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ABSTRACT In this paper, we used electroencephalography (EEG)-eye movement (EM) synchronization
acquisition network to simultaneously record both EEG and EM physiological signals of the mild depression
and normal controls during free viewing. Then, we consider a multimodal feature fusion method that can
best discriminate between mild depression and normal control subjects as a step toward achieving our long-
term aim of developing an objective and effective multimodal system that assists doctors during diagnosis
and monitoring of mild depression. Based on the multimodal denoising autoencoder, we use two feature
fusion strategies (feature fusion and hidden layer fusion) for fusion of the EEG and EM signals to improve
the recognition performance of classifiers for mild depression. Our experimental results indicate that the
EEG-EM synchronization acquisition network ensures that the recorded EM and EEG data require that both
the data streams are synchronized with millisecond precision, and both fusion methods can improve the mild
depression recognition accuracy, thus demonstrating the complementary nature of the modalities. Compared
with the unimodal classification approach that uses only EEG or EM, the feature fusion method slightly
improved the recognition accuracy by 1.88%, while the hidden layer fusion method significantly improved
the classification rate by up to 7.36%. In particular, the highest classification accuracy achieved in this paper
was 83.42%. These results indicate that the multimodal deep learning approaches with input data using a
combination of EEG and EM signals are promising in achieving real-time monitoring and identification of
mild depression.

INDEX TERMS EEG, eye movement, mild depression, network, classification, multimodal deep learning.

I. INTRODUCTION
Depression is one of the most common mental illnesses,

affecting more than 350 million people worldwide [1]. The
World Health Organization (WHO) lists depression as the
fourth most significant cause of disability in the world,
in particular, depression increases the risk of suicide by
about 20 times, resulting in up to 850,000 deaths per year
[2]. In addition, new data indicate that the prevalence of
depression may be on the rise, especially among college
students [3]. Ibrahim et al. suggested that the depression rate
in college students was between 10% and 85% [4]. However,
although depression is a common mental illness, its diagnosis
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is difficult owing to subjective biases associated with self-
reports and clinical opinions [5]. There is no objective method
to diagnose depression because of the absence of dedicated
laboratory tests to do so. It has been observed that, in the
daily life of individuals, mild depression is more common
than depression, and increase in severity over time [6].
Nevertheless, compared with depression, researchers have
paid less attention to studies on mild depression [2]. To our
knowledge, only few studies have provided effective detec-
tion methods for mild depression [7]. Thus, developing
a method that can objectively and effectively detect mild
depression in individuals to help them manage it by taking
precautions and to avoid it from evolving into major depres-
sion is an urgent requirement.
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A. RELATED WORK

At present, computer scientists globally are increasingly
interested in using physiological signals for depression
recognition [8]. Electroencephalography (EEG), an objective
and reliable method for the evaluation of brain function,
is often used in depression [9]. The advantages of EEG
include high sensitivity, relatively low-cost, and conve-
nience of recording [7]. Considering this, recently, several
researchers have explored the use of EEG for depression
recognition. Bachmann and Lass studied depression detection
based on the analysis of single channel short-term EEG
signals; in this study, the researchers achieved a classifi-
cation accuracy of 76.5% and 70.6% using the spectral
asymmetry index (SASI) and detrended fluctuation analy-
sis (DFA), respectively [10]. Hosseinifard et al. used the
power spectrum of three frequency bands (alpha, beta, and
theta) as well as whole bands of the EEG signals as fea-
tures; they studied the performance of different classifica-
tion techniques to identify depression patients from normal
subjects. Their results indicated that classification accuracies
of 71.7% and 88.6% can be achieved using the Support
Vector Machines (SVM) approach without and with feature
selection, respectively [11].

Furthermore, aside from EEG signals, eye movements
(EM) data can be used to identify the focus of users’ atten-
tion, in order to determine their subconscious behaviors [12].
Moreover, in recent times, EM data are more readily available
and accessible than in the past; not only are EM data being
used in several areas of medicine, but also their popularity is
growing among researchers from different disciplines [13].
Emslie er al. [14] studied the EM signals of depressed chil-
dren and normal control; they observed that the rate of EM
is slower in children with depression than in normal control.
Duque and Vazquez [15] found a dual attention bias in clini-
cal depression patients when watching positive and negative
emotional faces. Alghowinem et al. [16] used simple machine
learning classification algorithms to analyze the EM signals
extracted from face videos; their results showed that using
the low-level features of EM led to an accuracy of 70% when
a hybrid classifier of Gaussian Mixture Models and SVMs
were used, whereas an accuracy of 75% was achieved when
using statistical measures with SVM classifiers.

Although most researchers have studied single modality,
there is increasing interest in using different modalities to
handle information. Gupta et al. [17] suggested that the signal
from single modality provided only partial information, while
a combination of different modality signals can be used to
form a more realistic model for recognizing depression than
the former. Said er al. [18] exploited the intra- and inter-
correlation among multiple modalities to achieve efficient
classification. Furthermore, many researchers have analyzed
data of different modalities using deep learning approaches
to exploit the correlation of data from the multiple modal-
ities [18]. Said et al. [18] and Ngiam et al. [19] proposed a
multimodal deep learning approach for cross modality feature
learning from video and speech data. Said ef al. [18] and
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Srivastava et al. [20] developed a multimodal deep belief
network to learn multimodal representation from image and
text data for image annotation and retrieval tasks. In addi-
tion, in another study, researchers designed a deep Boltz-
mann machine based architecture to extract a meaning-
ful representation from multimodal data for classification
and information retrieval tasks [18], [21]. Said et al. [18],
Hinton and Salakhutdinov [22], and Liu et al. [23] proposed
a multimodal autoencoder approach for video classification
based on audio, image, and text data, and Said et al. [18]
proposed a multimodal autoencoder approach for joint
EEG-EMG data compression and classification.

