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ABSTRACT The performance of time-of-arrival (TOA)-based ranging using ultra-wideband is greatly
declined in the industrial environment since the metallic obstacles cause severe non-line-of-sight (NLOS)
and result in huge ranging measurement errors. A general challenge of TOA-based ranging and localization
in the industrial environment is that the Kalman filter (KF)-based ranging optimization algorithm cannot
effectively improve the ranging accuracy because the ranging errors follow a non-Gaussian distribution.
In this paper, a generalized maximum correntropy Kalman filter (GMCKF) algorithm which can effectively
suppress NLOS errors is proposed. GMCKF uses the generalized maximum correntropy criterion (GMCC)
instead of the minimum mean square error as the criterion of KF, and obtain a robust gain function. GMCC
can effectively measure the similarity between the state value and the measurement value, which directly
reflects the abnormality of measurement errors. Therefore, GMCKF achieves smoothing filtering in both
NLOS and line-of-sight conditions. We compare GMCKF with other KF-based algorithms and prove its
steady-state performance in field testing. The results show that the ranging optimized by GMCKF is with
significantly higher accuracy. Finally, the optimized ranging is used as the input of three general localization
algorithms. The localization accuracy of all localization algorithms is also improved.

INDEX TERMS Kalman filter, generalized maximum correntropy, LOS/NLOS, time-of-arrival.

I. INTRODUCTION
The indoor localization technology is one of the key technolo-
gies of internet of things (IoT), and it has been widespread
concern by the researchers [1]. For example, many civil
and military scenarios require accurate positioning informa-
tion [3], [4], [43], such as search-and-rescue, looking for
lost luggage, personal tracking, logistics tracking, and robot
navigation, etc.

Localization based UWB ranging is one of the most fre-
quently adopted technologies in the area of indoor position-
ing [5]. The main challenge of UWB ranging is the NLOS,
in which the first arriving path is not related to the direct
path and leads to large ranging measurement errors [39].

The associate editor coordinating the review of this manuscript and
approving it for publication was Qinghua Guo.

Many research efforts have been spent on modeling and
improving the performance of UWB ranging in office envi-
ronment, in which the errors of UWB ranging are mainly
caused by the obstacles, such as human bodies, office equip-
ment, and walls [6]–[8]. With the development of industrial
internet of things (IIoT), the industrial ranging technology is
risingmore andmore attentions [2]. However, the error model
of UWB ranging of industrial environment is considerably
different from the office environment [38]. The walls of the
factory are made of metal and the building is also packed with
metallic equipment, such as machines and worktops. Because
of large number of metallic objects, the probability of NLOS
conditions is much higher in the industrial environment than
in office environment.

In the practical environment, the measurement errors of
UWB are mainly caused by multipath propagation, NLOS,

27490
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7600-7231


F. Ma et al.: Robust KF Algorithm Based on Generalized Correntropy for UWB Ranging

inaccuracy measurement of the equipment and so on [9].
The equipment measurement errors are caused by the time
deviation between the clocks of the anchor node and tag
node. Multipath propagation is composed of the reflection,
refraction and diffraction of the wireless channel. Then,
the arrival time of the direct path pulse may be shifted by
the pulses of other paths, leads to multipath errors. In NLOS
scenario, the direct path is usually blocked by the obsta-
cles and becomes undetectable. For typical ranging systems,
the NLOS errors are much larger than the multipath errors
and equipment measurement errors [10]. The scenario of
industrial UWB ranging is classified into LOS and NLOS.
In LOS scenario, the ranging errors are composed by equip-
ment measurement errors and multipath errors. In NLOS
scenario, the ranging errors are composed by all three kinds of
errors, much larger than the ranging errors of LOS. Usually,
NLOS errors are unavoidable which lead to large position-
ing deviations, especially in industrial environment. Those
NLOS errors exceed the standard deviations of Gaussian
distribution. Therefore, themeasurement results often contain
large outliers, and the probability density functions (pdf)
of NLOS errors decay with significant tailing which follow
non-Gaussian distribution.

A general challenge of TOA based ranging and localization
in industrial environment is that the Kalman filter (KF) based
distance optimization algorithm cannot effectively improve
the ranging accuracy when NLOS errors are modeled as
Gaussian distribution. Meanwhile, second-order statistics of
KF fail to describe error characteristics. Traditional methods
of restraining NLOS include ranging scenario identification
based adjusting [11], interacting multiple model (IMM) [12]
and particle filtering (PF). The IMM algorithm must be mod-
eled the LOS/NLOS switching in the Markov chain. If the
LOS/NLOS modes of IMM do not match with discrete-time
Markov chain, the performance will decrease seriously. The
state estimation of PF is dependent upon the approximation
between the reference distribution and the posterior probabil-
ity distribution of state. In practice, it is difficult to obtain the
optimal reference distribution.

