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ABSTRACT This paper considers a capability construction problem of the C4ISR system under service-
oriented architecture. A capability construction model is first established and described in the planning
domain definition language as an artificial intelligence (AI) planning problem. To adapt the complex
requirements of a C4ISR system and large scale of required services, an incremental macro-operation
learning method based on n-gram analysis is proposed, and an enhanced domain is generated using a
relaxation scheme. To improve the efficiency of the search algorithm, an ordered-hill-climbing (OHC)
method is designed based on the length of the operations. With the above procedures, the AI planner, using
macro-operation and the OHC, is presented for capability construction problems. The simulation results
show that this method can effectively shorten the search time of capability construction.

INDEX TERMS Artificial intelligence planning, C4ISR, capability construction, service-oriented
architecture.

I. INTRODUCTION
A new revolution under the promotion of information tech-
nology has produced a new form of war. To win the infor-
mation war in the future, the C4ISR system needs to be
strengthened. Developing and accelerating the formation of
information-based system-combat capability, has become the
inevitable choice of the army [1]. In recent years, with
the rapid development of emerging technologies, such as
service computing and cloud computing, the application of
service-oriented architecture (SOA) in C4ISR has become
imperative.

From the perspective of the entire system construction
process, building a C4ISR system based on tasks under an
SOA architecture mainly requires mapping from task to capa-
bility, capability to service, and service to resource [2]. The
capability-to-service mapping is the main research content
of this paper. It is the bridge between the system capability
and the service, and plays a key role in the construction of
the C4ISR. System capability describes the expectations of
capabilities or performance of the C4ISR system from the
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user perspective, and the design, release, and deployment
of services are generally implemented by IT technicians,
such as software engineering developers. So, how to balance
operational knowledge and IT technology when completing
capability-to-service mapping is the problem to be solved in
the construction of C4ISR system.

Traditionally, the solution to this problem is to use expert
knowledge to build a capability-service template library and
then use the template matching method to obtain the cor-
responding service combination. Clearly, this manual-based
approach is time consuming and costly. At the same time,
to generate new capability requirements that do not exist in
template libraries, the above method will completely fail and
must be re-analyzed by experts in the relevant field. The con-
struction time of the system capability will be delayed under
these circumstances. To solve this problem, a capability-
service mapping method for the C4ISR system is proposed
based on AI planning. This method uses IOPE (Input,Output,
Precondition andEffect) tomodel system capabilities and ser-
vices, then describe the problem as an AI planning problem
in the planning-problem-description language (PDDL). For
the characteristics of the problem, a planner based on macro-
operation and ordered-hill-climbing (OHC) is designed.
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The use of AI planning to complete capability-service map-
ping can effectively avoid the failure caused by new capabil-
ity requirements in the template library method and greatly
reduce manual participation to shorten the construction time
of the system capability.

II. RELATED WORK
AI planning is an important branch of artificial intelligence
research. Research on AI planning can be traced back to
the logic theorist program designed by Newell and Simon in
the 1960s. After years of development, AI planning technol-
ogy continues to mature and has been successfully applied
to cloud management [3], automatic control [4], task alloca-
tion [5], service composition [6], and other aspects.

The task of AI planning is to find a series of effective
actions in a given planning domain, to ensure that the ini-
tial state in the planning problem can be successfully trans-
ferred to the goal state after applying the actions. Since
the first international planning competition (IPC) was held,
many high-performance planners have been proposed, such
as FF [7], SHOP2 [8], and JLU-RLAO [9], and they all have
good performance in their respective fields. It is worth men-
tioning that the FF planner, with outstanding performance
in the classical planning domain, uses a heuristic search
strategy to search the state and is combined with effective
motion filtering technology to solve the classical program-
ming problem, which provides a feasible paradigm for the
subsequent planners. The Metric-FF [10] and Conformant-
FF [11], which are based on FF, also performed well in com-
petitions. On this basis, some scholars began to ameliorate
the heuristic search-based planner to improve its planning
efficiency. This involved two general ideas. One idea is to
find a more efficient method for calculating heuristic values.
Examples are the heuristic function based on delay partial
reasoning in [12] and the landmark-based heuristic function
in [13]. The other idea is to improve the efficiency of the
search algorithm, such as the BDD-based search algorithm
proposed in [14] and the OHC search algorithm proposed
in [15].

