
Received January 29, 2019, accepted February 16, 2019, date of publication February 27, 2019, date of current version April 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2901949

A Comprehensive FPGA Reverse Engineering
Tool-Chain: From Bitstream to RTL Code
TAO ZHANG, JIAN WANG , (Member, IEEE), SHIZE GUO, AND ZHE CHEN
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Jian Wang (wangjian3630@uestc.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61671110.

ABSTRACT As recently studied, field-programmable gate arrays (FPGAs) suffer from growing Hardware
Trojan (HT) attacks, and many techniques, e.g., register-transfer level (RTL) code-based analyzing, have
been presented to detect HTs on FPGAs. However, for most of the FPGA end users, they can only obtain
bitstream, rather than the RTL code. Therefore, we present a new FPGA reverse engineering tool-chain.
It can precisely transform the FPGA bitstream to an RTL code and therefore assists in HT detection.
In detail, we first construct an integrated database involving the FPGA architecture information and the
bitstream mapping information. Then, we build two tools, namely, bitstream reversal tool (BRT) and
netlist reversal tool (NRT). They can be combined together to retrieve the RTL code from the FPGA bitstream
in moderate time. To demonstrate the effectiveness of our tool-chain, we evaluate it qualitatively and
quantitatively by using two benchmarks (ISCAS’85 and ISCAS’89) and three real applications (8051 core,
68HC08, and AES). Our tool-chain is comprehensive since it covers all the reverse engineering stages, from
bitstream to netlist and from netlist to code, without any support from other tools. Moreover, it rebuilds
the netlist with a 100% correct rate and retrieves RTL code, which is exactly, functionally equivalent to
the original one for all our benchmarks. To the best of our knowledge, it is the first tool that can perform
integrated, precise reverse engineering for FPGAs, paving the way for the netlist-/code-based HT detection.

INDEX TERMS FPGA, reverse engineering, bitstream, hardware trojan.

I. INTRODUCTION
Nowadays, FPGAs are widely used in various domains due
to their high performance and reconfigurability, such as
aerospace systems, automotive, high-performance comput-
ing and IoT (Internet of Things), etc., as shown in Fig. 1a,
and therefore, attract growing attentions from hardware
hackers [1]. Recently, some adversaries successfully inserted
HTs (Hardware Trojans) into FPGAs, aiming to steal con-
fidential data like encryption keys or change their original
functionality. For example, Chakraborty et al. [2] searched
for the empty space of FPGA bitstream and then implanted
HTs in it. Fern et al. [3] presented a novel HT and hid it in
the RTL code. Besides, other phases during FPGA lifetime,
such as device design, fabrication and assembly, etc., can also
be exploited for HT inserting, as shown in Fig. 1b [4]. Such
circumstances greatly challenge the FPGA security, calling
for more powerful HT detection techniques.

FPGA HT detection can be divided into two categories.
One is based on physical information analyzing which is

The associate editor coordinating the review of this manuscript and
approving it for publication was Remigiusz Wisniewski.

FIGURE 1. The background of FPGA hardware trojan detection. (a) FPGA
applications in various domains. (b) Possible phases for Hardware Trojans
insertion in FPGA lifetime.

with high efficiency in detecting the large and medium scale
Trojans in FPGAs by analyzing their side channel infor-
mation, e.g., Iwase et al. [5] isolate the chip power signa-
ture to detect HT in the Trojan-infected FPGAs by using
SVM (Support Vector Machine). The other refers to design
file analyzing method which can isolate the Trojan-infected
FPGAs by analyzing the characteristics of their netlist or

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

38379

https://orcid.org/0000-0001-5416-0649


T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

RTL code. This method, albeit often time-consuming, can
find out small and even tiny Trojans in FPGAs. For exam-
ple, Hicks et al. [6] propose a UCI (Unused Circuit Identi-
fication) method which identifies the never used RTL code,
shrinking the code space left for HTs. Guo et al. [7] perform
theorem proving and equivalence checking on RTL code
to ensure there are no additional functions which are not
defined in design specification. Zhang et al. [8] detect HTs
in a design by identifying the redundant logics in its netlist.
However, common FPGA end users can only access FPGA
bitstream1 rather than netlist or RTL code. To address this
dilemma, we propose a new comprehensive FPGA reverse
engineering tool-chain, which can precisely convert bitstream
to RTL code, paving the way for netlist/code-based hardware
Trojans detection.

In this paper, our main contributions are threefold:

• We propose a tool-chain for FPGA reverse engineering,
involving three tools, namely, library generator (LG),
bitstream reversal tool (BRT) and netlist reversal
tool (NRT). LG individually tests all kinds of FPGA
resources, removes the interferences among different
components, and thereby, obtains an exhaustive and
accurate mapping relationship between bit values and
FPGA configuration. BRT retrieves a netlist from the
intercepted bitstream. To get a precise netlist, we embed
a patching algorithm in BRT to deduce the work-
ing states of some special elements which depend on
not only the value of configuration bits but also the
state of neighbor elements. NRT recovers RTL code
from netlist. To ensure the correctness of decompiling
process, it splits the retrieved netlist into multiple inde-
pendent clusters and replaces their elements and connec-
tions with functionally equivalent code.

• We perform extensive experiments to evaluate our
tool-chain qualitatively and quantitatively, and make
comparison with some existing re-engineering tools.
In qualitative evaluation, we illustrate that we con-
struct an integrated tool-chain which covers all revers-
ing stages, i.e., bitstream-to-netlist and netlist-to-code,
outperforming the existing tools. In quantitatively eval-
uation, we report the correct rate of decompiled netlist,
i.e., 100%, for 13 benchmarks and validate that their
recovered RTL code is functionally equivalent to the
original one. To the best of our knowledge, it is the first
integrated and accurate re-engineering tool which can
decompile FPGA bitstream to code without any support
from other tools.

• We present a case study to demonstrate the effectiveness
of our tool-chain in assisting HT detection. In detail,
we first recover the netlist and RTL code from bit-
stream which corresponds to a Trojan-infected appli-
cation by using our tool-chain, and then employ two
HT detection techniques, COTD (Controllability and

1FPGA bitstream is a binary file that contains configuration data for an
FPGA. Its detailed format is usually proprietary and undocumented.