On the other hand, kernel method [13] is widely studied
because of its powerful nonparametric modeling ability. As a
typical kernel method, maximum correntropy Kalman filter
algorithm (MCCKF) can deal with the high order statistics of
signal, thus eliminate the outliers, and achieve stable track-
ing and localization [14]. However, Gaussian kernel has not
always been the best criterion. Recently, Chen et al. [15]
proposes a generalized correntropy for robust adaptive filter-
ing with the generalized Gaussian density (GGD) function,
and achieves better performance than Gaussian kernel based
robust adaptive filtering.

In order to improve the ranging accuracy of NLOS, a gener-
alized maximum correntropy Kalman filter (GMCKF) algo-
rithm is proposed. The generalized maximum correntropy
criterion (GMCC) is a nonlinear similarity measure between
two random variables in kernel space at any time and ignores
the prior distribution of errors. GMCC takes place of MMSE

criterion as the cost function of the Kalman filter algorithm.
Then, GMCC maximizes the similarity between the state
value and measurement value, and can intuitively reflect
the abnormality of NLOS errors. When the errors of NLOS
follow non-Gaussian distribution, the Kalman filter will fail
to compute the second order statistics of state value and
measurement value. However, GMCC maps the input sig-
nal from a low dimensional space into a high dimensional
space, and then processes the high order statistics of signal.
Therefore, GMCC can not only suppress error of Gaussian
distribution, but also be robust against errors of non-Gaussian
distribution, such as alpha-stable distribution. When ranging
results contain large outliers, GMCCmakes the gain function
of GMCKF small, and alleviate the contribution of the mea-
surement value, that is, the predicted value approaches to the
state value which means the smoothing filtering. The main
contributions of this paper are as follows:

1) We propose a novel GMCKF algorithm, which is a
robust nonlinear similarity measure and can effectively
eliminate abnormal NLOS errors.

2) The effectiveness of this proposed algorithm is verified
in different industrial scenarios, and it is concluded that
GMCKF has superior performance in both LOS and
NLOS conditions.

3) The practical localization performance for three repre-
sentative algorithms are conducted by using the opti-
mized ranging of GMCKF.

The rest of this paper is organized as follows. In Section II
we briefly introduce related work. In Section III, we explain
the error distribution. In Section IV we propose the gen-
eralized maximum correntropy Kalman filter algorithm.
Section V shows experiments. Finally, Section VI concludes
this paper.

II. RELATED WORK
There are many radio frequency based localization
methodologies, including received signal strength indicator
(RSSI) [16], time of arrival (TOA) [17], time difference of
arrival (TDOA) [18], angle of arrival (AOA) [19]. The ranging
based on TOA is to calculate the distance between the trans-
mitter and receiver by measuring the propagation time. The
ranging accuracy is limited by the transmission condition of
the wireless channels. If there is a LOS condition between the
anchor node and tag node, the ranging accuracy of TOA will
be higher. Otherwise, the TOA measurement will introduce
the NLOS errors. In the industrial application, the serious
NLOS scenarios result in the substantial measurement errors.
Therefore, in order to achieve higher ranging accuracy for
NLOS, it is necessary to eliminate the NLOS errors [20]. The
related work of NLOS is introduced in the following.

The literature [22] proposes a directional beacon based
UWB location method which uses correlation window and
directional beacon to solve the influence of multipath and
NLOS. The dynamic Gaussian model (DGM) [42] considers
the instantaneous LOS or NLOS errors at time domain as
the drift from the general distribution dynamically in the
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indoor scenario. The Navigation Satellite System (GNSS)
detection algorithm [41] uses the cooperative position-
ing (CP) techniques to improve the positioning accuracy of
vehicles in urban NLOS environment. CP usually adopts
the relatively accurate local measurements between vehicles,
such as UWB, to enhance GNSS robustness.