Further, multimodal depression detection has also attracted
significant attention from researchers [24], [25]. Several stud-
ies have been conducted to identify depression based on
voice [26]-[28], event-related potential [29], facial expres-
sions [30], [31], EEG [7], [32] and EM [3], [33]. Though
these data might seem quite different, these can be used to
describe the same phenomena [18]. For example, in case
of a depressed person, when a stimulus is presented, voice
data showed a longer response time and lower pronuncia-
tion rate, while EM data showed increased blink rate and
longer average blink duration [34]; thus, it is considerably
likely that both modalities are correlated. Nevertheless, each
modality has its own advantages. It seems obvious that mul-
timodal fusion of different modalities can improve classifi-
cation performance, because it provides more useful infor-
mation compared with using only a single modality [34].
Williamson et al. [35] fused speech features with facial action
unit features using the score fusion method, which yielded
good results for predicting depression severity in patients.
Scherer et al. [36] proposed a depression recognition method
based on fusion of audio and visual features; their results
indicated that the fused modalities approach significantly out-
performed the use of individual modalities, resulting in a 90%
accuracy (compared with the individual accuracies of 51%
and 64% for acoustic and visual modalities, respectively).
Meng et al. [37] investigated the fusion of facial and vocal
expressions, and used a weighted sum decision fusion; their
result showed a slight improvement compared with individual
channels.

B. OUR WORK

To our knowledge, there is no prior work reported in the
literature related to depression recognition based on multi-
ple physiological signals using multimodal deep learning.
In addition, although there is a fast growing interest in the
use of co-registration of EEG and EM during free viewing,
few researchers focus on the issues that stem from the tem-
poral alignment of EEG and EM data recorded with dif-
ferent devices. In fact, accurate time synchronization is a
basic requirement for simultaneous analysis of EEG and
EM data. In this study, we used an EEG-EM synchroniza-
tion acquisition network that allowed us to simultaneously
record both the EM and the EEG physiological signals of
mild depression and normal controls during free viewing.
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FIGURE 1. The framework of our experiment processing.

The long-term objective of our proposed approach based
on the EEG-EM synchronization acquisition network is to
offer a promising non-invasive method for automatic mild
depression assessment and develop an objective and effective
multimodal system in a classification framework to assist
medical personnel during the diagnosis and monitoring of
mild depression. In particular, we propose a new multimodal
data based mild depression recognition method using deep
learning techniques. There are four primary contributions of
our study. First, we used the EEG-EM synchronous acquisi-
tion network to ensure that the EEG and EM data recorded
simultaneously during the experiment were synchronized
with millisecond precision, which is the basis for meaningful
analysis of EEG and EM data. Second, we innovatively used
signal processing methods to process the EM feature of pupil
size, which was divided into five frequency bands, namely
delta (0 to 0.2 Hz), theta (0.2 to 0.4 Hz), alpha (0.4 To 0.6 Hz),
beta (0.6 to 0.8 Hz) and gamma (0.8 to 1 Hz), and for each
band, we extracted 14 features (12 non-linear and 2 linear
features). Third, in regard to the multimodal autoencoder,
we studied two feature fusion methods (Feature Fusion and
Hidden Layer Fusion) to achieve the fusion of EEG and
EM, and compared the differences in the improvement of the
classification performance of the two fusion methods. Finally,
we used the five bands (delta, theta, alpha, beta, and gamma)
as well as the whole band of EEG signals and discussed the
improvement of the classification results on using each band.
In addition, we used different feature selection algorithms
and different classification algorithms for data processing and
compared the classification accuracies in the case of different
classification algorithms.

The remainder of this paper is organized as follows.
In Section 2, we describe the autoencoder, denoising
autoencoder, and multimodal autoencoder. Section 3 presents
our EEG-EM synchronization acquisition network, experi-
mental design, data pre-processing, feature extraction, feature
selection, and classification algorithms. The experimental
results and our analyses are discussed in Section 4.
Section 5 includes an overall discussion of our study. Finally,
our conclusions and information regarding future work are
provided in Sections 6 and 7, respectively.
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Il. METHODS

The framework of our experiment processing is shown in
Figure 1. For EEG and EM data, we performed preprocessing,
feature extraction, feature selection operations. In addition,
we considered the classification of unimodal EEG and uni-
modal EM based on autoencoder, and applied the two fusion
strategies (Feature Fusion and Hidden Layer Fusion) combin-
ing EEG signals and EM data based on multimodal denoising
autoencoder.

A. DATA PREPROCESSING

In our study, the EEG data were recorded using Geodesic
128 electrodes; however, owing to time performance and
computational efficiency considerations, we only used
16 electrodes (Fpl, Fp2, F3, F4, F7, F8, C3, C4, T3, T4,
P3, P4, TS5, T6, O1, O2) according to International Standard
10/20 systems in reference to Cz. In addition, the selection
of these electrodes was based on previous studies related to
depression in which these electrodes were used extensively
[11], [38], [39]. The recorded EEG data were exported to
a MATLAB file format using Net Station software. Next,
we removed the bad channels and performed baseline cor-
rections. Given that the signal between two trials was not
valid, each subject’s continuous EEG signals were divided
into 30 segments based on the TTL marks in time series,
with each segment being 6 s long. For noise reduction, all
EEG signals were filtered using a high-pass filter with a cut-
off frequency of 1 Hz and a low-pass filter with a cut-off
frequency of 40 Hz. Net Station Waveform Tools were used
to discard artifacts due to EM and muscle activity. Ocular
artifacts (OAs) occur in the frequency band of 0-16 Hz,
leading to their overlap with the alpha rhythm frequency
band of 8-13 Hz. FastICA [40] was used to eliminate these
OAs, as it has been shown to be effective in delineating
overlapping frequency bands [41]. MATLAB R2010a was the
data processing tool used in our study.

EM data were collected by the EyeLink 1000 Desktop
Eye Tracker with a remote camera (SR Research, Ontario,
Canada, 250 Hz). The EM data preprocessing methods
included performing two classic data mining methods,
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filling missing data, and data standardization. For example,
if the participant did not focus on the picture or blinked too
frequently, the eye tracking devices might lose capture and the
recorded data will have tuples with empty values; however,
there are different strategies to handle tuples with empty
values. If a tuple contains many attributes (more than 50% of
the attributes) with missing values, the tuple will be deserted.
Nevertheless, if a tuple contains only a few attributes (less
than 50% of the attributes) with missing values, the empty
value is filled by the mean or median. In practice, the average
value can be used in case of symmetric data distribution,
whereas the median value can be used in the case of skewed
data distribution [42]. In our study, records with more than
50% of the values missing were abandoned; in addition,
the mean value was considered as the missing value for
data completion. Furthermore, the measurement unit used
can affect data analysis. In general, expressing an attribute
in smaller units will lead to a larger range for that attribute,
leading to a higher “weight” or “effect” of such an attribute.
To avoid dependence on the selection of measurement units,
the data should be normalized. Here, we used the z-score
normalization method to do so before the analysis.