However, as the number of operations in the planning
domain continues to increase, the time for heuristic search
methods will also grow exponentially, and some studies
have begun to focus on using domain knowledge to speed
up the planning process. Richard et al. [16] first pro-
posed the concept of macro-operations in 1971. Macro-
operations are composite operations composed of a series of
atomic operations in the domain, which can be considered
as domain knowledge. Afterwards, many studies began to
focus on designing the macro-operation extraction method,
which can be classified into two categories: one method is
to directly analyze the atomic operations in the planning
domain. Botea et al. [17] combined the atomic operations
into a macro-operation by analyzing the interface dependen-
cies between the atomic operations in the planning domain,
and the implemented Macro-FF planner exhibits good plan-
ning performance. The other method is to extract effective

macro-operations through learning methods based on exist-
ing planning solutions. Dulac et al. [18] used the N-grams
analysis method to extract macro-operations from existing
planning solutions to improve planning efficiency. With the
help of a helpful action filter, only the macro-operations that
are beneficial to the planning process can be selected into the
enhance domain. In this way, the extra computational burden
of excessive macro-operations is reduced. Jiang et al. [19]
extracted the macro-operation by analyzing the relationship
between each atomic operation in the existing planning solu-
tion and gives each macro-operation a certain heuristic value.
By dynamically adjusting the heuristic value in the planning
process, a better advantageous operation can be selected into
the solution.

The above method is offline when extracting macro-
operations, and the macro-operation library cannot be
updated in real time during the planning process. Particularly
for the second way of macro-operation extraction, if the
planning solution samples used in the learning phase are
insufficient or if the sample is not representative, the obtained
macro-operation will not be able to play a role in the sub-
sequent planning process, which could reducing the plan-
ning efficiency. (In [19], although the heuristic value of the
macro-operation was dynamically adjusted during the plan-
ning process, the macro-operation library did not change).
Therefore, much research on dynamic macro-operation gen-
eration has emerged in recent years. Reference [20] stud-
ied the online macro-operation generation method. By the
analysis of the external relationship between operation and
state, the macro-operation, which is beneficial to the planning
process, is obtained, and the effectiveness of the generated
macro-operation is improved. In [21], the VMSP algorithm,
which is designed for data mining, is used to mine the
sequence patternswith a high occurrence rate in existing plan-
ning solutions and merge them into macro-operations. Since
VMSP is an incremental data mining algorithm, the planner
has the ability to update macro-operation libraries in real
time.

In general, the use of macro-operations to improve the
efficiency of AI planners has become an important research
direction. Many AI planners based on macro-operations have
also been successfully applied to practical systems [23], [24].
As a result, this study involves the modeling of the mapping
problem of the system capability and service in the C4ISR
system as an AI planning problem. For the complex system
capacity and large service scale, an AI planner based on
macro-operation and OHC is proposed, with the simulation
results showing the effectiveness of the planner.

III. PROBLEM STATEMENT
In the practice, it’s hard to find a separate service that can
satisfy the complex system capability requirement. As a
result, the essence of the capability construction is to find a
reasonable service composition which can satisfy the system
capability requirements. The construction process is similar
to the web service composition [25], but in the C4ISR system,
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the service is different form the web service and the system
capability requirement can be more complex than the web
service request. In this paper, we assume that all services in
C4ISR system are definite. That is to say, given the specific
input and precondition, the output and effect of service are
known to us. To illustrate the capability construction problem
clearly, the following concepts need to be defined.

A. INPUT/OUTPUT PARAMETERS
The parameter set Para represents the set of all input/output
parameters in the system. It is mainly composed of the situa-
tion information set sInfo and the command and control infor-
mation set cInfo, namely, Para = sInfo ∪ cInfo. A situation
information S ∈ sInfo can be defined as a seven-tuple:

S = 〈sname, sid, stime,

slocation, starget, stype, sstate〉 (1)

where sname, sid , stime, slocation, and starget denote the
name, id, time, location, and target of the situation informa-
tion, respectively. The parameter stype indicates the type of
the situation information, e.g., text, image, audio, and video.
Parameter sstate represents the specific state of the target,
in which the data type is determined by stype.
Similarly, a command and control (C2) information C ∈

cInfo can be defined as a seven-tuple:

C = 〈cname, cid, ctime,

chigh, csub, ctargrt, cdir〉 (2)

where cname, cid , and ctime denote the name, id, and time
of the C2 information, respectively. The sender and receiver
of the C2 information are indicated by chigh and csub, while
ctargrt is the target involved in C , and cdir represents the
specific command and control orders.

B. STATE SET
The state set State includes all possible states during the exe-
cution of the system and describes the situation of the combat
units and the battlefield environment. A first-order language
is used to describe the state, e.g., a state p(name1, name2,
. . . , name1) ∈ State, where p is the predicate, and namei(i =
1, 2, . . . n) are the variables.
In this paper, all the precondition and effect can be

expressed by state set. When the concepts of input/output
parameters and state set are defined, the system capability
model and system service model can be described based on
input, output, precondition and effect.

C. SYSTEM CAPABILITY MODEL
System capability is the large granularity function that C4ISR
system must have to accomplish a task. It can be defined as a
five-tuple:

capability = 〈CName,CInput,

COutput,CPrecondition,Ceffect〉 (3)

FIGURE 1. Schematic diagram of system capability model.