Because the error distribution of NLOS and LOS chan-
nels is different, the NLOS and LOS channels are identi-
fied separately and use corresponding methods to reduce
the propagation errors [23]–[25]. These methods usually
adopt common strategies, such as estimating the variance
of the distance, the statistical characteristics of the channel.
Guvenc et al. [21] proposes a NLOS identification method
with the amplitude and delay statistics of the UWB channel.
The amplitude statistics are characterized by the kurtosis, and
the delay statistics usually contain the mean excess delay
and the root mean square delay spread. Channel classication
Kalman Filter (CC-KF) [10] divides errors into three different
classes based on the characteristics of ranging errors. It needs
prior knowledge of error distribution. For example, ranging
errors of CC-KF should be modeled as detected direct-path-
pulse (D-DPP) error distribution or undetected-direct path
pulse (U-DPP) error distribution.

Because it is difficult to distinguish NLOSwith LOS chan-
nels, the measurement errors can be modeled and corrected
directly. A correction algorithm based on information fusion
algorithm is proposed [26]. The literature [27] proposes a
blind selection method for direct path monitoring to solve
the NLOS problem. The literature [28] sets up a special
data model for UWB ranging to solve the NLOS problem.
The error correction algorithm based on statistical theory
and machine learning is proposed [29], [30], which needs
to establish the appropriate statistical model to achieve good
performance.

The interacting multiple model (IMM) estimator is a
Markov based method when the ranging estimation contains
LOS and NLOS errors. Li et al. [31] developes sequen-
tially multi-sensor multi-model filter for a mixed LOS/NLOS
environment which combines the IMM approach with the
extended Kalman filter (EKF) technique. A concatenated
IMM algorithm [12] takes the different dynamic models into
the second Markov chain under LOS/NLOS environment,
and this method is a hybrid Markov process which is com-
posed of inner and outer layered IMM. M-estimation and
IMM are combined to describe the mobile terminal tracking
which can effectively trade off the LOS and NLOS environ-
ment [32]. When the errors are LOS distribution, the conven-
tional EKF is adapted. Otherwise, the robust EKF (REKF) is
used to mitigate the influence of NLOS errors.

The classical methods based on Monte Carlo (MC) use
the probability distribution characteristics to suppress NLOS.
Monte Carlo sampling can maintain the mean and variance
characteristics of NLOS scenario, such as unscented Kalman
filter (UKF), particle filter (PF) [33], [34]. UKF eliminates
errors through the collection of sampling points, which will
increase the computational complexity and cannot be well

applied to the real-time localization system. Yang [35] pro-
poses the PF algorithm to realize the compromise between the
ranging accuracy and the computational complexity. In addi-
tion, PF dynamically adjusts maps to improve the ranging
accuracy.

Since errors of TOA ranging have a heavy tailed distri-
bution under the NLOS condition, the Gaussian distribution
cannot effectively explain the error model. Supposing obser-
vation noise follows a skew t-distribution, a light sigma-point
Kalman filtering method can effectively treat LOS/NLOS
condition of TOA [36]. The maximum correntropy Kalman
(MCCKF) combines maximum correntropy criterion and the
weighted least squares together to suppress NLOS errors. The
MCCKF does not require any prior information and has lower
computation [14]. Chen et al. [37] proposes a fixed-point
Kalman filter algorithm based on the maximum correntropy
which achieves a good ranging accuracy. However, the com-
plexity is high due to its iterative procedure.

The aforementioned filtering algorithms for NLOS con-
dition have improved the performance from different ways.
However, there still exist some problems. 1). Some algo-
rithms require additional hardware or assistant method to deal
with NLOS errors which increase the complexity. 2). When
the model does not match with the actual distribution, these
algorithms based on the channel classification or the tran-
sition probability model will increase the ranging errors.
3). Some algorithms have a large computational complex-
ity and cannot be well applied to the real-time localization
system.

III. TOA RANGING PRINCIPLE AND ERROR MODEL
A. TOA RANGING PRINCIPLE
For TOA ranging, the greater the bandwidth is, the stronger
the ability to suppress multipath interference. Therefore,
this paper chooses UWB as a measuring chip, such as
DW1000 [40]. Two way TOA (TW-TOA) does not require
the time synchronization between the anchor node and tag
node, and it can eliminate the time synchronization error in
TOA ranging.

FIGURE 1. Diagram of the TOA principle.

As shown in Fig.1, Anchor and Tag are two nodes for
TOA ranging. Tag node sends ranging data to anchor node
at time T1. Anchor node receives information at time T2.
Then, anchor node sends ACK data to tag node at time T3.
Finally, tag node receives ACK data at time T4. Anchor and
tag nodes measure the time of the transmission and reception
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by the local clock, and the transmission time between the two
devices is derived. The ranging between the anchor and tag
node is as follows:

d̂ = tp ∗ c =
tround−treply

2
∗ c =

(T4−T1)−(T3−T2)
2

∗ c

(1)

where c is the speed of light.