Observability for hardware Trojan Detection) [9] and
CA (Coverage Analysis) [10], to check the recovered
files, respectively. The experimental results reveal that
the malicious logics can be successfully identified in
this working flow. Hence, our tool-chain is helpful for
ensuring FPGA hardware security.

The rest of this paper is organized as follows. In Section II,
we briefly discuss related work. In Section III, we detail our
tool-chain. The methodology on how to construct bitstream
mapping database and the working flow of our BRT and
NRT tools are introduced. In Section IV, we evaluate our tool
qualitatively and quantitatively, and in Section V, we present
a case study to demonstrate the effectiveness of our tool-chain
in assisting HT detection. Finally, we conclude the paper
in Section VI.

II. RELATED WORK
Hardware reverse engineering is a process of understanding
the architecture and functionality of electronic systems via
special methods. At chip level, it touches upon two kinds
of devices, ASIC (Application-Specific Integrated Circuit)
and FPGA.

A. ASIC REVERSE ENGINEERING
The purpose of ASIC reverse engineering is to obtain
high-level description of the manufactured circuits. It con-
tains two stages: chip reverse engineering and netlist reverse
engineering. Chip reversing recovers netlist from the imple-
mented circuit, involving both non-destructive and destruc-
tive techniques [11]. In non-destructive methods, X-ray
tomography is often used to provide layer images for chips.
For example, the work in [12] takes advantage of a beam of
X-rays at a piece of Intel processor to reconstruct the chip
transistors and wires. Destructive reverse engineering, on the
other hand, refers to etching and grinding chip layer-by-
layer, which is quite time-consuming and requires expensive
instruments [13]. As such, only several companies can offer
destructive reverse engineering services.

Netlist-level reverse engineering generates high-level
description from the gate-level netlist, and plenty of tech-
niques have been reported. For example, Li et al. [14]
present a systemic way to automatically derive code struc-
ture from circuit netlist. Meade et al. [15] propose a netlist
reverse engineering tool-set which can recover the func-
tionality of the netlist into FSMs (Finite State Machines).
Subramanyan et al. [16] identify all components from the
netlist, such as register, counter and adders, etc., and then
describe them by using high-level abstraction. Thereafter,
they improve the efficiency of the method, scaling it to
large-scale ICs with almost million elements [17].

B. FPGA REVERSE ENGINEERING
FPGA reverse engineering aims to retrieve high-level descrip-
tion from the bitstream. It can be divided into two phases,
bitstream reversing and netlist reversing.

38380 VOLUME 7, 2019



T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

FIGURE 2. An overview of (a) FPGA architecture and (b) reverse engineering flow.

Bitstream reversing decompiles FPGA bitstream to netlist.
As a pioneer work of this domain, Ziener et al. [18] inves-
tigate the bitstream of Virtex-II FPGA and abstract the
LUT (Look Up Table) contents from it. Afterwards,
Note and Rannaud [19] propose a cross-correlation algo-
rithm to build the relationship between the bitstream and
the configurable elements for multiple Xilinx FPGAs.
By using the same algorithm as [19], Benz et al. [20] present
a tool called BIL, which considers both configurable and
unconfigurable FPGA elements, and successfully recovers a
fraction of netlist from bitstream. After that, Yoon et al. [21]
correct some errors in BIL to improve its reversing accuracy,
generating an advanced tool to retrieve netlist from FPGA
bitstream. To improve the reversing accuracy, Ding et al. pro-
pose two new algorithms, PK (Position Known) analysis and
PUK (Position Un-Known) analysis, to collect the bit-
stream mapping information. The experiments reveal that
the correctness of their reversed netlists can achieve at least
88% [22]. In [23], the project IceStorm demonstrates a
reversing tool which can successfully decompile the bit-
streams of Lattice iCE40 FPGAs. In contrast to the above
reversing tools focusing on unencrypted bitstreams, some
works move their targets on the encrypted files. For example,
Swierczynski et al. [24] propose a novel attack named BiFI,
which can manipulate an encrypted bitstream to obtain valu-
able information from it without the need of full bitstream
reversal.

FPGA netlist reversing generates high-level description,
e.g., RTL code, based on the netlist file. Since FPGA netlist
is similar to ASIC netlist, the netlist reversing techniques for
ASIC can be easily implanted to FPGA. Cheremisinov [25]
puts his efforts in this domain. For Xilinx FPGAs, he first
convert netlist to a readable XDL (Xilinx Design Language)
file, and then design an automation tool to generate
HDL (Hardware Description Language) code according
to it.

III. OUR WORK
In this section, we give an overview of FPGA architecture,
detail our FPGA reverse engineering tool-chain, and report
the time complexity of our tool-chain.

A. FPGA ARCHITECTURE OVERVIEW
Fig. 2a gives an overview of the FPGA architecture, which
consists of three parts, namely, logic tile, I/O (Input/Output)
tile and interconnection tile.

Each logic tile contains multiple LBs (Logic Blocks) with
various functional elements, such as LUTs, FFs (Flip-Flops)
and multiplexers, etc. These elements can be configured
through bitstream to implement the desired functions.2

I/O tiles are located at the periphery of FPGA, they work
as communication interface bridging the FPGA to the out-
side world. Similar to the logic tile, each I/O tile contains
multiple IOBs (I/O Blocks) as well. In one IOB, there
are several configurable elements, e.g., inverter, buffer and
pull-up resistance, etc., and one PAD, a non-configurable
element. By using bitstream, IOBs can be set to either
input or output mode. Interconnection tile is the internal
communication infrastructure of FPGA, transferring signals
between LBs and IOBs. Two kinds of boxes, configurable
switch box and unconfigurable connection box, are involved
in each interconnection tile. Switch box contains plenty of
PS (Programmable Switches) which can be configured to
be ON or OFF state, building connections between wires
accordingly. On the other hand, connection box links specific
wires together through a set of fixed connections.

Therefore, FPGA physical structure can be easily modified
by programming the LBs, IOBs and switch boxes with the
bitstream, implementing various functions as we want.