B. FEATURE EXTRACTION

After the raw EEG data were segmented, a Hanning filter
was used to filter out five frequency bands, namely delta
(14 Hz), theta (4-8 Hz), alpha (8—14 Hz), beta (14-31Hz),
and gamma (3140 Hz) for further feature extraction. In par-
ticular, we calculated 10 linear features such as maximum
power, variance, and sumpower. In addition, 12 nonlinear
features were extracted based on previous studies: Approx-
imate Entropy (ApEn), Lempel-Ziv. Complexity (LZC),
Kolmogorov Entropy (Kol), Permutation Entropy (Per_en),
Correlation Dimension (CD), Lyapunov Exponent (LLE),
CO-complexity (CO0), Singular-value Deposition Entropy
(SVDen), Shannon Entropy, Min-entropy, Hartley Entropy,
and Spectral Entropy [38], [39], [43]-[46]. Therefore, a total
of 1760 features was considered (22 EEG features x5 fre-
quency bands x 16 electrodes).

For the preprocessed EM data, first, we used signal pro-
cessing methods to handle the pupil size feature. In particular,
we used the EDF2ASC software to convert EDF files (source
file recorded by EyeLink 1000 Desktop Eye Tracker) to ASC
files; to extract pupil size signal data in the form of ASC files.
Thus, the preprocessing method used for pupil size signal
data was the same as that used for EEG signals. In particular,
we filtered out five frequency bands, namely delta (0-0.2 Hz),
theta (0.2-0.4 Hz), alpha (0.4-0.6 Hz), beta (0.6-0.8 Hz)
and gamma (0.8—1 Hz), and extracted 12 nonlinear features
(consistent with EEG) and two linear features (power spectral
density mean and power spectral density variance) for each
band. Second, we exported 16 traditional features available
in the EyeLink Data Viewer software, including blink_count,
ave_blink_duration, and fixation duration average, among
others. In particular, the EyeLink Data Viewer is a tool
that allows users to display, filter, and create output reports
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from EyeLink 1000 EDF data files. Thence, we extracted a
total of 86 EM features (5 frequency bands x14 features +
16 traditional features).

C. FEATURE SELECTION

Classifiers tend to yield unsuitable results when the num-
ber of training samples is less than the number of feature
vectors [47]; thus, feature selection is used to over-
come this issue. In our study, we have 1760-dimensional
EEG features, therefore, it is necessary to perform fea-
ture selection. Based on some previous studies, we used
five common search algorithms implemented in WEKA
(version 3.8.1): BestFirst (BF) [48], GeneticSearch (GS) [49],
RankSearch (RS) [50], LinearForwordSelection (LFS) [51],
and GreedyStepwise (GSW) [49], based on correlation fea-
tures selection (CFS) [52].

D. MULTIMODAL DENOISING AUTOENCODER

1) AUTOENCODER

An autoencoder (AE) is a special type of neural net-
work, which generally comprises two parts, an encoder
h = f(Wx + b) and a decoder that produces a reconstruction
r = g(Wh + b'). The encoder converts the data vector set x
to a hidden representation h by activating the function f, and
the decoder rebuilds the data r using the hidden function h.
The autoencoder shown in Figure 3 consists of three layers.
First, the data are fed to the input layer; then, the encoder
converts the data vector to a hidden layer h by activating the
function f. Finally, the decoder rebuilds the data r using the
hidden function h in reconstruction layer [53].

2) DENOISING AUTOENCODER
The denoising autoencoder (DAE) was proposed by
Vincent et al. [54] in 2008. It is based on the autoencoder;
however, noise is added to the input data to prevent problems
of overfitting. It is trained to predict the original undamaged
data as the output. This approach leads to increased robust-
ness and generalization in the learning model.

First, the initial input x is corrupted into x’ by mapping (1).

x' ~ gD(x'|x) (H
The corrupted input x” is then mapped to the hidden layer,

as in the case of the basic autoencoder. In particular, the cor-
rupted input x’ is mapped to the hidden representation (2).

y =fo (x') = s(Wx" +b) 2

From this, we then reconstruct (3).
z=fy =s(Wx' +b) 3)
The parameters 6 and 6’ are trained such that the average

reconstruction error is minimized. The complete process in
the case of a denoising autoencoder is shown in Figure 2 [53].
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FIGURE 2. Schematic structure of a denoising autoencoder.
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FIGURE 3. Schematic structure of an autoencoder.

3) MULTIMODAL DENOISING AUTOENCODER

In order to improve the recognition accuracy of mild depres-
sion by fusing EEG and EM data, we used a multimodal
denoising autoencoder (MDAE) to learn a shared represen-
tation (high- level features) of EEG and EM data [55].

In particular, in the training step, we used two structures as
shown in Figure 4. In the first structure, the features selected
from both EEG signals and EM were directly linked in a
record, and then input into the autoencoder to generate a
shared representation (hidden layer). Finally, an unsupervised
back-propagation algorithm was used to fine-tune the weights
and biases of the autoencoder. In the second structure,

EEG features
|. ® - 00 |

EM features

h(EEG&EM) | W2

[ o0 .I AN ] reprigg;:::tion
(00 oolee o]
(00 -0o0] (00  -00]

EM features EEG features

(2)

first, we input the EEG and EM features individually into the
autoencoder to generate two hidden layers. Then, we directly
linked the EEG hidden layer with the EM hidden layer to syn-
thesize a new shared representation. Finally, we used unsu-
pervised back-propagation algorithms to fine-tune weights
and biases of the autoencoder.