B. ERROR DISTRIBUTION ANALYSIS OF LOS AND NLOS
In the industrial environment, a large number of metallic
devices cause severe NLOS transmission. In order to effec-
tively analyze the impact of factory environment on UWB
ranging, we set up the error model as follows:

e = dtrue − d̂ = elos + δnlosenlos + ed (2)

where e represents the TW-TOA ranging error between the
anchor node and tag node, dtrue is actual ranging between
the anchor node and tag node, elos is measurement error
caused by LOS condition, ed is the error of hardware and
other factors, enlos is NLOS error causing by buildings, equip-
ment or other objects. When there is LOS condition between
the anchor node and tag node, δnlos = 0; otherwise, δnlos = 1.
In order to effectively study the effect of measurement

error, we use the industrial ranging data to calculate the distri-
bution. The test is divided into two cases: one has equipment
occlusion and the other can be regarded as LOS condition.

FIGURE 2. Error probability distribution under LOS scenario.

When there is LOS scenario between the anchor node
and tag node, the error distribution is shown as Fig.2. The
columnar graph represents the actual error data. The red
curve indicates Gaussian distribution, and the blue curve
indicates alpha-stable distribution. It can be seen that themost
of errors are near zero, and the whole errors are closer to
Gaussian distribution. At the same time, it is surprising to
find that Gaussian distribution coincides with alpha-stable
distribution, and the errors do not have heavy tailing. Note
that Gaussian distribution is a special case of alpha-stable
distribution. LOS error and hardware error can be effectively
solved by traditional filtering algorithm which is considered
as Gaussian distribution. It shows that the UWB is capable of
resisting multipath interference and system deviation.

When there is NLOS scenario between the anchor node
and tag node, the error distribution is shown as Fig.3.

FIGURE 3. Error probability distribution under NLOS scenario.

Although the errors are mainly concentrated in zero, a few
errors have heavy tailing which mean large outliers. There-
fore, the whole distribution is similar to alpha-stable distri-
bution which can provide a powerful model estimation for
NLOS errors. The error distribution cannot be effectively
characterized by Gaussian distribution. Note that Levy dis-
tribution is a special case of alpha-stable distribution which
also has heavy tailing. The experiment results show that
the ranging accuracy of UWB is mainly affected by NLOS
condition. This paper is focus on suppressing NLOS errors
and makes the ranging results closer to actual value.

FIGURE 4. CDF of ranging errors with different metallic equipment.

When there are different metallic equipment between the
anchor node and tag node, the cumulative distribution func-
tion (CDF) is shown as Fig.4. Because there are various
multipath propagation conditions, the error distribution is not
proportional to the number of obstacles. A general problem of
the TOA approach is that the performance of ranging systems
decreases rapidly in NLOS conditions since the first arriving
path may not correspond to the direct path and includes an
additional detouring delay.

IV. GENERALIZED MAXIMUM CORRENTROPY
KALMAN FILTER (GMCKF)
A. GENERALIZED MAXIMUM CORRENTROPY
CRITERION (GMCC)
The generalized correntropy is a new method for nonlinear
and local similarity measure between two random variables
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X and Y . It is defined as follows:

V (X ,Y ) = EXY [κ(X ,Y )] =
∫∫

κ(x, y)pX ,Y (x, y)dxdy (3)

E[·] is the expectation operator, κ(·, ·) is a translation function
of shift-invariant Mercer kernel, pX ,Y (·, ·) is the joint proba-
bility density function of X and Y .

In this paper, the generalized Gaussian density (GGD) is
used as kernel function:

κ(x, y) = Gα,β (x − y) =
α

2β0(1/α)
exp(−|

x − y
β
|
α)

= γα,βexp(−λ|x − y|α) (4)

where α > 0 is the shape parameter, β > 0 is kernel
bandwidth, λ = 1/βα is the kernel parameter, γα,β =
α/(2β0(1/α)) is the normalization constant, 0(·) is the
gamma function.

The generalized Gaussian density function has more free
choices of parameters than Gaussian kernel function, and can
be more effective to deal with non-Gaussian errors. When the
parameters are suitable, it has a better performance. There-
fore, this paper considers the generalized Gaussian density
function as the kernel function.