2Note that some other papers use ‘element’, ‘logic element’ and
‘logic cell’ interchangeably. In this paper, we use the word ‘element’
throughout the paper.

VOLUME 7, 2019 38381



T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

FIGURE 3. The details of FPGA reverse engineering tool-chain. (a) Library generator. (b) Bitstream reversal tool. (c) Netlist reversal tool.

B. OUR FPGA REVERSE ENGINEERING TOOL-CHAIN
The flow of our FPGA reverse engineering is given in Fig. 2b.
First, we wire-tap the configuration lines on PCB (Printed
Circuit Board) and power on our target FPGA. When the
FPGA loads its bitstream from the external non-volatile
memory, we immediately intercept the bitstream and save
it. Then, we feed the obtained bitstream into our tool-chain.
Supported by the database which contains FPGA architec-
ture information and bitstream mapping information, our
BRT (Bitstream Reversal Tool) decompiles the bitstream to
the netlist, and subsequently, our NRT (Netlist Reversal Tool)
converts the netlist to RTL code. Note that unless otherwise
stated, the FPGA in this paper refers to SRAM-based FPGA,
rather than antifuse and flash FPGAs which have no needs
for outside bitstream. Moreover, the bitstream fed into our
tool-chain should be an unencrypted file.3

1) DATABASE
Database is the bedrock for FPGA reverse engineering.
It supplies two parts of necessary information for our BRT
and NRT tools, referring to FPGA architecture and bitstream
mapping.

FPGA architecture information includes all hardware
details of our target FPGAs, such as the quantity, location
and all possible working patterns for functional elements and
their connections. This information can be obtained from
the corresponding FPGA vendor. For example, the Xilinx
ISE (Integrated Synthesis Environment) provides a set of
textual files describing the architecture of Xilinx FPGAs sep-
arately. Bitstream mapping information points out the rela-
tionship between the value of bits and the working patterns of
configurable components, i.e., the logic states of elements or
the ON/OFF status of programmable switches. We integrate
a library generator in our database to figure out the mapping
information through thorough black-box testing.

The working flow of our library generator is shown
in Fig. 3a.

3Most of low-end FPGAs, e.g., Xilinx Spartan-6 6SLX25 and Intel
Cyclone IV EP4CE6, provide unencrypted bitstreams which can be directly
decompiled by our tool-chain. For the encrypted bitstreams of high-end
FPGAs, they should be decrypted through some advanced techniques,
e.g., side channel attack [26], [27], before our tool-chain decompiles them.

Step 1 (Initialization):Wefirst directly write a blank netlist
file N0 and convert it to a bitstream B0. Note that a bitstream
includes both initialization frames and configuration frames.
The initialization frames set the booting modes of FPGA
while the configuration frames determine the implemented
function in FPGA. In this paper, our library generator only
focuses on the configuration frames since we aim to retrieve
the FPGA function.
Step 2 (Tile Testing): For all configurable elements in a

logic tile, we add them into N 0, one element at a time, and
test their mapping information. In detail, we first build a
tabulation to record the possible working patterns for the
added element, and then go through its possible working pat-
terns one-by-one to generate a group of netlists. Afterwards,
we transform these netlists to bitstreams and further compare
them with B0 separately. In this way, we can find out the
bits with different values and further determine the mapping
relationship for the added element. Note that 1) the mapping
relationship for components in I/O and interconnection tiles
can be determined similarly, and 2) the tile testing time is
linearly proportional to the number of components in a tile
since we tackle every component individually.
Step 3 (Offset Computing): Offset value is the distance

of configuration frames from one tile to another, as defined
in [22]. In this step, we find out the offset value of two tiles
with the same type, i.e., two logic tiles or two I/O tiles or two
interconnection tiles. Specifically, we first choose two logic
tiles, one tested tile as our baseline and one untested tile as
our target, set them with the same configuration, and modify
the netlist N 0 accordingly. In other words, we separately
modify the blank netlist to implement the same function
on the baseline tile and the untested tile. As such, we can
obtain two modified netlists from N 0, and then generate two
bitstream files for calculating the offset value. Fig. 4 gives
an example to illustrate this procedure intuitively. As we can
see, the tested tile is configured through the frame i to i+N ,
while the untested tile, e.g., Tile1, corresponds to another
N frames from j to j + N . The distance between frame i
to frame j is exactly the offset value for Tile1 against the
baseline, i.e., offset1 = j − i. For the other two kinds of tiles
(I/O and Interconnection), we repeat the above operations and
get their offset values separately.

38382 VOLUME 7, 2019



T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

Step 4 (Offset Traversal): We move our target to another
untested tile in the same type while maintaining the baseline
unchanged. Then, we find out the offset value between the
new target and the baseline. By repeatedly performing the
above operations, we can figure out all offset values for
untested tiles, as shown in Fig. 4. After that, we can deduce
all mapping information for the target FPGA by using the
baseline mapping relationship and the offset values.

FIGURE 4. The procedure of offset computing and traversal.

Step 5 (Stored Procedure): For convenience, we save the
mapping information in three pre-defined tables, namely
EMT (Element Mapping Table), PSMT (Programmable
Switch Mapping Table) and OVT (Offset Values Table).
EMT contains the mapping relationship of elements in the
baseline logic and I/O tiles, while PSMT refers to that of
switches in the baseline interconnection tile. Note that EMT
and PSMT has the same structure, they are multiple-row
tables in which each row consists of four parts, a component’s
i) name, ii) one possible working pattern, iii) the configura-
tion bits addresses, and iv) the bits’ value corresponding to
the pattern. On the other hand, OVT records the offset values
for other tiles against the baseline. It is also a multiple-row
table in which each row comprises three parts, i.e., a tile’s
i) name, ii) type, and iii) offset value.

While presenting the above steps, we make the following
notes.