FIGURE 2. Schematic diagram of service model.

where CName is the name of the system capability. CInput =
〈CisInfo,CicInfo〉 is a two-tuple, which gives the information
demanded by the system capability. CisInfo ⊂ sInfo and
CicInfo ⊂ cInfo represent the situation information input
set and C2 information input set, respectively. COutput =
〈CosInfo,CocInfo〉 is a two-tuple, which gives the informa-
tion produced by the system capability. CosInfo ∈ sInfo and
CocInfo ∈ cInfo represent the situation information output set
and C2 information output set, respectively.CPrecondition ⊆
State and CEffect ⊆ State represent the precondition and
effect of the system capability, respectively. A schematic dia-
gram of the system capability model is shown in FIGURE 1.

D. SERVICE MODEL
The service can be defined as a five-tuple:

Service = 〈SName, SInput, SOutput,

SPrecondition, SEffect〉 (4)

where SName is the name of the service. SInput =
〈SisInfo, SicInfo〉 is a two-tuple, which gives the information
demanded by the service. SisInfo ⊂ sInfo and SicInfo ⊂ cInfo
represent the situation information input set and C2 infor-
mation input set, respectively. SOutput = 〈SosInfo, SocInfo〉
is a two-tuple, which gives the information produced by the
service. SosInfo ⊂ sInfo and SocInfo ⊂ cInfo represent the
situation information output set and C2 information output
set, respectively. SPrecondition ⊆ State and SEffect ⊆ State
are the initial and goal states of the service. A schematic
diagram of the service model is shown in FIGURE 2.

Given a system capability requirement, if there does not
exist one appropriate service in library, we need to merge
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several atom services to satisfy the requirement. As we can
see in the definition, when a service need to be called, the cor-
responding input and precondition should be prepared. That
is to say, not all services can be merged together. To elabo-
rate the composition constraints, the capability construction
scheme is defined as follow.

E. CAPABILITY CONSTRUCTION SCHEME
The capability construction scheme can be defined as a
six-tuple:

scheme∗ = 〈SName∗, es, SInput∗,

SOutput∗, Sin∗, Sfin∗〉 (5)

where SName∗ is the name of scheme. Sequence es =
(Service1, Service2, . . . , Servicen) is the service sequence.
SInput∗ = 〈SisInfo∗, SicInfo∗〉 is a two-tuple, which gives the
information demanded by the scheme. SisInfo∗ ⊂ sInfo and
SicInfo∗ ⊂ cInfo represent the situation information input
set and C2 information input set, respectively. SOutput∗ =
〈AosInfo∗,AocInfo∗〉 is a two-tuple, which gives the infor-
mation produced by the scheme. SosInfo∗ ∈ sInfo and
SocInfo∗ ∈ cInfo represent the situation information output
set and C2 information output set, respectively. Sin∗ ⊆ State
and Sfin∗ ⊆ State are the initial and goal states of the
scheme. To ensure that every service in scheme can be called
successfully, the following constraints should be satisfied:

a) Service1.SInput ⊆ scheme∗.SInput∗

b) Service1.SPrecondition ⊆ scheme∗.Sin∗

c) Servicei+1.SInput ⊆ scheme∗.SInput∗ ∪ (
i⋃

k=1
Servicek .Soutput), i = 1, 2, . . . , n− 1

d) Servicei+1.SPrecondition ⊆ scheme∗.Sin∗ ∪ (
i⋃

k=1
Servicek .SEffect), i = 1, 2, . . . , n− 1

At the same time, the output and effect of the capability
construction scheme cannot exceed the union of all the ser-
vices’ output and effect of in the scheme (constraint e) and f)).

e) scheme∗.SOutput∗ ⊆
i⋃

k=1
Servicek .SOutput

f) scheme∗.SFin∗ ⊆
i⋃

k=1
Servicek .SEffect

If one of the above constraints (constraints a) – f)) cannot
be satisfied, the capability construction scheme is invalid.

However, the constraints a) – f) can only guarantee the
effectiveness of scheme. We need the constraints g) – i)
to ensure that the scheme can be considered to match the
capability (record as scheme∗ ≺ capability).

g) scheme∗.SInput∗ ⊆ capability.AInput
h) scheme∗.Sin∗ ⊆ capability.Ain
h) capability.Aoutput ⊆ scheme∗.Soutput∗

i) capability.AFin ⊆ scheme∗.SFin∗

A schematic diagram of the capability construction scheme
model is shown in FIGURE 3.

Now, by defining the above concepts, the construction of a
system capability can be described as: for a given capability

FIGURE 3. Schematic diagram of capability construction scheme model.

TABLE 1. Parameters and states of the problem.

and service library, find a set of services in a service library,
by which the corresponding capability construction scheme
can match the capability.

Taking the demand for fire allocation capability of ground-
to-ground strikes in C4ISR systems as an example [26],
the system is required to generate a strike plan and send
it to each combat unit after approval by the superior. The
parameters and states of the problem are shown in TABLE 1
TABLE 2 and TABLE 3 show the capability model and
service model. Finally, a capability construction scheme that
matches the demand can be seen in FIGURE 4.