B. GENERALIZED MAXIMUM CORRENTROPY
KALMAN FILTER
Aiming at the problem that the accuracy of UWB ranging
is significantly affected by NLOS errors in industrial envi-
ronment, a novel method for NLOS errors based on KF is
designed by using the generalized maximum correntropy as
a cost function.

When the errors are non-Gaussian, the performance of
KF will degrade significantly. In order to mitigate these
drawbacks, we use GMCC to improve the robustness of KF.
Due to the local similarity measure of GMCC, GMCKF can
effectively eliminate NLOS errors.

The state model of a dynamic linear system is considered
as follows:

xk = Fxk−1 + wk (5)

yk = Hxk + vk (6)

where F = [1, 1; 0, 1] is the 2×2 state matrix andH = [1, 0]
is the 1 × 2 measurement matrix. xk = [dk , vk ]T ∈ R2 and
yk ∈ R represent the state value and measurement value
respectively where dk denotes the distance and vk denotes
the velocity of target node. wk and vk represent the state
and measurement noise which has zero mean with covariance
matrices Qk and Rk , respectively.

GMCC is a nonlinear similarity measure between two ran-
dom variables in kernel space at any time and ignores the prior
distribution of errors. GMCC takes the place of the traditional
MMSE criterion as the cost function of the Kalman filter
algorithm. Then, GMCC maximizes the similarity between
the state value and measurement value, and can intuitively
reflect the abnormality of NLOS errors. In order to effectively
suppress the NLOS errors, we combine GMCC and weight

matrix R−1k , P−1k|k−1 as the cost function.

Jm = Gα,β (‖yk − Hxk‖R−1k
)+ Gα,β (‖xk − Fxk−1‖P−1k|k−1

)

(7)

Using generalized Gaussian density (GGD) as cost func-
tion, the solution may not be optimal and may be suboptimal.
The domain of cost function (7) is xk ∈ {H−1yk ,Fxk−1} if
H−1yk < Fxk−1. State value xk−1 and measurement value yk
in the cost function can be regarded as fixed values at time t .
In addition, the cost function Jm is bounded in its domain and
there exists an updating predicted value xk between H−1yk
andFxk−1 that maximizes the cost function Jm andminimizes
the error between real value and predicted value. The main
purpose of this paper is to measure the similarity between the
predicted value and the measurement value by using the gen-
eralized maximum correntropy criterion (GMCC). We can
calculate the derivative of xk :
∂Jm
∂xk

=
∂(exp(−λ|yk−Hxk |α/2R

−1
k |yk−Hxk |

α/2))

∂xk

+
∂(exp(−λ|xk−Fxk−1|α/2P

−1
k|k−1|xk−Fxk−1|

α/2))

∂xk
= 0

(8)

The expansion of (8) can be expressed:

Gα,β (yk−Hxk )HTR−1k |yk−Hxk |
α−1sign(yk−Hxk )− Gα,β

× (xk−Fxk−1)P
−1
k|k−1|xk−Fxk−1|

α−1sign(xk−Fxk−1) = 0

(9)

where sign(·) is sign function.Gα,β (·) is GGD function which
can reference to (4). We set Lk =

Gα,β (yk−Hxk )
Gα,β (xk−Fxk−1)

. Then,
yk − Hxk and xk − Fxk−1 have the same symbols, equation
(9) can be rewritten as:

LkHTR−1k (yk − Hxk )α−1 = P−1k|k−1(xk − Fxk−1)
α−1 (10)

In order to effectively analyze the variable xk , we take the
α − 1 root for both sides of (10) where α > 1.

(LkHTR−1k )1/(α−1)(yk − Hxk ) = P−1/(α−1)k|k−1 (xk − Fxk−1)

(11)

We can transform (11) to (12). In order to obtain the
optimal state estimation, we add and subtract an estimated
value (LkHTR−1k )1/(α−1)Hxk|k−1 on the right side of (12):

((LkHTR−1k )1/(α−1)H + P−1/(α−1)k|k−1 )xk

= (LkHTR−1k )1/(α−1)yk + P
−1/(α−1)
k|k−1 )xk|k−1

+(LkHTR−1k )1/(α−1)Hxk|k−1−(LkHTR−1k )1/(α−1)Hxk|k−1
(12)

We can transform (12) to (13):

((LkHTR−1k )1/(α−1)H + P−1/(α−1)k|k−1 )xk

= ((LkHTR−1k )1/(α−1)H + P−1/(α−1)k|k−1 )xk|k−1
+(LkHTR−1k )1/(α−1)(yk − Hxk|k−1) (13)
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FIGURE 5. Surface of the GCIM in 3D space (α = 3, β = 1).

