. Later, Ketkar et al. [5] gave a method to construct
quantum codes by using the inclusion relationship of two
linear codes over finite fields Fq. This method is called the
CSS quantum codes construction. Recently, with the develop-
ment of quantum information theory, there have been a lot of
applications of quantum codes in quantum environment, such
as quantum network coding [6], [7], multiparty quantum
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key management (QKM) protocol [8], quantum cooperative
multicast (QCM) [9], etc.

In recent years, a lot of good quantum codes are con-
structed by self-orthogonal codes over finite fields because
the self-orthogonal codes satisfy the conditions of CSS
quantum codes construction method, and the self-orthogonal
codes can be constructed effectively by algebraic codes such
as cyclic codes, constacyclic codes, AG codes and so on.
For example, Thangaraj andMcLaughlin [10] provided a con-
struction for quantum codes from Hermitian self-orthogonal
cyclic codes over F4m , Guardia [11] constructed some new
quantum codes from a class of special cyclic codes whose
defining set consists of only one cyclotomic coset containing
at least two consecutive integers; Xiaoyan [12] constructed
quantum code from some classes of constacyclic codes,
Koroglu [13] constructed eight new classes of entanglement-
assisted quantum MDS codes by virtue of a decomposition
of the defining set of constacyclic codes; Feng et al. [14]
gave an asymptotic bounds on quantum codes from algebraic
geometry codes, Chen [15] constructed asymptotically good
family of quantum codes from algebraic geometric codes,
Munuera et al. [16] studies quantum codes construction from
algebraic geometric codes of Castle type.

One question is that if we can give a class of linear
codes that are not self-orthogonal to construct quantum codes
effectively. In 2018, Hivadi [17] presented a construction
method for binary quantum codes from a class of non self-
orthogonal binary linear codes. This construction method can
be effectively extended to the case of non-binary quantum
codes. In this short paper, we will do this issue.
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II. CONSTRUCTION OF QUANTUM CODES
Let Fq be finite fields, where q = pt , p is a prime, t is a
positive integer. If C is a k-dimensional subspace of Fnq, then
C will be called an [n, k] linear code over Fq. The linear
code C has qk codewords. For c = (c0, c1, . . . , cn−1) ∈ C ,
we define the weight as wt(c) = #{i | ci 6= 0, 0 ≤ i ≤ n−1}.
The minimum distance is d = min{wt(a − b) | a,b ∈ C}.
Further, if the minimum distance d of C is known, it is also
sometimes referred to as an [n, k, d] linear code. In coding
theory, two frequently-used ways to present a linear code are
with either a generator matrix or a parity check matrix.

A k × n matrix G over Fq is called a generator matrix
of C if the rows of G generates C and no proper subset
of the rows of G generates C . Let x = (x0, x1, . . . , xn−1),
y = (y0, y1, . . . , yn−1) ∈ Fnq, the inner product of
vectors x and y is x · y =

∑n
i=0 xiyi. The dual code of C

is defined by C⊥ = {x ∈ Fnq| x · c = 0,∀ c ∈ C}.
A parity check matrix H for a linear C is a generator matrix
for the dual code C⊥. A linear code C of length n is called
self-orthogonal if C ⊆ C⊥, and self-dual if C⊥ = C .
Clearly, self-dual codes are subclass of self-orthogonal codes.

In the following, we will give the CSS quantum codes
construction first.
Lemma 1 [5] (CSS Quantum Codes Construction): Let

C1 and C2 be two linear codes with parameters [n, k1, d1]q
and [n, k2, d2]q, respectively. If C⊥2 ⊆ C1, then there is a
quantum code with parameters [[n, k1 + k2 − n,≥ d]]q,
where d = min{d1, d2}.
If C1 = C2, then we have the following Lemma 2.

In fact, most of works on quantum codes construction from
self-orthogonal linear codes over finite fields based on this
fundamental result.
Lemma 2 [5]: Let C be a linear [n, k, d]q code satisfying

C⊥ ⊆ C , then there is a quantum code with parameters
[[n, 2k − n,≥ d]]q.

In the following, we will introduce non-binary quantum
codes construction from a class of linear codes, which are not
self-orthogonal codes over finite fields.