IV. PDDL AND MODEL COVERT
Due to the similarity between the above capability construc-
tion and AI planning, this study considers converting the
problem into an AI planning problem, and the PDDL is
employed to describe the capability construction problem.

PDDL is a standardized planning-problem-description lan-
guage widely used to describe AI problems. In PDDL, a plan-
ning problem consists of two files, a domain description
file and a problem description file. The domain description
file consists of predicates and parameterized actions, and the
problem description file contains the object of the problem,
the initial state, and the goal state. This way of separately
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TABLE 2. Parameters and states of the problem.

TABLE 3. Service model of the service library.

FIGURE 4. Capability construction scheme.

TABLE 4. Mapping rules between service/capability model and PDDL.

describing the problem and the domain causes the description
of the planning problem to be more reasonable. That is, in the
same domain of the planning problem, multiple problems can
share a domain description, which saves storage space of the
file.

The PDDL description of AI planning includes the object,
predicates, initial state, goal state, and actions/operators.
Considering the conversion method of OWL-S to PDDL
in [20], we can use the mapping rules in TABLE 4 to perform
the conversion.

Since there is no concept in PDDL that specifically refers
to parameter input/output, we use the state to indicate whether
the parameter is available (available Para, where available

is a predicate, and Para is the corresponding input/output
parameters). If the state available Para is true, it indicates
that the parameter Para exists and can be directly used; if the
state available Para is false, it indicates that the parameter
Para cannot be used directly. The fire allocation capability
construction problem in PDDL is described in FIGURE 5.

V. ENHANCED-DOMAIN AND ORDERED-HILL-
CLIMBING-BASED PLANNER
Compared with the classic AI planning problem, the number
of operations in the capability construct domain is much
larger. Since the heuristic search planner needs to calculate
the heuristic value for the candidate action in every iteration,
the search efficiency of the planner is greatly decreased when
the number of actions increase. Therefore, this study draws
on the practice in [21] and [22] to analyze the existing plan-
ning solutions, extract the sequence of operations that often
appear, and combine them into macro-operations to reduce
planning time. The planner structure diagram proposed in this
study is shown in FIGURE 6.

As can be seen from FIGURE 6, the planner can be divided
into three parts: macro-operation learning and updating,
enhanced domain generation, and planning problem solving.
These three parts will be described in detail below.

A. MACRO-OPERATION LEARNING AND UPDATING
1) MACRO-OPERATION LEARNING
The purpose of macro-operation learning is to extract macro-
operations from existing planning solutions to speed up the
planning. This study uses the N-gram analysis method to
learn macro-operations from existing solution sets. N-gram
analysis is widely used for statistical natural language pro-
cessing tasks such as replication detection [27] and machine
translation [28]. For a piece of text, an N-gram is a set that
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FIGURE 5. Fire allocation capability construction problem in PDDL.

FIGURE 6. Planner structure diagram.

contains all combinations of consecutive N elements in the
text. For example:
text: I like it !
2-gram (character): {‘‘I_’’, ‘‘_l’’, ‘‘li’’, ‘‘ik’’, ‘‘ke’’, ‘‘e_’’,
‘‘_i’’, ‘‘it’’,‘‘t_’’ ,‘‘_!’’}
2-gram (word): {‘‘I like’’, ‘‘like it’’, ‘‘it !’’}
3-gram (character): {‘‘I_l’’, ‘‘_li’’, ‘‘lik’’, ‘‘ike’’, ‘‘ke_’’,
‘‘e_i’’, ‘‘_it’’, ‘‘it_’’,‘‘t_!’’}
3-gram (word): {‘‘I like it’’, ‘‘like it !’’} Similarly, for a
planning solution, its N-gram can be expressed as follows
(a simple example):
Solution:{EvalPower EvalShell EvalCharge CalcBestRn
TaskAssign}
2-gram: {‘‘EvalPower EvalShell’’, ‘‘EvalShell EvalCharge’’,
‘‘EvalCharge CalcBestRn’’, ‘‘CalcBestRn TaskAssign’’}
3-gram: {‘‘EvalPower EvalShell EvalCharge’’, ‘‘Eval-
Shell EvalCharge CalcBestRn’’, ‘‘EvalCharge CalcBestRn
TaskAssign’’}

The N-gram extraction algorithm is given in Algorithm 1.
According toAlgorithm 1, an N-gram set can be extracted

from a solution. Assume the planning solution set is

Algorithm 1 N-Gram Extraction Algorithm
Input solution π
1: Gn← φ

2: For each i in [1, |π | − n+ 1] do
3: Gn← Gn ∪ πi,i+n−1
4: end
Output N-gram set Gn

Solution = {π1, π2, . . . , πns} (where ns = |Solution|), the
N-gram set NGn = {Gn1,G

n
2, . . . ,G

n
ns} for the solution set

can be achieved by calling Algorithm 1 for every solution
in Solution.