Then, we set the gain Kk :

Kk = ((LkHTR−1k )1/(α−1)H+P−1/(α−1)k|k−1 )−1(LkHTR−1k )1/(α−1)

(14)

The essential difference between GMCKF and traditional
KF is that the gainKk of GMCKF contains Lk .When themea-
surement value contains NLOS errors, Lk can dynamically
adjust the gain Kk of GMCKF and make the predicted value
tend to state value. When the measurement errors follow
Gaussian distribution, the gain Kk can be reduced to the
traditional KF approximately.

Assume that Rk is m×mmatrix, Pk|k−1 is n× nmatrix, H
ism×nmatrix. Because operation of GMCKF is linear, Lk is
scalar. Kk does not cause much computing complexity with
the generalized Gaussian density (GGD). The gain Kk need
O(m3

+ n3 + nm2
+ mn2 + mn+ m2) operation.

The optimal state value can be expressed as follows:

xk = xk|k−1 + Kk (yk − Hxk|k−1) (15)

xk can be approximately equal to xk|k−1 in the denomi-
nator of Lk according to [14], so that Gα,β (xk − Fxk−1) ≈
Gα,β (xk|k−1 − Fxk−1) = 1. Finally, Lk can be expressed as:

Lk = Gα,β (yk − Hxk|k−1) (16)

The generalized correntropy induced metric (GCIM) is
defined in [15] where GCIM (X ,Y ) =

√
Gα,β (0)− V (X ,Y ),

X = [x1, · · · , xN ]T , Y = [y1, · · · , yN ]T . The surface of the
GCIM is shown as Fig.5 where X = [x1, x2]T , Y = [0, 0]T ,
α = 3, β = 1. The GCIM exhibits like different norm
properties (from Lα to L0) in different regions. These char-
acteristics can refer to [15, Property 7 and 8]. It proves that
GCIM is equivalent to the α-norm distance if two variables
of {yk ,Hxk} or {xk ,Fxk−1} are close, behaves similarly to the
1-norm distance as two variables get further apart and even-
tually approaches the zero-norm as they are far apart. GMCC
maps the input signal from a low dimensional space into a
high dimensional space, and then processes the high order
statistics of signal. Therefore, GMCC can not only suppress
errors of Gaussian distribution, but also effectively be robust

against errors of non-Gaussian distribution, such as alpha-
stable distribution. When measurement value contains large
outliers, GMCC makes the gain function of GMCKF small,
and alleviate the contribution of the measurement value, that
is, the predicted value approaches to the state value which
means the smoothing filtering.

GMCKF first predicts state value xk|k−1 and covariance
Pk|k−1, respectively. Then, the gain Kk is calculated by using
GMCC function. Finally, GMCKF can obtain the filtering
state value xk and covariance Pk with Kk , xk|k−1, and Pk|k−1.
GMCKF algorithm is summarized as Fig.6:

FIGURE 6. The diagram of GMCKF algorithm.

V. EXPERIMENTS
In order to effectively evaluate the performance of this pro-
posed algorithm, TOA ranging uses the UWB system to
verify its performance in the practical factory environment.
First, the setting of experiment scenario is introduced, and
the practical experiments are carried out on the different
algorithms.

FIGURE 7. Experiment scenario for three cases.

A. MEASUREMENT SCENARIO
As shown in Fig.7, the practice measurement scenario is a
factory containing many industrial machines. The test device
consists of an anchor node, a tag node, and a laptop. The lap-
top receives ranging data and performs filtering algorithms.
Fig.7 shows that both anchor node and tag node are deployed
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FIGURE 8. Practice experiment scenario for NLOS and LOS.

on a tripod at one meter above the floor. The anchor node
is fixed, the tag node moves with uniform speed and gets
away from the anchor node. The experiment scenarios can be
divided into three cases. Scenario 1 can be seen as a typical
NLOS condition, andmeasurement errors follow alpha-stable
distribution as shown in Fig.3. There is always an occlusion
between the tag node and anchor node, and UWB signal is
propagated by multipath way. Scenario 2 is LOS model, and
measurement errors follow Gaussian distribution as shown
in Fig.2. Scenario 3 can be regarded as a mixed model of
LOS andNLOS. Three scenarios describe the various ranging
conditions in the factory environment effectively and com-
prehensively. The following will focus on scenario 1 and
scenario 2. Fig.8 shows the practical factory ranging scenario
under LOS and NLOS conditions.