At the beginning, we need some preparations. The permu-
tation matrix P is a square matrix with exactly one 1 in each
row and column and 0s elsewhere. The diagonal matrix D is
a square matrix with only non-zero elements on the diagonal
line. The monomial matrix is a square matrix with exactly
one non-zero entry in each row and column. In other words,
the monomial matrix M can be written either in the form
DP or PD′, where D and D′ are diagonal matrices and P is
a permutation matrix.
Lemma 3 [18]: Let C1 and C2 be linear codes of the same

length over Fq, and let G1 be a generator matrix for C1.
Then

(i) C1 and C2 are permutation equivalent if there is a
permutation matrix P such that G1P is a generator matrix
of C2.

(ii) C1 and C2 are monomial equivalent if there is a mono-
mial matrix M such that G1M is a generator matrix of C2.

(iii) C1 and C2 are equivalent if there is a monomial
matrix M and an automorphism γ of the finite field Fq such
that G1Mγ is a generator matrix of C2.
Note that two equivalent codes have the same weight

distribution.
Let H (C1) and H (C2) be parity check matrices of lin-

ear codes C1 and C2, respectively. If H (C2)H (C1)> = 0,
then C⊥2 ⊆ C1 which implies that there is a quantum code
associated to C1 and C2 by CSS quantum codes construction
method. Let

H =
[
H (C2) 0

0 H (C1)

]
with H (C2)H (C1)> = 0. Then we call H is the parity
check matrix of the associated quantum code. The problem
of quantum codes construction from error-correcting codes
over finite fields turns out to be a problem to construct the
parity check matrix H .
Now, we will give the main construction results in the

following.
Theorem 1: Let C be an [n, k, d] linear code over Fp with

parity check matrix H , where p is an odd prime. If there is
a monomial matrix M such that H (HM )> = 0, then there is
a non-binary [[n, 2k − n,≥ d]]p quantum code with parity
check matrix [

H 0
0 HM

]
.

Proof: Let C be an [n, k, d] linear code over Fp with
parity check matrix H ,M be an (n− k)× (n− k) monomial
matrix over Fp. Let C ′ be a linear code with parity check
matrix HM . Then C⊥ and C ′⊥ are monomial equivalent.
Since H (HM )> = 0, it follows that C⊥ ⊆ C ′. By Lemma 1,
there is a quantum code associated to C and C ′. Further,

the matrix
[
H 0
0 HM

]
is the parity check matrix of the asso-

ciated quantum code.
Now, we will show that the parameters of this quantum

code are [[n, 2k − n,≥ d]]p. The number of Fp-linearity

independent rows in the matrix
[
H 0
0 HM

]
is 2(n− k), so the

quantum code has the dimension n− 2(n− k) = 2k − n. The
linear code C has the minimum distance d . That is, the parity
check matrix H of C has a set of d linear dependent columns
but no set of d−1 linearly dependent columns. Clearly,H and
HM have the same linearly correlation. Thus, the parameters
of the quantum code are [[n, 2k − n,≥ d]]p.
Theorem 2: Let C be an [n, k, d] linear code over Fq with

parity check matrix H , where q = pt , p is an odd prime
and t ≥ 2 is a positive integer. If there is a monomial
matrix M and an automorphism γ of the finite field Fq
such that H (HMγ )> = 0, then there is a non-binary
[[n, 2k − n,≥ d]]q quantum code with parity check matrix[

H 0
0 HMγ

]
.
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Proof: The proof process of this theorem is similar to
Theorem 1. We omit it here.

III. SOME NEW NON-BINARY QUANTUM CODES
In this section, we will give some computational examples
to illustrate that our construction method can produce good
non-binary quantum codes. More importantly, some of these
quantum codes can not be obtained by self-orthogonal codes.
Example 1: Let C be an [8, 4, 4] linear code over F3. The

parity check matrix H of this linear code is given as follows

H =


1 0 0 0 1 1 1 2
0 1 0 0 1 2 2 0
0 0 1 0 0 1 2 2
0 0 0 1 1 1 2 1

.
This linear code is not self-orthogonal. Consider the mono-
mial matrix M on the matrix H as follows

HM =


2 2 0 0 2 0 1 2
2 1 0 0 0 2 2 0
0 2 1 0 0 0 2 2
2 2 0 1 0 0 2 1

.
We have H (HM )> = 0. By Theorem 1, there is an
[[8, 0,≥ 4]]3 quantum code. This quantum code has the same
length and dimension as the known quantum code [[8, 0, 3]]3
appeared in [19], but our code has the larger minimum dis-
tance than that code. Further, since the highest minimum
distance of the self-dual code of length 8 over F3 is 3, then
we can not get the quantum code [[8, 0,≥ 4]]3 by self-dual
codes.
Example 2: Let C be an [8, 5, 3] linear code over F3. The

parity check matrix H of this linear code is given as follows

H =

 1 0 0 1 2 0 2 0
0 1 0 2 2 2 1 2
0 0 1 2 0 2 0 1

.
This linear code is not self-orthogonal. Consider the mono-
mial matrix M on the matrix H as follows