E. CLASSIFIERS
It is well known that there is no universal classification
method that yields the best performance for all applications;
therefore, it is often useful to consider different methods.
In particular, we need to take into account the computation
time, flexibility, and complexity of different classification
methods, as well as the applications they were used for in
other studies [7], [11], [39]. Therefore, we selected different
classifiers to classify the data, namely the Linear SVM [56],
Radial Basis Function SVM (RBF SVM) [56], Gradient
Boosting Decision Tree (GBD tree) [57], Random Forest
(RF) [58], Self Normalizing Neural Networks (SNN) [59],
and Batch Normalized Multilayer Perceptron (BNMLP) [60].
In research involving the application of classification algo-
rithms to the recognition of human mental states (such
as emotions, mental disorders and motor imagery), two
basic schemes for classification exist: subject-dependent and

EEG features
(0@ ---00]

Wy

EM features

(0@ --@ 0]

Shared
representation

_______________________

(e® 0] (0@ --@
Wiy / \Wz
(00 -0 0] (0@ -0 0]

EM features EEG features

(b

FIGURE 4. Schematic structure of a multimodal denoising autoencoder. (a) Structure of feature fusion. (b) Structure of hidden layer fusion.
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subject-independent strategies. The subject-dependent algo-
rithms require a classifier to be trained for each subject,
whereas subject-independent algorithms train the classifier
using data from several subjects [61]. It should be noted that
depression recognition is considered a subject-independent
classification case.

In regard to subject-independent classification, a crucial
rule must be followed for the selection of training and test
data. To eliminate the effect of individual difference on clas-
sification results, the training and test data need to be divided
based on subjects, i.e., samples from the same subjects should
not be used as both training data and test data, as this will lead
to a falsely high classification accuracy.

Thus, in order to avoid a falsely high classification
accuracy, we used a subject-independent scheme as well
as the leave-one subject-out cross-validation method for
classification.

IIl. EXPERIMENT

A. SUBJECTS

Fifty-one college students (36 males, 15 females) from
Lanzhou University (Lanzhou, Gansu, China), aged between
18 and 24, participated in this study. All the participants
were right-handed with normal or corrected-to-normal vision
and had no prior history of psychopathology. Before the
experiment, the participants were asked to complete the
Beck Depression Inventory Test IT (BDI-II) [62]. BDI-II is a
widely used instrument that provides information on the pres-
ence and severity of depressive symptoms and can be used
for diagnostic purposes, clinical decision making or eval-
uation of treatment effects. All subjects signed informed
consent before the experiment and received rewards for
participating in it. Our experiment was approved by the
Ethics Committee of Lanzhou University Second Hospital
(No. 2015 A -037).

In particular, 24 subjects (6 females, 18 males) with BDI
scores of 14-28 were considered to have mild depression,
while 27 subjects (9 females, 18 males) with BDI scores
below 14 were considered normal. After removing some
bad data due to EM calibration failure or head movement,
we selected 19 subjects (14 males, 5 females) from the nor-
mal group and 20 subjects (14 males, 6 females) from the
mild depression group to balance the sample size of the two
groups. Basic data of the mild depressive and normal control
groups are shown in Table 1.

TABLE 1. Basic information of the mild depression group and normal
control group.

Mild depression Normal control

Cases(n) 20 19
age 21.1+1.95 20.11£2.07
BDI-II(means + S.D) 18+3.56 4.74+3.04
Sex
Male 14 14
Female 6 5
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B. STIMULI AND DEVICES

In our work, the stimuli used in the experiment were derived
from the Chinese Affection Image System (CFAPS) [63].
We selected 45 neutral faces and 15 negative pictures includ-
ing 3 angry faces, 3 sad faces, 3 surprised faces, 3 disgusted
faces, and 3 frightened faces, from the CFAPS.

EEG data were collected with a 128 channel HydroCel
Geodesic Sensor Net (HCGSN) and used a signal amplifier
provided by EGI. The data collection software was Net Sta-
tion, with the sampling frequency set as 250 Hz, and electrode
impedance maintained below 60 k2 [64]. EM data were
collected by the EyeLink 1000 Desktop Eye Tracker using
a remote camera (SR Research, Ontario, Canada, 250 Hz).
It should be noted that we only recorded the EM from the
left eye of the subjects, because both eyes have the same
movement pattern in the case of individuals without eye
diseases.

In order to realize synchronous acquisition of EEG and EM
data, we used the TTL signal pulse to send a corresponding
TTL signal to Net Station when the EyeLink program exe-
cuted certain steps.

C. EEG-EM SYNCHRONIZATION ACQUISITION NETWORK
In this study, we used an EEG-EM synchronization acqui-
sition network that allowed us to simultaneously record both
the EM and the EEG physiological signals of mild depression
and normal controls during free viewing. However, mean-
ingful analyses of simultaneously recorded EM and EEG
data requires that both data streams are synchronized with
millisecond precision, so the use of this method involves
challenges such as precise synchronization between EM and
EEG data. There are at least three ways to synchronize both
systems, as shown in figure 5 [65].

[Tt
T
P : o analog output
—~ s :
EEG STIM ET
............................ ‘
o messages

o triggers

FIGURE 5. Three methods to synchronize both systems: 1. Shared triggers:
trigger pulses are sent frequently from the stimulation computer to both
eye tracking computer and EEG recording computer. 2. Messages +
triggers: triggers are still sent to the EEG, and messages are used as the
corresponding events for the eye tracking. 3. Analogue output: a copy of
the eye track is fed directly into the EEG. A digital-to-analogue converter
card in the Eye tracking outputs (some of) the data as an analogue signal.
With SMY, this signal can be fed directly into the EEG headbox.
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TABLE 2. Unimodal eeg classification results on neu_block.

Accuracy % (mean =+ std. dev.)

Classifiers Delta Theta Alpha Beta Gamma All
Linear SVM 62.39+0.82 74.87+0.54 75.04+1.18 67.86+9.50 63.59+3.82 80+0.31
RBF SVM 47.69+0.83 73.33+14.97 76.41+0.81 74.19+£2.55 59.32+0.38 81.03+1.02
GBD Tree 49.40+1.35 67.52+1.19 75.73+1.05 71.62+2.85 72.48+3.88 75.04+1.67
RF 51.28+1.25 66.67+0.70 75.21+0.67 70.09+3.48 67.52+3.35 72.48+0.86
SNN 55.04+1.36 68.72+10.10 68.21+1.61 68.72+3.99 55.73+1.08 75.38+1.70
BNMLP 53.33+2.84 58.46+6.72 68.72+2.93 68.72+3.33 60.17+3.39 79.32+1.57

Bold indicates the highest classification accuracy obtained among all the algorithms in the Neu_block

TABLE 3. Unimodal eeg classification results on emo_block.