B. EXPERIMENT AND ANALYSIS
In each experiment, the tag node moves away from anchor
node with 0.5m/s. 300 MC samples are carried out in each
scenario. We consider the root mean square error (RMSE)
and CDF as criterion to evaluate the performance of algo-
rithms. We compare the GMCKF algorithm with the original
KF, modified correntropy Kalman filter (MCKF) [14], and
MCCKF [14].

FIGURE 9. Joint distribution of α and β under NLOS condition.

1) STEADY-STATE PERFORMANCE UNDER NLOS CONDITION
The kernel parameters of GMCC is usually determined by
cross-validation, nearest neighbors, Silverman’s rule and so
on [13], [15]. In order to prove the steady-state performance
of GMCKF, we have tested the effects of parameters α and
β on the performance in the scenario 1. Fig.9 indicates
RMSE of GMCKF under the joint distribution of α and β.

From Fig. 9, when there is effect of NLOS, the optimal
performance is achieved with α ∈ [3, 5] and β ∈ [0.3, 0.7].
RMSE has a large flat area, so that the alternative domain of
two kernel parameters is still relatively large. The parameters
α and β are robust under NLOS scenario. If the parameter α
is greater than 5, RMSE will gradually increases. At the same
time, with the increase of parameter α, the computational
complexity will increase relatively. Therefore, according to
the practical environment, the optimal parameter α should be
no more than 5.

FIGURE 10. The effect of different parameters α under NLOS condition.

To further illustrate the impact of α, we select two fixed
values β. Fig.10 shows that when β = 0.5 and α sets 3 or 5,
GMCKF can produce smaller RMSE. Due to the effect of
NLOS, the traditional KF has larger RMSE, and the algo-
rithm does not achieve convergence. GMCKF is degraded to
MCCKF with α = 2. Although GMCKF can also converge,
RMSE of α = 2 is larger than that of α = 3. Therefore,
When the parameters α and β are suitably selected, GMCKF
can reach a better performance than MCCKF.

FIGURE 11. The effect of different parameters β under NLOS condition.

In addition, under the condition of fixed parameter α = 2
and α = 3, the effect of different parameters β is tested
respectively. From Fig.9 and Fig.11, if the parameter β is
too large, the abnormal NLOS errors cannot be effectively
suppressed which leads to the poor performance.

2) STEADY-STATE PERFORMANCE UNDER LOS CONDITION
The effect of kernel parameters α and β is also verified under
the LOS condition. From Fig.12, when the fixed parameter β
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FIGURE 12. The effect of different parameters α under LOS condition.

FIGURE 13. The effect of different parameters β under LOS condition.

is 1 or 2.2 and α is 2.4, 80% of RMSE of GMCKF keeps a
small value. As shown in Fig.13, when the fixed parameter α
is 2.4, GMCKF have the approximately same performance
with β ∈ {1.2, 2.2, 4} which is better than the traditional
KF. However, if the parameters are not suitably selected,
the performance of GMCKF will be worse. For example,
GMCKF is degraded to MCCKF, and the performance with
parameters α = 2 and β = 1.2 is slightly worse than
that of KF.

By testing kernel parameters α and β under NLOS and
LOS condition, the optimal ranges of parameters are differ-
ent, which are related to the practical environment. When
kernel parameters are too large, GMCC is insensitive to some
outliers and reduces the steady-state performance. When ker-
nel parameters are too small, GMCC ignores the contribution
of the useful information, and then results in performance
degradation. From Fig.9-Fig.13, the performance of GMCKF
is very close to that of KF under LOS condition, and bet-
ter than that of KF under NLOS condition. In conclusion,
GMCKF has a wider range of applications.

3) PERFORMANCE OF DIFFERENT ALGORITHMS
UNDER NLOS CONDITION
We also test the performance of GMCKF with α = 3 and
β = 0.5 under NLOS condition. In order to ensure the
consistency, GMCKF has the same parameter β as modified

FIGURE 14. CDF of four algorithms under NLOS condition.

correntropy Kalman filter (MCKF) [14], MCCKF [14].
Fig.14 shows that GMCKF has smaller error than the other
algorithms. When a large outlier occurs suddenly, the error of
KFwill become large. The errors ofMCKF is relatively small
in most cases, but some larger outliers still cannot be sup-
pressed. The stability of MCKF is poor and is easily affected
by NLOS. All errors of GMCKF are less than 0.1m due to the
selection of appropriate kernel parameters. GMCKF is equal
to MCCKF when α = 2. For traditional KF and modified
KF, the gain Kk indicates the predicted value xk is closer to
either state value or measurement value, thus ensuring that
the predicted value is closer to the real value. For modified
KF, the key of suppressing NLOS errors is whether the gain
Kk can effectively reflect the error distribution characteristics.
When themeasurement value contains a large NLOS ranging,
the predicted value approaches state value.

