
Received January 29, 2019, accepted February 16, 2019, date of publication February 27, 2019, date of current version April 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2900730

A New Cell-Level Search Based Non-Exhaustive
Approximate Nearest Neighbor (ANN)
Search Algorithm in the Framework
of Product Quantization
YANG WANG 1,2, ZHIBIN PAN1,3, AND RUI LI1
1School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2Research Institute of Xi’an Jiaotong University, Zhejiang, Hangzhou 311215, China
3Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences, Xi’an 710119, China

Corresponding author: Zhibin Pan (zbpan@xjtu.edu.cn)

This work was supported in part by the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) under
Grant 201800030, in part by the Open Research Fund of the Key Laboratory of Spectral Imaging Technology, Chinese Academy of
Sciences, under Grant LSIT201606D, and in part by the Major Science Program of Xiaoshan District, Hangzhou, Zhejiang, under
Grant 2018225.

ABSTRACT Non-exhaustive search is widely used in the approximate nearest neighbor (ANN)
search. In this paper, we propose a new cell-level search-based non-exhaustive ANN search algorithm in
the framework of product quantization (PQ) called cell-level PQ to speed up the ANN search. The cell-level
search is introduced by searching all the PQ cells of the query vector on the cell level, and the length of
the candidate list can be significantly reduced with negligible computational costs. Instead of using the high
time-consuming coarse quantizers, which are necessary in all of the existing non-exhaustive ANN search
algorithms such as inverted files (IVFs) and inverted multi-index (IMI), our proposed cell-level PQ reuses
the PQ cells of query vector to reject database vectors so that the ANN search in the framework of PQ
can be efficiently speeded up. In addition, because our proposed cell-level PQ does not need to store the
auxiliary indexes of coarse quantizers for each database vector, no extra memory consumption is required.
The experimental results on different databases demonstrate that our proposed cell-level PQ can significantly
speed up the ANN search in the framework of PQ, and meanwhile, the search accuracy is almost the same
as that of the standard PQ.

INDEX TERMS Approximate nearest neighbor search, vector-level search, cell-level search, product
quantization, partial distance search.

I. INTRODUCTION
With the development of multimedia technology, content-
based image retrieval technique has beenwidely used inmany
applications, such as face retrieval [1], object recognition [2],
image matching [3] and image classification [4]. In the state-
of-the-art image retrieval systems, the feature vectors are
extracted at first as a pre-processing step from both query and
reference images. Then, the feature vectors of query images
are on-line searched in the database. A fundamental task in
the on-line searching is the nearest neighbor (NN) search,
which is defined as follows:

The associate editor coordinating the review of this manuscript and
approving it for publication was Wen Chen.

For a query vector and a corresponding database, the task
of NN search is to return the nearest vector which has
the smallest Euclidean distance from the current query
vector to the database. For a small and low-dimensional
database, exhaustively searching the database vector-by-
vector to exactly find the nearest vector of the query vector
is feasible. In this paper, we call the technique of vector-by-
vector searching as the vector-level search.

However, exhaustive search on vector-level requires the
calculations of real Euclidean distances between a high-
dimensional query vector and all candidate vectors in a high-
dimensional database, which is extremely time-consuming.
To solve this problem, many fast approximate nearest
neighbor (ANN) search algorithms for high-dimensional

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

37059

https://orcid.org/0000-0002-0584-9359


Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

database, such as tree-based algorithms [5], [6], Hash-based
algorithms [7], [8] and vector quantization (VQ)-based algo-
rithms [9], [10] are proposed. ANN algorithms relax the con-
dition of the exact NN search and try to quickly find a small
set of several approximate nearest database vectors instead of
only one exact nearest database vector. For this reason, ANN
is a trade-off between search accuracy and computational
costs.

Vector quantization (VQ) [11] is a compact and popu-
lar encoding technique for ANN search applications. Vec-
tor quantizer employs a pre-trained codebook and divides
the database into a number of Voronoi cells. Then, each
longer database vector can be efficiently encoded by using
the shorter index of its nearest codeword in the pre-trained
codebook.