Unfortunately, it is not wise to treat all combinations of
actions in theN-gram set asmacro-operations. In the planning
process, the macro-operation can play the role of accelerat-
ing the transition of the state, but if the number of macro-
operations is too large, the number of candidate operations is
invisibly increased, thereby reducing the planning efficiency.
Therefore, it is necessary to analyze the action combinations
in the n-gram set, select the action combinations that can
assist in the planning process, and synthesize them into the
planning domain.

For a combination of actions in an N-gram collection, the
frequency of occurrence can be defined as

facn =
card({Gnj |ac

n
∈ Gnj , j = 1, 2, . . . , ns})

ns
(6)

Certainly, a higher frequency of occurrence means that the
action combination is more likely to advance the planning
process. At the same time, it is also necessary to consider the
effect of length n on the utility of action combination acn.
A longer combination of actions is more likely to contain
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some important steps in the planning process. Once accepted
by the planner and added to the planning solution, it will
greatly advance the planning process. For two combinations
of actions that have the same frequency but different lengths,
the combination with the longer length should have higher
utility values. However, if the length of the combination
is too long, the versatility of the action combination will
be greatly reduced, which will bring additional computing
burden. Taking the above situation into account, the utility
value of the action combination is defined as follows:

U (acn) = facn + α
n

nmax
(7)

where nmax represents the maximum length of the action
combination andα ∈ [0, 1] is theweighting factor of length n.
The set of action combination utility values can be defined as:

NGUS = {NGU i
|i = 2, 3, . . . , nmax} (8)

NGU i
= {(aci,U (acik ))|ac

i
∈ Gi1 ∪ G

i
2 ∪ . . . ∪ G

i
ns} (9)

After the calculation of the above utility values is per-
formed, all combinations in the macro-operation candidate
set are sorted according to utility value, and the action com-
binations with the top g% of utility values are selected to
generate a macro-operation library by using Algorithm 2.

Algorithm 2 Macro Operation Generation Algorithm
Inputaction combination acn = 〈a1, a2, . . . , an〉
1: Oi.pre← ∅Oi.addeff ← ∅Oi.deleff ← ∅
2: For all ai in acn do
3: For each precondition P ∈ ai.pre
4: If P /∈ Oi.pre ∧ P /∈ Oi.addeff
5: Oi.pre← Oi.pre ∪ {P}
6: End
7: End
8: For each delete effect D ∈ ai.deleff
9: If D ∈ Oi.addeff
10: Oi.addeff ← Oi.addeff \ {D}
11: Else
12: Oi.deleff ← Oi.deleff ∪ {D}
13: End
14: End
15: For each add effect A ∈ ai.addeff
16: If A ∈ Oi.deleff
17: Oi.deleff ← Oi.deleff \ {A}
18: End
19: Oi.addeff ← Oi.addeff ∪ {A}
20: End
21: End
22: For each LP ∈ Oi.pre ∪ Oi.addeff ∪ Oi.deleff
23: Replace LP by the corresponding generalization

parameter
24: End
25: Return Oi
OutputMacro operation Oi

The aim of the Algorithm 2 is to combine the actions
into macro operation. In the algorithm, the effect consists
of addeff and deleff. Literally, the addeff(deleff) means that
it will be added to (deleted form) the state set after calling
the corresponding service. At the same time, Algorithm 2
can be divided into two parts, one is to merge the actions
(line 2-21), and the other is to complete the generalization
(line 22-24). In the merge part, the precondition and effect of
macro operation Oi are adjusted when merging the actions.
and in the generalization part, all the instance parameters will
be generalized.

2) MACRO OPERATION LIBRARY UPDATE
The generation of macro-operations is based on the analysis
of existing planning solutions. If a representative planning
solution set cannot be collected before the macro-operation
library is generated, the macro-operations are not strong
enough to play a role in the subsequent planning process.
Therefore, it is necessary to continuously analyze the newly
obtained planning solution during the planning process to
generate higher-quality macro-operations. To avoid repeated
N-gram analysis of existing planning solutions, an incre-
mental macro-operation library updating method is proposed
here. The entire update process can be completed by perform-
ing an N-gram analysis on the newly added planning solution.

Assume that the set of action combination utility values,
which were updated last time, is NGUSlast = {NGU i

Last |i =
2, 3, . . . , nmax}. The new solution set is Solution′ =
{π ′1, π

′

2, . . . , π
′
ns} (where ns = |Solution|) and the corre-

sponding set of operational combination utility values is
NGUSNew = {NGU i

new|i = 2, 3, . . . , nmax}.
Algorithm 3 Helps to merge the two sets.
In Algorithm 3, line 1-6 are used to initialize the merged

set NGUSMerge. the addition of new set lead to the increase
of total solution number, as a result, the utility value of the
action combination should be recalculated by line 4,

U (Mocik )←
(
U (Mocik )− α

n
nmax

)
ns

n′s + ns
+ α

n
nmax

where, Mocik is an action combination in NGU i
Merge, ns rep-

resent the solution number in original solution set and n′s
represent the solution number in new solution set. It should
be note that, every action combination in NGUSmerge will
be updated in this step. Line7-16 are the main process of
merging. For each action combination Nocik in NGU

i
New, if it

also belongs to nguimerge ∈ ngusmerge, its utility value should
be updated again by line 10,