1. In order to get accurate mapping information, we per-
form thorough black-box testing for FPGA resources in a
one-by-one manner. This sometimes disobeys the FPGA
design rules as some functional elements and programmable
switches in FPGA cannot be used alone. Therefore, we dis-
able the DRC (Design Rule Check) function in EDA tool
before we generate bitstream from the modified netlists.4

2. Although we collect the solely mapping relation-
ship from configurable resources to bit values, we still
come across the MVOE problem (Multiple Values for

4Most of the FPGA vendors integrate DRC function in their
EDA (Electronics Design Automation) tools to monitor the behavior
of netlists. Once a netlist disobeys the predefined rules, DRC generates a
warning information and hinder the conversion from netlist to bitstream.

One Element) [22] which means that the same value of con-
figuration bits may be mapped to multiple working patterns.
To determine theworking pattern of the elements withMVOE
problem, we need the patterns of their neighbors in addi-
tion to mapping relationship. Hence, we propose a patching
method and implement it in our BRT to address this issue.
More details are discussed in Section III-B2.

3. We use offset values to deduce the mapping information
for tiles except the three baselines which corresponds to I/O,
logic and interconnection tiles. This method is reasonable
due to the high regularity of FPGA architecture, as dis-
cussed in previous work [19], [22]. In addition, compared to
the time-consuming testing for elements and connections in
a one-by-one manner, offset computing can be quickly fin-
ished to figure out the mapping relationship for a tile.

2) BITSTREAM REVERSAL TOOL
BRT transforms a bitstream to a netlist file which details the
function of used elements and the routing paths among them.
The working flow of BRT is drawn in Fig. 3b.
Step 1 (Initialization): In this step, we read the inter-

cepted bitstream file and load the necessary information,
i.e., the bitstream mapping and FPGA architecture informa-
tion in our database.
Step 2 (Routing Reversal): According to the bitstream

and database, we find out the turn-on programmable
switches, and separately take them as a starting point in
BFS (Breadth-First Search) algorithm to recover all signal
nets [28]. Here net is composed of a set of connections which
transfer the same signal from a source element to one or more
sink elements.
Step 3 (Information Patching): As stated in Section B1,

we test the FPGA elements one-by-one and encounter a
MVOE problem, which means that multiple working patterns
may be mapped into the same configuration bits value. By
investigating the working mechanism of FPGA elements,
we find that the independent testing method, albeit easy
to be implemented, may result in information loss when it
decouples the elements.

FIGURE 5. An example of MVOE problem.

For example, the working pattern of MUX element
in Fig. 5 is determined through three configuration bits
(SEL signal) in combination with a driven signal from
upstream elements. When the three configuration bits
are set to be ‘011’, the MUX may be either powered
OFF (no driven signal from E1) or in switching status (from

VOLUME 7, 2019 38383



T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

the first input port to its output port when E1 is working).
Therefore, we cannot determine the MUX working pattern if
we only access its configuration information. To solve this
problem, we pick out all elements with uncertain patterns,
analyze their correlation with neighbors and patch the missed
information to elements accordingly.

Algorithm 1 Patching Method Solving MVOE Problem

Input: T - The element mapping table
Input: A - FPGA architecture information
Input: C - Pre-defined constraints
Output: P - Table of patched information
1 P← Ø
2 set of elements E← extract_elements(T)
3 for each element e ∈ E do
4

∣∣ set of uncertain patterns U← judge_MVOE(e,∣∣ T)
5

∣∣ if U = Ø then
6

∣∣ ∣∣ Continue
7

∣∣ else
8

∣∣ ∣∣ set of neighbors N← extract_neighbors(e, A)
9

∣∣ ∣∣ for each pattern u ∈ U do
10

∣∣ ∣∣ ∣∣ required patterns R← solve_MVOE(u,∣∣ ∣∣ ∣∣ N, C)
11

∣∣ ∣∣ ∣∣ extend P by adding a line including e, u∣∣ ∣∣ ∣∣ and R
12

∣∣ ∣∣ end
13

∣∣ end
14 end

Algorithm 1 displays the flow of our patching method
for solving the MVOE problem. It requires three inputs,
i.e., the element mapping table (T), FPGA architecture infor-
mation (A) and a series of pre-defined constraints (C),
to generate the table of patched information (P). Specifi-
cally, we first initialize P as an empty set Ø (line 1). Then,
we extract the configurable elements in the baseline tiles (E)
from the element mapping table (T) as our targets (line 2).
Line 3-14 go through E to patch information for the special
elements. We obtain the uncertain patterns of e (U) based on
T at first (line 4). If U is an empty set Ø (line 5), we exe-
cute the Continue command to analyze the next element
(line 6). Otherwise, we abstract all neighbor elements of
e (N) from A (line 8). Then, for each uncertain pattern u,
we apply multiple pre-defined constraints (C) on e and its
neighbors to figure out the required patterns (R) of elements
inN (line 10), and finally, we add e, u,R to P (line 11). In this
way, we can generate a table P containing the patches for all
MVOE elements in E.
Step 4 (Element Reversal): We justify the working pat-

tern for all functional elements based on the bitstream file,
the database and our patch information, and then the function
of each element can be determined. Now, we can obtain all
information about the elements being used as well as the
routing paths among them.

Step 5 (Netlist Output):We assemble the routing informa-
tion and the functional elements into a netlist file.

3) NETLIST REVERSAL TOOL
NRT (Netlist Reversal Tool) retrieves RTL code from the
recovered netlist file. The working flow of NRT is shown
in Fig. 3c.
Step 1 (Initialization): We read the netlist file from BRT

and transform its information, such as element function and
routing paths, into a predefined data structure. The FPGA
architecture information is also loaded to support code revers-
ing operation.
Step 2 (I/O Determination): We find out the IO ports to

generate the ports declaration part in our reversed RTL code.
To achieve this goal, we classify all PAD elements in the
netlist into two modes, input and output, according to their
inherent property. If a PAD works as the source element in a
net, it is defined as an input port. Otherwise, it is an output
port.
Step 3 (Cluster Extraction): We extract all signal path

clusters from the netlist file. A signal path cluster contains
multiple signal paths, which are originated from different
input PADs, one PAD for one path and end with the same
output PAD. In this paper, we first track all signal paths
belonging to one cluster from an output PAD by using the
DFS (Depth-First Search) algorithm [28], and then repeat
the above operations until all clusters in the given netlist
are found out. Note that one input PAD may be included in
multiple signal path clusters. For example, as shown in Fig. 6,
two clusters make use of the input PAD2 as their input ports,
leading to duplicated port definition during code generation
which will be solved in the last step.
Step 4 (Code Generation): We generate RTL code for

each cluster. In detail, we separately replace the functional
elements with their equivalent RTL code, and combine them
together according to the cluster structure and the path prop-
erties. For example, the FF (Flip-Flop) in Fig. 6 has two
types of signals, data and clock. For the clock signal, we put
the clock name ‘‘PAD3’’ into the code ‘‘always@()’’ as the
sensitive parameter. For the data signal, we use the data name
‘‘PAD2’’ and ‘‘PAD5’’ to replace the input and output of FF
characteristic equation, respectively.