HM =

 1 0 1 0 0 1 1 0
0 0 2 2 1 2 1 2
0 1 0 1 1 2 0 0

.
Then H (HM )> = 0. By Theorem 1, there is an [[8, 2,≥ 3]]3
quantum code. This quantum code has the same length and
minimum distance as the known quantum code [[8, 0, 3]]3
appeared in [19], but our code has the larger dimension than
that code.
Example 3: LetC be an [11, 6, 5] linear code over F3. The

parity check matrix H of this linear code is given as follows

H =


1 0 0 0 0 1 2 2 2 1 0
0 1 0 0 0 0 1 2 2 2 1
0 0 1 0 0 2 1 2 0 1 2
0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 1 2 2 2 1 0 1

.

This linear code is not self-orthogonal. Consider the mono-
mial matrix M on the matrix H as follows

HM =


1 0 0 2 2 1 2 0 0 0 1
0 0 1 2 1 0 2 1 0 0 2
0 0 2 2 1 2 0 0 0 1 1
0 1 1 0 1 1 1 0 0 0 1
0 0 1 2 2 2 1 0 1 0 0

.
ThenH (HM )> = 0. ByTheorem 1, there is an [[11, 1,≥ 5]]3
quantum code. This quantum code has the same length and
dimension as the known quantum code [[11, 1, 4]]3 appeared
in [19], but our code has the larger minimum distance than
that code.
Example 4: LetC be an [10, 5, 5] linear code over F4. The

parity check matrix H of this linear code is given as follows

H =


1 0 0 0 0 1 w2 w2 0 w
0 1 0 0 0 w 0 w w2 w2

0 0 1 0 0 1 1 w2 w 1
0 0 0 1 0 1 w w w2 0
0 0 0 0 1 w2 w2 0 w w

,
where w is a primitive element of F4. This linear code is not
self-orthogonal. Consider the monomial matrix M and the
automorphism γ over F4 on the matrix H as follows

HMγ =


1 1 0 0 0 0 w w 0 w2

0 w2 0 0 w 1 w2 0 0 w
0 1 0 1 w2 0 w 1 0 1
0 1 1 0 w 0 w2 w2 0 0
0 w 0 0 w2 0 0 w 1 w2

.
Then H (HMγ )> = 0. By Theorem 2, there is an
[[10, 0,≥ 5]]4 quantum code. Since the highest minimum
distance of the self-dual code of length 10 over F4 is 4, then
we can not get the quantum code [[10, 0,≥ 5]]4 by self-dual
codes.
Example 5: Let C be an [14, 10, 4] linear code over F4.

The parity check matrix H of this linear code is given as
follows

H =


1 0 0 0 1 w w w2 1 0 w w 0 1
0 1 0 0 w w 1 w2 1 1 w2 1 w w
0 0 1 0 1 0 0 w w 1 w2 1 1 w2

0 0 0 1 w w w2 1 0 w w 0 1 w2

,
where w is a primitive element over F4. This linear code is
not self-orthogonal. Consider the monomial matrix M and
the automorphism γ over F4 on the matrix H as follows

HMγ

=


w 0 0 1 0 w2 1 1 0 1 w2 0 w2 w2

w 0 1 1 1 w w2 0 0 w2 w2 w2 1 1
w2 1 0 w2 1 w w 0 0 1 0 1 1 0
1 0 0 0 w2 w2 w 0 1 w2 w2 1 0 w

.
Then H (HMγ )> = 0. By Theorem 2, there is an
[[14, 6,≥ 4]]4 quantum code. This quantum code has the
same length and minimum distance as the known quantum
code [[14, 0, 4]]4 appeared in [19], but our code has the larger
dimension than that code. �
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IV. CONCLUSION
In this paper, we studied the non-binary quantum codes con-
struction from a class of linear codes, which are not self-
orthogonal over finite fields. We can construct some quantum
codes with special parameters [[n, 0,≥ d]], which can not be
constructed by self-orthogonal codes over finite fields.
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