U (Mocik )

←

(
U (Locik )− α

n
nmax

)
ns +

(
U (Nocik )− α

n
nmax

)
n′s

ns + n′s

+α
n

nmax

where, U (locik ) represents the corresponding utility values
in the NGUSLast . Otherwise, its utility value should be
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Algorithm 3 Utility Value Set Merging Algorithm

Input NGUSLast = {NGU i
Last |i = 2, 3, . . . , nmax}

NGUSNew = {NGU i
New|i = 2, 3, . . . , nmax}

1: NGUSMerge← NGUSLast
2: For each NGU i

Merge ∈ NGUSMerge
3: For each (Mocik ,U (Mocik )) ∈ NGU

i
Merge

4: U (Mocik )←
(
U (Mocik )− α

n
nmax

)
ns

n′s+ns
+ α n

nmax
5: End
6: End
7: For each NGU i

New ∈ NGUSNew
8: For each (Nocik ,U (Nocik )) ∈ NGU

i
New

9: If ∀(Mocik ,U (Mocik )) ∈ NGU
i
Merge,Noc

i
k = Mocik

10: U (Mocik )←

(
U (Locik )−α

n
nmax

)
ns+

(
U (Nocik )−α

n
nmax

)
n′s

ns+n′s
+

α n
nmax

11: Else
12: U (Nocik )←

(
U (Nocik )− α

n
nmax

)
n′s

n′s+ns
+ α n

nmax

13: NGU i
Merge← NGU i

Merge ∪ {(Noc
i,U (Nocik ))}

14: End
15: End
16: End
17: Return NGUSMerge
Output NGUSMerge = {NGU i

Merge|i = 2, 3, . . . , nmax}

recalculated by line 12, and (Noci,U (Nocik )) will be added
to the NGU i

Merge by line 13.
After obtaining the updated set of utility values, the action

combinations with the top g% of utility values are then
selected to generate the macro-operation library by using
Algorithm 2.

B. ENHANCED DOMAIN GENERATION
The size of the generated macro-operation library should
be large enough; otherwise, it may not be able to contain
more effective macro-operations, resulting in less perfor-
mance improvement of the planner. However, if all themacro-
operations in the library are added to the planning domain
for participation in the planning process, the search space
will be too large to decrease the planning efficiency. There-
fore, the macro-operations that are most likely to be used
should be selected from the macro-operation library for the
characteristics of each problem. Finally, the enhanced fields
can be formed from the atomic operations and the selected
operations to maximize planning efficiency.

Choosing a suitable set of macro-operations for differ-
ent planning problems is essentially looking for a mapping
relationship between problem conditions, effects, and macro-
operations. Drawing on the idea of heuristic filtering in [18],
this study uses the relaxation planning method to pre-plan the
problem in the original planning domain and entire macro-
operation library, and the enhanced domain is generated by
the atomic operations in the original domain and the macro-
operations that are used in the corresponding relaxation
planning solution.

C. PLANNING PROBLEM SOLVING
1) HEURISTIC DESIGNING
Solving the planning problem is essentially the process of
state search. The main idea is to calculate and compare the
heuristic value of each state, and select the better state in
the search process to get the final planning solution. In the
path planning problem, the A∗ algorithm is a very classic
heuristic algorithm. It determines the current action strategy
by calculating the heuristic value of the location at the next
moment in each search process. Its heuristic is defined as:

F(ST ) = H (ST )+ G(ST ) (10)

whereF(ST ) is the heuristic of state ST ,H (ST ) represents the
cost of the state transition from the initial state to the current
state, and G(ST ) represents the cost of the state transition
from the current state to the goal state. In path planning,
the state is the location of the target, and the initial and
goal locations of the target are also known, so calculating
H (ST ) and G(ST ) only requires a function that calculates
the distance between the two locations. Due to the excellent
performance of the A∗ algorithm, the heuristic has a wide
range of applications in many path-planning scenarios.

Unlike the path-planning problem, the calculation of the
state heuristic values in the AI planning problem is not as
intuitive. Therefore, how to construct a reasonable heuristic
to calculate the heuristic value of the current state is a key
issue.

In response to this problem, many existing search meth-
ods ignore the delete effect of actions to relax the original
planning problem and then estimate the distance from the
current state to the goal state, e.g., [7], [10], [11], and [17].
The following is a brief introduction to the heuristic of the
relaxation plan.