FIGURE 6. An example of cluster extraction and code generation.

38384 VOLUME 7, 2019



T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

Step 5 (RTL Output): We input all RTL code into one
file, detect and remove the duplicated input ports, if any,
and declare the module name for the whole code.

C. DISCUSSION
We report the time complexity of our tool-chain for each
step in Table 1. As we can see, the time complexity of
library generator is O(n + k), depending on two variables,
i.e., the number of configurable elements in a tile (n) and
the number of tiles in the FPGA (k). On the other hand,
the time complexity of BRT and NRT are respectively
O(m2

+ n) and O(m2), mainly depending on the number of
used components m in the design. In addition, we note that
the mapping database constructed by the library generator is
only related to the detailed FPGA architecture. Hence, for a
given FPGA, we only need to invoke the library generator one
time. Subsequently, the constructed mapping database can be
re-used for re-engineering any application on that FPGA.

TABLE 1. Time complexity of each step in our tool-chain.

IV. EVALUATION
We evaluate our tool-chain both qualitatively and quantita-
tively.

A. QUALITATIVE ANALYSIS
We compare our work with five existing FPGA reversing
tools, namely, Debit [19], BIL [20], BRET [21], Bit2ncd [22]
and DAT [25]. Table 2 lists the detailed database and func-
tions in each tool, including FPGA architecture informa-
tion, bitstream mapping information, bitstream reversing and
netlist reversing.

From Table 2, we can observe that our tool-chain is com-
prehensive for FPGA reverse engineering since it contains
all necessary information, i.e., FPGA architecture and bit-
stream mapping information, as well as functions. In other
words, our tool-chain can decompile the intercepted bit-
stream to RTL code without any support from other tools
and databases. In contrast, the existing five tools can only
accomplish a part of FPGA reverse engineering since they

TABLE 2. Comparison of FPGA reverse engineering tools.

concern about different phases in re-engineering. Particu-
larly, Debit, BIL, BRET and Bit2ncd put their efforts on
bitstream re-engineering while DAT is dedicated to netlist re-
engineering. In addition, the four existing bitstream reversing
tools may generate a netlist with few errors when targeting
complex designs, as their databases and functions remain to
be improved, as mentioned in [19]–[22].

B. QUANTITATIVE ANALYSIS
To evaluate the effectiveness of our tool-chain, we perform
experiments on two well-recognized benchmarks, ISCAS’85
and ISCAS’89, and three real applications, 8051 core,
68HC08 and AES. Xilinx Spartan-6 is taken as our target
FPGA and ISE is used to compile the benchmarks to bit-
stream. Then, we intercept the bitstream and feed it into
our tool-chain. In the following experiments, our tool-chain
runs on a PC with Intel Core i3-3240 CPU, which works at
3.40GHz main frequency, 4.0 GB RAM, andWindows 7 SP1
32-bit operating system.

1) BITSTREAM REVERSE ENGINEERING
We report the logic cost and bitstream reverse engineering
results in Table 3. The logic cost stands for the complexity
of our benchmarks, which is quantified by the numbers of
FE (Functional Elements in logic tiles and IO tiles) and
PS (Programmable Switches). The experimental results eval-
uate the accuracy and time overhead of our BRT tool.

Our BRT can perfectly decompile a bitstream to netlist as
the recovered netlists are totally the same as the original files
in both FE and PS for all benchmarks. Moreover, based on
the experimental results, we have enough confidence to claim
that our tool-chain can achieve 100% reversing correct rate
for any design because the 13 benchmarks in Table 3 involve
all kinds of components in the target FPGA. We attribute this
interesting result to our powerful library generator and patch-
ing technique in BRT. As illustrated in Section III, they help
to abstract precise bitstream mapping information and solve
the MVOE problem, respectively, and therefore, ensuring the
accuracy of bitstream reversing results.

Besides, we can observe that the reversing time ranges
from 5.23 to 623.21 minutes (< 11 hours), being pro-
portional to the logic complexity of experimental circuits.
In general, the time overhead is tolerable for these cases,

VOLUME 7, 2019 38385



T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

TABLE 3. The logic cost and bitstream reverse engineering results for benchmarks.

and if necessary, we can shorten the reversing time by
applying parallel computing techniques to our tool-chain,
e.g., executing the reversing process with multiple paral-
lel threads in GPU (Graphics Processing Unit), which is
a special processor widely used in computers for parallel
computing [29], [30].

TABLE 4. Netlist reverse engineering results with our tool.

2) NETLIST REVERSE ENGINEERING
We decompile the netlist from BRT, report the time cost and
verification results in Table 4, and illustrate the correctness
of our NRT tool. The time cost is counted from the time
when our NRT loads a netlist file to the time when the cor-
responding RTL code is generated. The formal verification
is performed by Synopsys Formality tool, which can detect
the difference between the original code and the recovered
code in this paper. From Table 4, we can draw the following
two conclusions. First, our NRT is a real-time tool since it
needs only hundreds to thousands of milliseconds to finish
the netlist reverse engineering process for all benchmarks.
Second, our NRT tool can precisely transform the netlist to
RTL code since all the generated code successfully passes

the formal verification. In other words, they are functionally
equivalent to the original codes.

3) QUANTITATIVE COMPARISON WITH OTHER WORKS
We compare our tool-chain with existing reversing works,
two bitstream reversing tools (Debit [19], Bit2ncd [22]) and
one netlist reversing tool (DAT [25]), in reversing accuracy
and time cost. To make fair comparison, pong circuit which
can control the paddles in an electronic pong game is imple-
mented on a Xilinx Spartan-3 FPGA, as advised in [22].