The gain Kk of MCCKF is associated with the residual
error yk − Hxk|k−1 and β. However, the gain Kk of GMCKF
is associated with the residual error yk − Hxk|k−1, β and α
which has strong dynamic adjustment ability. When NLOS
has different error distributions in the practical environment,
the appropriate parameter α of GMCKF can bemore effective
to adjust the gain Kk , which makes the gain Kk be related to
error distribution. Thus, the predicted value can be close to the
real value, and the NLOS errors can be restrained eventually.
Therefore, GMCKF has better performance than MCCKF
with suitable parameter α.

4) PERFORMANCE OF DIFFERENT ALGORITHMS
UNDER LOS CONDITION
In order to prove the generality, we test the performance of
KF, MCKF, MCCKF and GMCKF under LOS condition.
According to the result of experiment 2, kernel parameters
are selected as α = 2.4 and β = 2, respectively. From Fig.15,
the performance of GMCKF is superior to the other three
algorithms. 95% of RMSE of GMCKF is less than 0.05m.
Because the effect of covariance matrix is not considered,
MCKF cannot reach steady-state convergence. Meanwhile,
when the parameter β is set to 2, MCCKF has a slightly
worse performance as the traditional KF that can also result
a small RMSE.
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FIGURE 15. CDF of four algorithms under LOS condition.

5) COMPARISON OF RMSE AND COMPLEXITY OF
ALGORITHMS
We also test RMSE and complexity under the three scenarios.
It can be seen from Table 1 that the RMSE of GMCKF
is smaller than that of the other three algorithms. Because
GMCKF can effectively adjust two parameters, it has more
robust against errors thanMCCKF. In terms of cost of running
time, although the overhead of the GMCKF is larger than that
of MCKF, it has the similar complexity to KF.

TABLE 1. Comparison of RMSE and cost values under three typical
scenarios (RMSE (m), cost (∗ × 10−4s)).

C. PRACTICAL LOCALIZATION PERFORMANCE
In this section, we apply ranging results of GMCKF to dif-
ferent localization algorithms, that is, trilateration localiza-
tion, maximum likelihood localization (ML), and total least
squares (TLS). And, the validity of GMCKF algorithm is
verified by the practical scenario.

FIGURE 16. Localization accuracy of ML with KF and GMCKF algorithms.

As is shown in Fig.16, the factory field is 44m ∗ 24m. The
four anchor nodes are located in the corner of region which

are (−10m, 0m), (10m, 0m), (−10m, 40m), (10m, 40m) and
represented as four blue disks. The gray boxes are the devices.
The whole scenario is equivalent to above scenario 3 above
which has NLOS and LOS conditions. The tag node which
moves with uniform speed communicates with four anchor
nodes at each moment.

FIGURE 17. RMSE of localization for three algorithms.

TABLE 2. RMSE of Localization performance with KF and GMCKF (m).

Fig.16 indicates GMCKF algorithm can effectively elimi-
nate the errors of the NLOS condition and make localization
results closer to the actual location. ML localization with
GMCKF has better performance than that with KF at some
times. Fig.17 also shows that RMSE of three different local-
ization algorithms with GMCKF has smaller errors. ML and
TLS show the same performance with GMCKF. The localiza-
tion errors of three different algorithms with GMCKF is less
than 0.05m. However, some localization errors of the three
different algorithms with KF are greater than 0.3m which
cannot be ignored. Table 2 also shows that GMCKF is more
robust than KF with three common localization algorithms.
GMCKF can effectively deal with all kinds of scenarios.

VI. CONCLUSION
Aiming at the problem that the ranging accuracy of UWB
is significantly affected by NLOS errors, we propose the
generalized maximum correntropy Kalman filter (GMCKF)
algorithm by using GMCC as the cost function. When the
ranging results contain large outliers, GMCC can effectively
suppress the gain matrix in Kalman filter, and then ensure
smoothing filtering. GMCKF is applied to the typical indus-
trial factory, and the steady-state performance of GMCKF
is proved. Finally, we verify that this proposed algorithm is
superior to KF, MCKF and MCCKF in the industrial envi-
ronment.
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