Given an AI planning problem AIP = (P,A, I ,G), where
P is a finite set of logical propositions, A is a finite set
of all actions, and I and G indicate the initial state and
goal state of the problem, respectively, the relaxed plan-
ning problem can be expressed as AIP′ = (P,A′, I ,G),
where A′ is a set of actions in A, in which the delete
effect is ignored. The relaxation planning graph of AIP′ is a
directed hierarchical graph with two types of nodes and three
types of edges. The layers of the planning graph alternate
between the propositional layer and the action layer, recorded
as PL0,ACT0, · · · ,PLi,ACTi, · · · ,ACTt−1,PLt , and it is
subject to:

PLi =

{
I i = 0
PLi−1 ∪ {add(a)|pre(a) ⊆ PLi−1} i > 0

(11)

ACTi = {a ∈ A′|pre(a) ⊆ PLi, i ≥ 0} (12)

The expansion can be stopped when one of the following
two conditions is met by the propositional layer PLi: a) the
fixed point is reached, PLi = PLi−1. b) the goal state is
reached, G ⊆ PLi. If the propositional layer of the graph
can finally reach the goal state, then two sets can be obtained
through the solution extraction process: a) the sub-goal set
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extracted in each proposition layer SGi(1 ≤ i ≤ t). b) the
action set extracted in each action layer that satisfies the
relevant sub-goals SAi(0 ≤ i ≤ t − 1). Finally, the relaxation
planning solution 〈SA0, SA1, . . . , SAt−1〉 can be achieved.
For a given state ST , the relaxation planning graph heuristic
value can be defined as:

h(ST ) =
t−1∑
i=0

|SAi| (13)

However, when the planning domain contains the macro-
operations, using (13) to calculate the heuristic value of the
state may result in the degradation of the solution quality.
Since the macro-operation is obtained by combining multiple
atomic operations, if its heuristic value is treated the same as
an atomic operation, some atomic operations that are more
favorable to the current state will lose their advantage. The
planner will preferentially select the macro-operation for the
current state, and overuse of macro-operations may increase
the length of the planning solution. Therefore, it is necessary
to adapt the calculation of the heuristic value after adding the
macro-operations to avoid the increase in the length of the
solution.

Based on the above considerations, the state heuristic
proposed in this study are defined as follows:

h(s) =
t−1∑
i=0

|SAi|∑
j=1

w(aij), aij ∈ SAi (14)

w(a) =

{
δa.length a is macros
1 others,

(15)

where a.length is the length of macro-operation a and δ ∈
(0.5, 1) represents the macro-operation weight adjustment
factor, which affects the planner’s selection preference for
macro-operations. The smaller the value is, the more the plan-
ner prefers to select the macro-operation into the planning
solution.

2) STATE SEARCH ORDER
Enforced hill climbing (EHC) is a ‘‘radical’’ search strategy,
which simplifies the search termination conditions of the
current layer, based on the width-first search, and introduces
the child nodes that do not satisfy the condition into the search
queue to deepen the depth of the search (FIGURE 7). Due to
the ‘‘greedy’’ feature of EHC, it is very useful in anAI planner
for quickly finding a feasible solution from the initial state to
the goal state.

When macro-operations are not introduced, the actions
which are instantiated by atomic operations have the same
priority. Therefore, EHC generally searches the candidate
state randomly. However, after macro-operations are intro-
duced, if the search is still performed randomly without con-
sidering the priority of the actions, the greedy characteristic
of EHC may lead to the ignorance of the macro-action of a
better candidate and the selection of an atomic action when
it has a certain promotion effect, causing it to be selected

FIGURE 7. Enforced hill climbing.

FIGURE 8. Ordered hill climbing.

before macro-actions. The occurrence of this situation will
greatly affect the promotion of macrooperations in the plan-
ning process. It is only when macroactions are selected into
the planning solution during the planning process can the
entire planning process be accelerated. If no macro-action
is used in a planning process, then a series of ‘‘extra’’ steps
such as instantiating macrooperations and searching macro-
actions will still be carried out, which are bound to extend
the search time. In view of the above problems, the candidate
state is sorted according to the length of the corresponding
action, and the state is searched for in order (FIGURE 8).

VI. SIMULATION
In the simulation, the above methods are integrated into
an enhanced-domain and ordered-hill-climbing-based plan-
ner (EDOHCP). To illustrate the superiority of the EDOHCP,
the experiment compares EDOHCP with the other three
planners:

a) Classic heuristic planner (CHP), which is based on FF
and does not contain the macro-operations.

b) Macro-operation-based classic heuristic planner
(MCHP), which adds the macro-operations into domain
without the heuristic filtering.
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c) Enhanced-domain-based classic heuristic planner
(EDCHP), which performs the classic heuristic search in the
enhanced domain.

For a few reasons, the real data in C4ISR system cannot be
shown in this paper. To simulate the C4ISR system capability
construction process and match the characteristics of its large
number of operations, the travel and the education domains in
OWLS-TC version 4.0 [29] are used in the simulation. A total
of 1020 service requests are generated randomly in each
domain, in which the first 1000 service requests are planned
by the CHP, and the corresponding solutions are used in the
macro-operation learning, and the last 20 service requests are
used as test samples. The OWL-S2PDDL Converter in [20] is
introduced to convert the services and requests to the PDDL.
Here, we run the experiments in Eclipse (Version: 3.4.2) and
the PCwith Intel Core i3-4150 (3.50GHz) and 4GBmemory.