TABLE 5. Reversing results comparison among works.

From Table 5, we can observe that although our tool-chain
consumes more time for bitstream reversing, it achieves
100% reversing accuracy in both FE and PS, outperforming
Debit and Bit2ncd. Note that a 100% correct netlist is crucial
for assisting hardware Trojan detection, in that an inaccurate
netlist may distort or eliminate the Trojan logic, reducing
the HT detection rate significantly. In addition, both our
tool-chain and DAT can retrieve RTL code from the netlist
within hundreds of milliseconds, and the two retrieved code
files can successfully pass through the formal verification.
In other words, the two retrieved code files are functionally
equivalent to the original design.

In summary, we can claim that our tool-chain is compre-
hensive and precise for FPGA reverse engineering. Besides,
the accurate bitstream reversing provides the advantageous
foundation for future HT detection.

V. CASE STUDY: HARDWARE TROJAN DETECTION
Now, we present a case study to demonstrate the effectiveness
of our tool-chain in assisting FPGA HT detection methods.

38386 VOLUME 7, 2019



T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

In detail, we discuss i) how COTD [9] finds out HTs from
our recovered netlist, and ii) how coverage analysis [10] iden-
tifies the malicious code with the assistance of our tool-chain.

A. HARDWARE TROJAN DETECTION
WITH RECOVERED NETLIST
To validate that our tool-chain can assist COTD technique,
we perform the experiment on a Trust-Hub benchmark,
namely, s38417 [31]. Specifically, we implement the bench-
mark on Xilinx Spartan-6 FPGA, intercept the bitstream
upon FPGA boot-up and obtain a recovered netlist by using
our tool-chain. After that, we feed the recovered netlist into
COTD for HT detection.

1) DETECTION IN NETLIST RECOVERED
FROM INTACT BITSTREAM
The COTD technique can calculate the controllability and
observability of each signal in the netlist, and differenti-
ate the suspicious (potentially malicious) signals from the
trusted ones using unsupervised clustering method accord-
ingly. The results of applying COTD on the recovered netlist
are reported in Fig. 7. From Fig. 7a, we can observe that
COTD splits the signals of recovered, Trojan-infected netlist
into two groups. One corresponds to the trustable logics
(black dots) and the other refers to Trojan logics (red dots).
In contrast, the recovered, Trojan-free netlist contains only
trustable logic circuits, as shown in Fig. 7b. Hence, our
tool-chain can work as an assistant for COTD technique,
i.e., providing recovered netlist, to detect HTs in FPGAs.

FIGURE 7. Results of COTD analysis in Trojan-infected and -free netlists.
(a) Results of COTD analysis in Trojan-infected s38417 netlist. (b) Results
of COTD analysis in Trojan-free s38417 netlist.

2) DETECTION IN NETLIST RECOVERED
FROM CORRUPTED BITSTREAM
According to Section V-A1, the COTD technique can accu-
rately detect HTs from our recovered netlist. Nevertheless,
if the intercepted bitstream gets corrupted (the values of some
bits are reversed) due to the poor contact between the probe
and configuration lines, the recovered netlist may deviate
from the original one and thus affects the HT detection.

To evaluate the influence of bitstream corruptions, we per-
form a comparative experiment on the Trojan-infected
s38417 benchmark. We first divide the FPGA with Trojans
into three parts, i.e., unused logics, authentic logics (used)
and Trojan logics (used), as depicted in Fig. 8a. The unused

FIGURE 8. The illustration and results of HT detection in the netlists
recovered from corrupted bitstreams. (a) Diagram of experimental FPGA.
(b) Diagram of configuration bits in experimental bitstream.
(c) Experimental results of reverse engineering and HT detection.

logics are the powered off region in an FPGA, and in contrast,
the used logics refer to the activated components. Further-
more, if an active component serves as a part of Trojan circuit,
it is contributed to Trojan logics, otherwise, it is authentic
logic. Accordingly, as illustrated in Fig. 8b, all configuration
bits in a bitstream can also be categorized to three types,
corresponding to unused, authentic (used) and Trojan (used)
logics. Now, we generate 30 corrupted bitstreams, ten per
type, by randomly reversing the value of some bits (in this
paper, we assume that 0.1 % configuration bits in a bitstream
are corrupted). Afterwards, we recover netlists from these
corrupted bitstreams by using our tool-chain and employ the
COTD technique to detect HTs in them. The average revers-
ing accuracy and HT detection rate are reported in Fig. 8c.

As shown in Fig. 8c, when the corruption operations occur
in unused bits, we can still obtain correct netlists and iden-
tify HT in them with 100% detection rate. It is reason-
able because the corruptions in the unused bits usually turn
on some isolated programmable components which will be
marked as abnormal points and removed during the bitstream
reversing. As such, they will not introduce any modification
to the retrieved netlist. In contrast, when corruptions happen
in the authentic or Trojan bits, they will cause some errors
on the retrieved netlist, degrading both the re-engineering
accuracy and the HT detection rate. In detail, for authen-
tic (Trojan) bits, the average reversing accuracy of Func-
tional Elements and Programmable Switches decreases to
80.2% (83.4%) and 73.8% (79.6%), respectively. In addition,
the corruption on Trojan bits results in a worse Trojan detec-
tion rate, i.e., 20%, than that of authentic bits (60%).

B. HARDWARE TROJAN DETECTION
WITH RECOVERED RTL CODE
We employ our tool-chain to retrieve RTL code from the
recovered, Trojan-infected s38417 netlist, and then utilize the
coverage analysis technique to search for malicious logics

VOLUME 7, 2019 38387



T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

in the retrieved code. A well-recognized commercial tool,
Synopsys VCS, is used to report the code coverage result
automatically and the uncovered lines of code are marked as
Trojan [10].

FIGURE 9. The equivalent malicious logic in netlist and RTL code.
(a) Uncovered line in the decompiled code. (b) Trojan trigger.