Accuracy % (mean =+ std. dev.)

Classifiers Delta Theta Alpha Beta Gamma All

Linear SVM 52.1442.01 76.58+0.25 60.85+1.80 70.43+0.82 64.44+1.85 76.92+1.53
RBF SVM 41.710.97 75.5620.11 57.09+1.87 70.26+0.77 66.15+0.74 65.81+0.71
GBD Tree 51.7942.33 67.01£1.89 63.08+1.42 68.2142.68 68.0342.22 60.51£1.12
RF 52.14+0.62 65.47+1.03 63.930.95 66.67£1.75 66.5041.54 59.83+1.32
SNN 50.94+1.91 73.3320.52 59.4942.62 69.402.61 68.21%1.17 56.41%1.66
BNMLP 50.09+2.19 72.82+1.21 52.8242.23 65.81+2.24 67.01+2.63 59.15+1.69

Bold indicates the highest classification accuracy obtained among all the algorithms in the Emo_block

The first method is called “Shared triggers”. Trigger
pulses are sent frequently from the stimulation computer to
both eye tracking computer and EEG recording computer.
This is achieved via a Y-shaped cable that is attached to the
parallel port of the stimulation computer and splits up the
pulse so it is looped through to EEG and ET. The disadvantage
of this method is the need for an extra cable. And the second
method is called “Messages + triggers’. Messages are short
text strings that can be inserted into the eye tracking data.
Triggers are still sent to the EEG, and messages are used
as the corresponding events for the eye tracking. The eye
tracking computer is given a command to insert an ASCII
text message into the eye tracking data. The third method
is called “Analogue output”. A copy of the eye track is
fed directly into the EEG. A digital-to-analogue converter
card in the Eye tracking outputs (some of) the data as an
analogue signal. With SMI, this signal can be fed directly
into the EEG headbox. This requires a custom cable and
resistors to scale the output voltage of the D/A converter to
the EEG amplifier’s recording range. However, this method
has some disadvantages. For example, the quality of the
eye tracking signal suffers considerably from the D/A and
subsequent A/D conversion, and the eye tracking signal may
exceed the amplifier’s recording range. Therefore, we use the
second synchronization method, the flow of which is shown
in Figure 6 [65].
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D. PROCEDURE

Our experiment was conducted in a light-dimmed, sound-
attenuated and comfortable environment. EyeLink 1000 was
paired with a 17-inch display with a resolution of 1024 x 768.
The participants’ eyes were kept at a distance of approxi-
mately 60 cm from the monitor and 60 cm from the eye
tracker. A joystick with a fixed chin rest was used to keep the
participants’ heads steady. Before the experiment, calibration
was performed to ensure that the eye tracker could capture the
pupil and record the EM data accurately. We achieved an error
of below 0.5° in our experiment. In addition, to guarantee
the effectiveness of the experimental process, four practice
trials were conducted, which followed the same procedure
as the actual trials, to ensure that participants understood the
experiment procedure before beginning the experiment.

The entire experiment consisted of a total of two blocks,
Neu_block and Emo_block, and each block contained
15 trials adding up to a total of 30 trials. The participants were
asked to view them freely and were allowed to close their
eyes to relieve visual fatigue after finishing each consecutive
block. In Neu_block, each trial contained two pictures of
neutral facial expressions, while in the Emo_block, each
trial contained one neutral and one negative facial expression
picture. Each picture appeared randomly on the left or right
side of the screen. The two facial expressions in each trial
were combined into one image and presented on the screen
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FIGURE 6. EyeLink Display PC displays stimuli via e-prime software, and EM and EEG signals are
recorded by EyeLink Host PC and EEG computer respectively. The two systems were coupled by sending
a synchronization signal (TTL trigger) as soon as the stimulus was presented on the monitor. The
synchronization signals enabled the EM and EEG data to be recorded simultaneously and produced an

accurate timestamp matching the offline data.

FIGURE 7. Example picture of the Neu_block (left) and Emo_block (right).

for 6 s with a black background, followed by a black back-
ground for 2 s. All 30 images were processed using Photoshop
software and the size, gradation and resolution were changed
accordingly for uniformity(i.e. image size 1280 x 738 pixels;
10.84 x 6.25 cm). Examples of the Emo_block and
Neu_block are shown in Figure 7.

IV. RESULTS

For each subject, 30 samples were recorded, including
15 samples from the Neu_block and 15 samples from
the Emo_block. Therefore, a total of 1,170 samples were
recorded from 39 subjects (19 normal control subjects 420
mild-depression subjects). We performed the five feature
selection algorithms described above (BestFirst, Genetic
Search, Greedy Stepwise, Linear Forward Selection, and
Rank Search) on the EEG and EM features. Our results
indicated that the five algorithms could perform effective fea-
ture selection and significantly improved the data processing
results. Relatively speaking, the BestFirst algorithm led to the
best performance; the selected features are listed in Table 4.
Therefore, we only show the processing conditions based on
the features selected using the BestFirst approach.

A. DEPRESSION RECOGNITION BASED ON UNIMODAL
AUTOENCODER

Single modal data were used as the input of the uni-
modal autoencoder to generate a shared representation of
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TABLE 4. Features selected using the bestfirst algorithm.

Block1

EM 9: saccade amplitude
maximum, saccade amplitude
standard deviation, saccade
latency average, saccade
latency maximum, p0_c,
apen_a, psd std a,p0 e, pl a

Block2
7: saccade amplitude
maximum, saccade latency
average, saccade latency
maximum, pl_c, pl_b, apen_a,
psd std e

EEG | 35:cOcomplex_22,
kolmgolov_52, PPmean_83,
PPmean_124, mobility 9,
complexity 33,
complexity 108, f0_83,
lyapunov_24, hartley 33,
singular 22, permutation 96,
min-entropy_58 ...

49: ApEn_33, cOcomplex_36,
PPmean_83, meanSquare_104,
mobility 9, complexity 92,
f0_92, order 24, lyapunov_70,
hartley 45, permutation_58,
min-entropy 83, singular 96,
spectral 70 ...