The first set of experiments compared the planning time
and number of searches of the four planners in the two
domains. In the EDOHCP, we set the nmax = 6, α = 0.9, δ =
0.9, g = 30, and the maximum number of macro-operations
in the library Mmax = 30. For an impartial comparison
between these planners, the average search time and number
of searches of a Monte-Carlo simulation (with 40 runs) is
provided in FIGURE 9- FIGURE 12.

FIGURE 9. Search time in travel domain.

FIGURE 10. Search time in education domain.

The search time of each planner in the travel domain and
education domain is shown in FIGURE 9 and FIGURE 10.
In general, the CHP takes the longest time. The MCHP
is significantly less time-consuming than the CHP, and the

FIGURE 11. Number of searches in travel domain.

FIGURE 12. Number of searches in education domain.

EDCHP takes slightly less time than theMCHP. Although the
number of macro-operations in the enhanced domain is less
than the number in the entire macro-operation library, and the
search branch of EDCHP is relatively less than the MCHP
in the subsequent search process, there will still be a cer-
tain amount of time overhead when generating the enhanced
domain. If the shortened time in the search process cannot
compensate for the generation time of the enhanced domain,
the time overhead of EDCHP will exceed that of the MCHP
(see groups 4, 6, 8, and 9 in FIGURE 9 and groups 1, 5, 10,
and 11 in FIGURE 10). The EDOHCP proposed in this study
uses the OHC method to search the state, which speeds up
the progress of the planner in the search phase. Therefore,
in most cases, the planning solution can be obtained in the
shortest time.

FIGURE 11 and FIGURE 12 show the search times of the
four planners in the travel domain and the education domain.
It can be seen that the results of the search times have the same
regularity as the results of the planning time in FIGURE 9 and
FIGURE 10.

TABLE 5 shows the average of the total planning time and
total number of searches for the 40 Monte Carlo simulations
of the 20 test samples in the travel and education domains.
It can be seen that, compared with the CHP, MCHP, and
EDCHP, the planning time of EDOHCP proposed in this
study is shortened by 28.52%, 9.18%, and 8.20%, and the
number of searches are reduced by 30.28%, 7.74%, and
5.11% in the travel domain. At the same time, the planning
time was shortened by 19.73%, 9.50%, and 7.52%, and the
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TABLE 5. Total search time and numbers of each planner.

FIGURE 13. The total search time of EDOHCP with the different maximum
length of macros.

number of searches are reduced by 17.51%, 6.53%, and
4.19% in the education domain.

The second set of experiments compared the total plan-
ning time of EDOHCP with the different maximum length
of macro-operations, and the other parameters remained
unchanged from the first set of experiments. FIGURE 13
shows that as the maximum length of macro-operations
increases, the planning time continues to decrease and then
increase. In the travel domain, the EDOHCP has the shortest
planning time when nmax = 5, and in the education domain,
the EDOHCP has the shortest planning time when nmax = 7.
In essence, the above phenomenon is caused by the utiliza-
tion of macro-operations. The reason why the macro-based
planner can reduce the planning time is mainly because the
macro-operation accelerates the search progress and reduces
the number of searches in the planning process. Clearly,
the longer the length of the macro-operations is, the more
favorable the advancement of the search process is, but at the
same time, the probability of its usage is inevitably reduced.
If the macro-operation is not successfully utilized during the
planning process, then extra processing steps will extend the
planning time.

The third set of experiments compared the total planned
time of EDOHCP in the two domains under different learning
times, while maintaining constant the other parameters from
the first set of experiments. FIGURE 14 shows that as the
learning time increases, the planning time of EDOHCP also
generally decreases. It is worth noting that the decrease here
is probabilistic. That is to say, the relationship between the
learning times and the performance is not absolute. Statis-
tically speaking, the greater the learning time is, the more

FIGURE 14. The total search time of EDOHCP with the different learning
sample size.

likely that macro-operations can be used in future planning
problems (In the travel domain, the planning time is lowest
when the learning sample size is10^2.5 instead of 10^3).

VII. CONCLUSION
To solve the capability construction problem in a C4ISR
system and quickly map the system capability to the service,
this study models the system capability and service first,
then describes the system capability construction problem as
an AI planning problem and designs the macro-operations
learning algorithm and heuristic search algorithm from the
characteristics of the problem. From the simulation experi-
ment results, the proposed planner can effectively shorten the
solution time and find a feasible solution that satisfies the
condition in fewer search times.Meanwhile, some parameters
in the planner, such as the maximum length of the macro-
operation and the weight factor will have a significant impact
on the planning results. In essence, the impact of the above
parameters on the planner is reflected in the calculation of
the action combination utility value, so the next step can focus
on how to calculate the utility value of the action combination
according to the characteristics of the domain.
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