Fig. 9 displays a fraction of Trojan detection results for
Trojan-infected s38417. As we can see, there is an uncovered
code line (line 176 in Fig. 9a) which cannot be executed
during our code coverage analysis process. It corresponds
to the Trojan Trigger signal of Trojan circuit, Net21 in
Fig. 9b, which is in accordance with the netlist detection
result, as depicted in Fig. 7a. Therefore, our tool-chain can
work in conjunction with the coverage analysis technique to
identify hardware Trojans.

VI. CONCLUSION
In this paper, we propose a new comprehensive tool-chain
which can precisely reverse the FPGA bitstream to
RTL code. First, we build an integrated database by conduct-
ing thorough black-box testing for configurable FPGA ele-
ments and connections. Then, we present two reversing tools,
BRT and NRT. With the bitstream mapping and FPGA
architecture information in the database, BRT transforms the
intercepted bitstream to netlist and NRT further decompiles
the netlist to RTL code. After that, we perform extensive
experiments to evaluate the effectiveness of our tool-chain.
The experimental results reveal that our tool-chain can solely
accomplish the whole reversing process from FPGA bit-
stream to RTL code, and the recovered code is functionally
equivalent to the original one. Finally, we present a case
study to demonstrate that our tool-chain can assist existing
techniques to identify HTs at netlist and RTL code level.
From the perspective of hardware security, we believe that
our tool-chain can make a significant contribution to thwart
HT attacks on FPGAs.

Our tool-chain can only decompile the unencrypted FPGA
bitstreams. But this is not a serious problem for some appli-
cation areas with strict power restriction. For example, ter-
minals in IoT space are preferred to use low-end FPGAs,
most of which do not offer bitstream encryption and can
be covered by our tool-chain. Also, we note that there are
some advanced techniques can decrypt the encrypted FPGA
bitstreams, e.g., side channel attack [26], [27], [32], showing
a promising direction to extend the applicable scope of our
tool-chain.

REFERENCES
[1] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,

‘‘Hardware Trojans: Lessons learned after one decade of research,’’ ACM
Trans. Des. Autom. Electron. Syst., vol. 22, no. 1, pp. 6:1–6:23, 2016.

[2] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, ‘‘Hardware
trojan insertion by direct modification of FPGA configuration bitstream,’’
IEEE Design Test, vol. 30, no. 2, pp. 45–54, Apr. 2013.

[3] N. Fern, S. Kulkarni, and K.-T. Cheng, ‘‘Hardware Trojans hidden in
RTL don’t cares—Automated insertion and prevention methodologies,’’
in Proc. IEEE Int. Test Conf. (ITC), Oct. 2015, pp. 1–8.

[4] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, ‘‘Hardware Trojan
attacks: Threat analysis and countermeasures,’’ Proc. IEEE, vol. 102, no. 8,
pp. 1229–1247, Aug. 2014.

[5] T. Iwase, Y. Nozaki, M. Yoshikawa, and T. Kumaki, ‘‘Detection technique
for hardware Trojans using machine learning in frequency domain,’’ in
Proc. IEEE 4th Global Conf. Consum. Electron. (GCCE), Oct. 2015,
pp. 185–186.

[6] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith,
‘‘Overcoming an untrusted computing base: Detecting and removing
malicious hardware automatically,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2010, pp. 159–172.

[7] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra, ‘‘Pre-silicon
security verification and validation: A formal perspective,’’ in Proc. 52nd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), 2015, pp. 1–6.

[8] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, ‘‘VeriTrust: Verification for
hardware trust,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 7, pp. 1148–1161, Jul. 2015.

[9] H. Salmani, ‘‘COTD: Reference-free hardware trojan detection and recov-
ery based on controllability and observability in gate-level netlist,’’ IEEE
Trans. Inf. Forensics Security, vol. 12, no. 2, pp. 338–350, Feb. 2017.

[10] A. Nahiyan and M. Tehranipoor, ‘‘Code coverage analysis for IP trust
verification,’’ in Hardware IP Security and Trust. Cham, Switzerland:
Springer, 2017, pp. 53–72.

[11] S. E. Quadir et al., ‘‘A survey on chip to system reverse engineering,’’ ACM
J. Emerg. Technol. Comput. Syst., vol. 13, no. 1, p. 6, 2016.

[12] R. Courtland, ‘‘3D X-ray tech for easy reverse engineering of ICs,’’ IEEE
Spectr., vol. 54, no. 5, pp. 11–12, May 2017.

[13] R. Torrance andD. James, ‘‘The state-of-the-art in IC reverse engineering,’’
in Proc. 11th Int. Workshop Cryptograph. Hardw. Embedded Syst., 2009,
pp. 363–381.

[14] W. Li et al., ‘‘WordRev: Finding word-level structures in a sea of bit-level
gates,’’ in Proc. IEEE Int. Symp. Hardw.-Oriented Secur. Trust (HOST),
Jun. 2013, pp. 67–74.

[15] T. Meade, S. Zhang, M. Tehranipoor, and Y. Jin, ‘‘A comprehensive netlist
reverse engineering toolset for IC trust,’’ in Proc. Government Microcircuit
Appl. Crit. Technol. Conf., 2016, pp. 281–284.

[16] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, and
S. Malik, ‘‘Reverse engineering digital circuits using functional analysis,’’
in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2013,
pp. 1277–1280.

[17] P. Subramanyan et al., ‘‘Reverse engineering digital circuits using struc-
tural and functional analyses,’’ IEEE Trans. Emerg. Topics Comput., vol. 2,
no. 1, pp. 63–80, Mar. 2014.

[18] D. Ziener, S. Assmus, and J. Teich, ‘‘Identifying FPGA IP-cores based on
lookup table content analysis,’’ in Proc. Int. Conf. Field Program. Log.
Appl., Aug. 2006, pp. 1–6.

[19] J. Note and E. Rannaud, ‘‘From the bitstream to the netlist,’’ in Proc. 16th
Int. ACM/SIGDA Symp. Field Program. Gate Arrays, 2008, p. 264.

[20] F. Benz, A. Seffrin, and S. A. Huss, ‘‘Bil: A tool-chain for bitstream
reverse-engineering,’’ in Proc. 22nd Int. Conf. Field Program. Log.
Appl. (FPL), Aug. 2012, pp. 735–738.