EEG features are denoted as <feature name>_<channel number>

the EEG or EM data (hidden layer), and each classifier was
trained using the shared representation generated from the
denoising autoencoder network.

1) EEG-BASED UNIMODAL DEPRESSION RECOGNITION

In the two blocks (Neu_block and Emo_block), delta, theta,
alpha, beta, gamma, and the whole band were respectively
input into an autoencoder to generate a shared representa-
tion (hidden layer) which was then used as the input of the
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TABLE 5. Classification results of feature fusion on neu_block.

Accuracy % (mean =+ std. dev.)

Classifiers

DeltatEM Thetat+tEM Alpha+EM BetatEM Gamma+EM All+EM
Linear SVM 77 4442 22 81.88+4.09 76.44+6.73 $2.05+0.21 79.32+4.58 81.88+0.19
RBF SVM 63.08+1.22 56.92+3.67 62.1249.97 57.44%12.01 57.78+0.37 67.25+12.02
GBD Tree 70.2642.24 76.75+1.52 74.43%1.50 74.87+1.46 75.73+1.76 73.16+1.63
RF 69.57+1.59 71.45+0.81 71.25+0.52 71.45+1.25 71.2840.65 71.97+0.37
SNN 70.26+1.34 66.84+2.16 72.00+2.67 65.81+6.80 69.06+1.64 73.9146.16
BNMLP 70.94+1.79 68.03+3.19 67.93+2.87 66.32+1.81 64.10£0.95 68.99:+4.68

Bold indicates that the fusion results are higher than the result of the unimodal EEG and unimodal EM classification.

TABLE 6. Classification results of feature fusion on emo_block.

Accuracy % (mean =+ std. dev.)

Classifiers

DeltatEM Theta+tEM Alpha+EM BetatEM Gamma+EM All+EM
Linear SVM 73,160.58 72.14+4.07 72.3142.00 72.3143.47 70.7742.67 70.09+5.21
RBF SVM 74.0240.26 74.0240.43 74.02+0.08 74.02+0.20 74.0240.21 74.0243.17
GBD Tree 71.79+1.79 75.73+1.43 73.33£3.22 72.48+1.97 78.46+1.60 76.75+1.93
RF 72.82+0.86 72.48+1.15 72.3122.00 70.94+2.38 73.85+0.54 76.24+0.92
SNN 73.68+1.40 75.38+0.67 74.53+0.61 73.1642.69 74.70+0.80 74.19+2.03
BNMLP 69.9142.40 72.3143.23 72.99+2.21 70.09+1.16 72.48+1.71 68.55+1.01

Bold indicates that the fusion results are higher than the result of the unimodal EEG and unimodal EM classification.

six classifiers. The mean accuracy and standard deviation of
the six classification results are listed in Tables 2 and 3.

It can be observed that EEG data from both blocks could
be used to effectively classify the mild depression from the
normal control, and the EEG data of the whole band per-
formed the best, with the highest classification accuracy and
smallest standard deviation among all cases. In particular,
it achieved the highest classification accuracy of 81.03% and
76.92% in the case of the Neu_block and Emo_block, respec-
tively. In the case of sub-band EEG data, theta and alpha in
the Neu_block showed good classification results reaching
classification accuracy values of more than 70% with the
highest value recorded at 76.41%. The performance of beta
and gamma bands were the second best, whereas the delta
band was the worst, with almost no effective result. The theta
band in the case of the Emo_block had a better classification
result, with the highest classification accuracy of 76.58%,
followed by alpha, beta, and gamma bands, whereas the delta
band had the worst result, in that it could hardly classify the
data effectively.

2) EM-BASED UNIMODAL DEPRESSION RECOGNITION
Following the same procedure as in the case of EEG data
processing, the mean accuracy and standard deviation of the
five classification results for EM data were processed, which
are listed in Table 7.
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As can be seen from the table, in the case of EM data,
the six classification algorithms could effectively identify
mild depression for both blocks. In particular, the linear SVM
achieved the highest accuracy of 80.17% in the case of the
Neu_block with a standard deviation of 4.40%, whereas the
highest accuracy in the case of the GBD Tree was 77.44% for
the Emo_block with standard deviation of 2.53%.

B. BIMODAL FUSION DEPRESSION RECOGNITION

In our study, two feature fusion methods based on the bimodal
autoencoder were used for data fusion; the results for this are
discussed in detail in the following subsubsections.

1) FEATURE FUSION

For the Feature Fusion method, we directly linked features
from EEG signals of each band and EM features selected
using the BestFirst approach together, which were then used
as the input for the autoencoder. The structure of the autoen-
coder used is shown in Figure 4(a). The mean accuracy
and standard deviation of the six classification results with
Feature Fusion are listed in Tables 5 and 6.

We observed that in the case of both the blocks, after
the fusion of EEG (delta, theta, alpha, beta, gamma, and
all bands) and EM features, the results obtained using
some of the classification algorithms and some EEG
bands led to better performance than the unimodal results;
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TABLE 7. Unimodal em classification results.

Accuracy % (mean =+ std. dev.)

Classifiers Neu_block Emo_block
Linear SVM 80.17 £4.40 71.79 £ 0.40
RBF SVM 60.51 £1.38 7436 £0.14
GBD Tree 77.26 £0.85 77.44 £2.53
RF 73.16 £0.40 74.36 £ 1.36
SNN 68.89 +£0.83 72.82 +0.40
BNMLP 69.91 +£0.93 71.45+£2.71

Bold indicates the highest classification accuracy obtained in all
algorithms in the case of both the Neu_block and Emo_block

however, no obvious rules were determined for specific
classification algorithms and bands. In particular, in the
Neu_block, after the fusion of the beta band and EM, the
highest classification accuracy of 82.05% was achieved using
the Linear SVM, with a standard deviation of 0.21%, whereas
in the case of the Emo_block, after the fusion of the gamma
band and EM, the GBD Tree approach led to the highest
accuracy of 78.46%, with a standard deviation of 1.60%.
It is noteworthy that in the Emo_block, after the fusion of
the EEG (delta, theta, alpha, beta, gamma, all) and EM fea-
tures, the classification performance in the case of the SNN

TABLE 8. Classification results of hidden layer fusion on neu_block.

algorithm was better than the performance of the unimodal
EEG or unimodal EM; however, it must also be noted that
there was a case where the bimodal classification was worse
than the unimodal classification. However, not every band
in the EEG data fused with EM would be better than single
mode classification in case of each classification algorithm,
in general, the feature fusion strategy performed better than
the unimodal classification, leading to satisfactory results.

2) HIDDEN LAYER FUSION

In this feature fusion method, we input the EEG and EM fea-
tures selected using the BestFirst algorithm separately into an
autoencoder to generate a shared representation of the EEG
and EM, and then linked the shared representation of the two
modes together, as the input of the classifiers. The structure
of the autoencoder used in this case is shown in Figure 4(b).
The mean accuracy and standard deviation values of the five
classification results with Hidden Layer Fusion are listed in
Tables 8 and 9.

As can be seen from Tables 8 and 9, in both the blocks,
after the fusion of the EEG (delta, theta, alpha, beta, gamma,
all) hidden layer and EM hidden layer, the classification
performance significantly improved. In particular, in the
Neu_block, the alpha band fused with EM data could effec-
tively improve classification performance in the case of all
classification algorithms, achieving the highest classification

Accuracy % (mean + std. dev.)

Classifiers Delta+EM Theta+EM Alpha+EM Beta+EM Gamma+EM Al+EM

Linear SVM 73.68£0.79 77.44%1.94 83.42+2.09 74.70+4.45 76.0743.53 80.1740.99
RBF SVM 68.21+0.26 65.81+1.98 78.80:0.32 73.3341.28 69.40+1.05 79.83+0.95
GBD Tree 76.41£1.27 72.65+1.81 79.66+2.39 75.38+1.61 73.5040.95 79.15+1.76
RF 72.48+1.48 73.33+1.49 76.58+2.48 75.73+0.25 73.85+1.21 74.53+0.95
SNN 72.14+1.30 73.33+3.22 78.29+2.44 74.19+1.68 74.19+1.65 77.95+2.04
BNMLP 66.50+1.65 71.28+2.27 76.92+1.30 73.16+1.75 68.89+2.61 77.0942.20

Bold indicates that the fusion results are higher than the result of the unimodal EEG and unimodal EM classification.

TABLE 9. Classification results of hidden layer fusion on emo_block.

Classifiers

Accuracy % (mean * std. dev.)

Delta+EM Theta+EM Alpha+EM Beta+EM Gamma+EM All+EM
Linear SVM 73.85+0.83 71.1120.68 73.85+0.92 79.490.79 79.15+0.74 77.26+0.96
RBF SVM 69.06+0.28 66.84+0.53 70.60:£0.49 75.90+0.98 80.85:+1.43 70.94+1.04
GBD Tree 73.33+1.25 75.04+0.56 77.61+2.38 77.95+1.44 79.83+0.57 72.14+1.34
RF 68.55+1.26 75.73+0.50 73.68+0.67 75.73+1.01 77.26+1.23 75.73+0.48
SNN 73.16+1.02 65.81+1.25 71.4542.48 75.66+3.11 76.24+1.28 73.33+2.32
BNMLP 70.22+0.72 72.14+1.74 74.02+1.39 72.14+2.28 75.38+0.75 70.09+1.95

Bold indicates that the fusion results are higher than the result of the unimodal EEG and unimodal EM classification.
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accuracy of 83.42% using the Linear SVM, with a standard
deviation of 2.09%. For the SNN classification algorithm, the
performance of each band fused with EM was better than
that of unimodal EEG or EM. Furthermore, in the case of
the Emo_block, classification performance of the beta and
gamma bands improved considerably for all classification
algorithms. After the fusion of the beta band and EM, Linear
SVM led to a classification accuracy of 79.49%; in con-
trast, after the fusion of the gamma band and EM, the RBF
SVM obtained the highest classification accuracy of 80.85%.
Compared with the Feature Fusion method, we observed that
the Hidden Layer Fusion method achieved a more significant
improvement in terms of classification.

V. DISCUSSION

A. WHICH CLASSIFICATION ALGORITHM LED TO THE
BEST PERFORMANCE?

In the case of Feature Fusion, the highest classification accu-
racy of 82.05% was achieved by the Linear SVM for the
Neu_block, while the GBD Tree approach led to the highest
classification accuracy of 78.46% for the Emo_block. In a
similar manner, in the Hidden Layer Fusion, the highest
classification accuracy of 83.42% was achieved by the Linear
SVM for the Neu_block, and the RBF SVM led to the high-
est classification accuracy of 80.85% for the Emo_block.
Considering this, the Linear SVM approach achieves the
highest classification accuracy in both fusion strategies; thus,
the Linear SVM was the best performing classification algo-
rithm. Furthermore, there is evidence that indicates that a
Linear SVM is often selected for classification if the data
size is insufficiently large, because a Linear SVM might be
beneficial in avoiding overfitting as well as realizing good
classification performance and robustness [66], [67].

B. WHICH EEG BAND FUSED WITH THE EM LED

TO THE BEST PERFORMANCE?

In the case of Feature Fusion, we did not find a specific band
that led to significantly better performance than any other
bands in terms of classification. However, in comparison,
the beta band led to a better classification accuracy of 82.05%
for the Neu_block, while the gamma band led to a better
accuracy of 78.46% for the Emo_block compared with the
other bands in both cases. In contrast, in the case of Hidden
Layer Fusion, the alpha band led to the best performance in
each classification algorithm in the case of the Neu_block;
in addition, the classification accuracy with fusion showed a
remarkable improvement compared with the unimodal classi-
fication results, achieving the highest classification accuracy
of 83.42%. The beta and gamma bands both performed better
in each classification algorithm in the case of the Emo_block,
and the classification accuracy with fusion was significantly
higher than the unimodal results; in particular, the gamma
band achieved the highest classification accuracy of 80.85%.
Therefore, the EEG bands that led to the best classifica-
tion performance were the alpha and gamma band in the
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Neu_block and Emo_block, respectively, which suggested
that the alpha and gamma bands were more strongly related
with the depression state of individuals. A number of studies
have reported the discovery that certain metrics on alpha
band of EEG can distinguish between depression and healthy
controls. Depressive patients display a greater frontal alpha
power value than control groups [68]. Another functional
connectivity study has shown that impaired functional con-
nectivity at EEG alpha frequency band in depression [69].
In addition, after a great quantity of studies on gamma oscilla-
tions, they were widely regarded as a crucial part in integrat-
ing distributed neural processes into highly ordered cognitive
functions, such as emotional processes [70]. Li et al. [71]
reported abnormal functional connectivity of EEG gamma
band in patients with depression during emotional face pro-
cessing. A recent report was published that individuals with
depression displayed sustained and increased gamma band
EEG power [72]. Our result was in agreement with previous
research findings.