[21] J. Yoon et al., ‘‘A bitstream reverse engineering tool for FPGA hardware
trojan detection,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2018, pp. 2318–2320.

[22] Z. Ding, Q. Wu, Y. Zhang, and L. Zhu, ‘‘Deriving an NCD file from an
FPGA bitstream: Methodology, architecture and evaluation,’’ Micropro-
cessors Microsyst., vol. 37, no. 3, pp. 299–312, 2013.

[23] C. Wolf. (2015). Project IceStorm. [Online]. Available: http://www.
clifford.at/icestorm/

[24] P. Swierczynski, G. T. Becker, A. Moradi, and C. Paar, ‘‘Bitstream fault
injections (BiFI)–automated fault attacks against SRAM-based FPGAs,’’
IEEE Trans. Comput., vol. 67, no. 3, pp. 348–360, Mar. 2018.

38388 VOLUME 7, 2019



T. Zhang et al.: Comprehensive FPGA Reverse Engineering Tool-Chain: From Bitstream to RTL Code

[25] D. I. Cheremisinov, ‘‘Design automation tool to generate EDIF and VHDL
descriptions of circuit by extraction of FPGA configuration,’’ in Proc.
East-West Design Test Symp. (EWDTS), Sep. 2013, pp. 1–4.

[26] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, ‘‘On the vulnerability
of FPGA bitstream encryption against power analysis attacks: Extracting
keys from Xilinx Virtex-II FPGAs,’’ in Proc. 18th ACM Conf. Comput.
Commun. Secur., 2011, pp. 111–124.

[27] A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, ‘‘Side-channel
attacks on the bitstream encryption mechanism of Altera Stratix II: Facil-
itating black-box analysis using software reverse-engineering,’’ in Proc.
ACM/SIGDA Int. Symp. FPGA, 2013, pp. 91–100.

[28] A. B. Kahn, ‘‘Topological sorting of large networks,’’ Commun. ACM,
vol. 5, no. 11, pp. 558–562, 1962.

[29] S. Devadithya, A. Pedross-Engel, C. M.Watts, N. I. Landy, T. Driscoll, and
M. S. Reynolds, ‘‘GPU-accelerated enhanced resolution 3-D SAR imag-
ing with dynamic metamaterial antennas,’’ IEEE Trans. Microw. Theory
Techn., vol. 65, no. 12, pp. 5096–5103, Dec. 2017.

[30] G. Zhou, R. Bo, L. Chien, X. Zhang, S. Yang, andD. Su, ‘‘GPU-accelerated
algorithm for online probabilistic power flow,’’ IEEE Trans. Power Syst.,
vol. 33, no. 1, pp. 1132–1135, Jan. 2018.

[31] H. Salmani, M. Tehranipoor, and R. Karri, ‘‘On design vulnerability anal-
ysis and trust benchmarks development,’’ in Proc. IEEE 31st Int. Conf.
Comput. Design (ICCD), Oct. 2013, pp. 471–474.

[32] A. Moradi and T. Schneider, ‘‘Improved side-channel analysis attacks on
Xilinx bitstream encryption of 5, 6, and 7 series,’’ in Proc. Int. Workshop
Constructive Side-Channel Anal. Secure Design, 2016, pp. 71–87.

TAO ZHANG received the B.S. degree in commu-
nication engineering from Northwest University,
Xi’an, China, in 2016. He is currently pursuing
the M.S. degree with the School of Information
and Communication Engineering, University of
Electronic Science and Technology of China.

His research focuses on hardware security and
trust, with a special interest on hardware reverse
engineering.

JIAN WANG (M’16) received the M.S. and Ph.D.
degrees from the University of Electronic Sci-
ence and Technology of China, Chengdu, China,
in 2008 and 2011, respectively, where he has been
an Associate Professor, since 2014.

His current research interests include hardware
security and on-chip communication architectures,
with a special interest on hardware Trojan detec-
tion and hardware reverse engineering.

SHIZE GUO received the B.S. and M.S. degrees
from the Ordnance Engineering College, China,
in 1988 and 1991, respectively, and the Ph.D.
degree from the Harbin Institute of Technology,
in 1994. He is currently a Professor with the DSP
Laboratory, University of Electronic Science and
Technology of China, Chengdu, China. His main
research interests include information technology
and information security, with a special interest on
hardware security and trust.

ZHE CHEN received the M.S. and Ph.D. degrees
from the Beijing University of Posts and Telecom-
munications, in 2005 and 2008, respectively.

She is currently an Associate Professor with
the DSP Laboratory, University of Electronic Sci-
ence and Technology of China, Chengdu, China.
She has published more than 50 technical papers
in peer-reviewed journals and conferences. Her
research interest includes hardware security, espe-
cially the on-chip systems design and test.

VOLUME 7, 2019 38389


	INTRODUCTION
	RELATED WORK
	ASIC REVERSE ENGINEERING
	FPGA REVERSE ENGINEERING

	OUR WORK
	FPGA ARCHITECTURE OVERVIEW
	OUR FPGA REVERSE ENGINEERING TOOL-CHAIN
	DATABASE
	BITSTREAM REVERSAL TOOL
	NETLIST REVERSAL TOOL

	DISCUSSION

	EVALUATION
	QUALITATIVE ANALYSIS
	QUANTITATIVE ANALYSIS
	BITSTREAM REVERSE ENGINEERING
	NETLIST REVERSE ENGINEERING
	QUANTITATIVE COMPARISON WITH OTHER WORKS


	CASE STUDY: HARDWARE TROJAN DETECTION
	HARDWARE TROJAN DETECTION WITH RECOVERED NETLIST
	DETECTION IN NETLIST RECOVERED FROM INTACT BITSTREAM
	DETECTION IN NETLIST RECOVERED FROM CORRUPTED BITSTREAM

	HARDWARE TROJAN DETECTION WITH RECOVERED RTL CODE

	CONCLUSION
	REFERENCES
	Biographies
	TAO ZHANG
	JIAN WANG
	SHIZE GUO
	ZHE CHEN