C. COMPARISON OF PERFORMANCE IMPROVEMENT

BY TWO FUSION STRATEGIES

Hidden Layer Fusion performed better in terms of improve-
ment in the case of unimodal classification accuracy, whereas
Feature Fusion did not perform as well, and instead, per-
formed worse in the case of some EEG bands and clas-
sification algorithms. Moreover, the Hidden Layer Fusion
strategy also showed a smaller standard deviation, which
indicated that this model had better stability. Provost et al.
recommended that when evaluating binary decision prob-
lems, instead of using the accuracy results directly, Receiver
Operator Characteristic (ROC) curves should also be used as
they can indicate the model’s classification ability [73]. The
area under an ROC curve (AUC), has a value between 0 and 1;
the greater the AUC value, the better the classification ability
of the model. Therefore, we compared the accuracy of the
six classification algorithms and the ROC of the three better
classification algorithms in the case of these four methods
using the well performing alpha and gamma bands for the
Neu_block and Emo_block, respectively. This comparison
is shown in the Figure 8 and Figure 9. As can be seen from
the figures, in the case of the Neu_block, the fusion of
the alpha band and EM using the Hidden Layer Fusion
strategy significantly outperformed the unimodal EEG and
unimodal EM data with respect to classification accuracy
and AUC value. However, the Feature Fusion strategy did
not necessarily outperform the unimodal methods. In partic-
ular, in the case of the Emo_block, using the two feature
fusion strategies for gamma band and EM led to a better
improvement in classification performance than unimodal
classification. Thus, the improvement in the classification
on using the Hidden Layer Fusion is evidently better than
that of the Feature Fusion approach. Therefore, in summary,
the Hidden Layer Fusion of EEG and EM is more suitable for
the identification of mild depression than the Feature Fusion
approach. In a study by Ngiam et al. [19] that demonstrated
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FIGURE 8. Comparison of the classification results of the four methods considered in the alpha band for the Neu_block and gamma band for the

Emo_block.
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FIGURE 9. ROC of four methods in the alpha band for the Neu_block (a) and gamma band for the Emo_block (b). The shaded area in the graph is the
result of each measure, and the solid line in the shadow is the average result of five measures.

best published visual speech classification on AVLetters
using shared representation learning. Lu et al. [55] demon-
strated that the shared representations are good features to
discriminate different emotions by fusing EEG features and
EM features with bimodal deep autoencoders (BDAE). For
the SEED dataset, the BDAE model is better than other
feature merging strategies.

D. COMPARISON OF CLASSIFICATION RESULTS OF

THE TWO BLOCKS

In the case of the Neu_block and Emo_block, it can be
observed that unimodal EEG led to classification accuracies
of 79.69% and 76.27%, unimodal EM led to classification
accuracies of 76.24% and 74.09%, Feature Fusion led to
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classification accuracies of 82.05% and 78.46%, and Hidden
Layer Fusion led to classification accuracies of 83.42% and
80.85%, respectively. In addition, we found that the classi-
fication accuracy in the case of the Neu_block was always
higher than that of the Emo_block among these four clas-
sification results, which suggests that, the neutral face pic-
ture stimulus had better discrimination ability between mild
depression subjects and normal control subjects.

Other studies [74], [75] also found that depressed patients
showed a clear impairment in the recognition of neutral
facial expressions. In particular, depressed patients and con-
trols performed nearly identically when happy or sad faces
stimuli were presented; however, they performed differ-
ently in the case of neutral faces stimuli. Compared with
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controls subjects, depressed patients had lower awareness of
neutral faces stimuli, which was characterized by lower judg-
ment accuracy and longer response time. This observation
was consistent with the conclusion that the Neu_block data
could be used to better distinguish between mild depression
subjects and control subjects.

VI. CONCLUSIONS

Mild depression is a complex psycho-physiological phe-
nomenon; therefore, it is hard to establish a robust mild
depression recognition model using only a single modality.
Nevertheless, signals from different modalities can represent
different aspects of mild depression and can integrate com-
plementary information from these different modalities to
build a more robust mild depression recognition model com-
pared with the existing unimodal methods. Moreover, a major
advantage of deep learning models over traditional models
is the joint feature extraction and classification in a unified
network. However, meaningful analyses of simultaneously
recorded EM and EEG data requires that both data streams
are synchronized with millisecond precision. In this study, we
used an EEG-EM synchronization acquisition network that
allowed us to simultaneously record both the EM and the EEG
physiological signals of mild depression and normal controls
during free viewing.

With a long-term aim to develop an objective multimodal
system based on the EEG-EM synchronization acquisition
network to assists doctors during the diagnosis and monitor-
ing of mild depression, we investigated the mild depression
recognition performance of EEG and EM individually as well
as when fused. To develop a classification system-oriented
approach, in this study, we considered feature selection,
classification and fusion. We examined the performance of
two fusion strategies using several feature selection methods
as well as several classification algorithms. We found that
the features selected using the BestFirst algorithm showed
better results, and the Linear SVM classifier performed best.
Furthermore, on fusing EEG and EM using the two fusion
strategies, the ability to recognize mild depression is signifi-
cantly improved in most bands and classification algorithms.
Between the two fusion approaches used in our study, the
more effective and robust fusion method was the Hidden
Layer Fusion method, which led to an average accuracy
of 83.42%.

VII. LIMITATIONS AND FUTURE WORK

Even though it is a common problem in similar studies,
a known limitation is the relatively low number of both
depressed and control subjects. Because the data collection
work is ongoing, we anticipate on reporting on a larger dataset
in the future. Another limitation of this study is that only
two depression levels were used which leads to a binary
classification. Future work will address these limitations, and
we will try to classify more depression states such as severe
depression (BDI scores ranging from 29-63). In particular,
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we hope to study multimodal depression recognition methods
based on multiple depression states.
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