Because VQ only needs to store the shorter indexes of
nearest codewords instead of the original database vectors,
and each index of VQ usually has only a few bits, the memory
consumption of storing the encoded database can also be
efficiently reduced.

However, VQ is ineffective for high-dimensional databases.
Product quantization (PQ) [9] is a widely used ANN search
algorithm, which can provide efficient quantization perfor-
mance on high-dimensional databases. The core idea of PQ is
to encode the high-dimensional vector space by the Cartesian
product of several low-dimensional sub-spaces, then PQ
independently quantizes them by using the corresponding
low-dimensional VQ quantizers.

To further improve the search speed of PQ, several
non-exhaustive algorithms, such as the inverted index
(also known as inverted files, IVF) [12] and the inverted
multi-index (IMI) [13] are proposed.

IVF returns a short list of database vectors which are
close to the query vector x. This short list is called as a
candidate list and used to search the approximate nearest
neighbors of the query vector x. In fact, IVF is a coarse
VQ quantizer which firstly quantizes the database into k ′

cells. When inputting a query vector, IVF selects the database
vectors in the first w (w � k ′) nearest cells as the candidate
list. Instead of exhaustively searching the database vector-
by-vector (i.e., vector-level search), IVF only searches the
database vectors in the candidate list so that only a small
amount of Euclidean distances between query vector and all
database vectors in the candidate list need to be calculated.
IVF extracts the candidate list by searching the coarsely quan-
tized database cell-by-cell. In this paper, we call the technique
of searching cell-by-cell as the cell-level search. Because
cell-level search only requires to calculate k ′ (k ′ � n,
n is the number of database vectors) real Euclidean dis-
tances between each query vector and the centroids of cells,
the cell-level search must be more efficient than vector-level
search. By using cell-level search in IVF, the ANN search can
be significantly speeded up.

On the other hand, IMI is a typical inverted index-based
non-exhaustive search algorithm which uses two sub-space
PQ quantizers instead of one VQ quantizer as the

coarse quantizer. Because IMI can provide much more cells
than IVF, IMI is able to use a much shorter candidate list
than that of IVF to achieve the same level of search accuracy.
Obviously, IMI is also a kind of cell-level search algorithm.
However, because IMI needs to store two indexes based
on using two sub-quantizers for each database vector, the
memory consumption of IMI is far more than that of IVF.

Inverted index-based non-exhaustive search algorithms
focus on solving how to generate an efficient inverted file
system so as to extract a high-quality and short candidate
list of database vectors. By using cell-level search instead of
vector-level search, a majority of real Euclidean distance cal-
culations between query vector and all database vectors can
be avoided. However, inverted index-based algorithms need
to store the auxiliary indexes of coarse quantizer, which is
usually a non-negligible large memory consumption. In addi-
tion, the computational costs of inverted index-based non-
exhaustive search algorithms cannot be neglected as well in
many cases.

In this paper, we propose a new cell-level search based
non-exhaustive ANN search algorithm in the framework of
PQ called Cell-level PQ to speed up the ANN search. Differ-
ent from the inverted index-based algorithms, our proposed
Cell-level PQ completely avoids using the coarse quantizer.
And it generates the candidate list by reusing the cells of PQ
quantizer to find the cells which are far enough from the query
vector so that all the database vectors in these cells can be
rejected.

Compared with inverted index-based algorithms, there are
two advantages in our proposed Cell-level PQ. Firstly, our
proposed Cell-level PQ can efficiently speed up the ANN
search in the framework of PQ meanwhile keeping almost
the same search accuracy of PQ. Without using high time-
consuming coarse quantizers, Cell-level PQ achieves better
search performance than the inverted index-based algorithms.
Secondly, Cell-level PQ requires no extra memory consump-
tion. In contrast, inverted index-based algorithms need a large
amount of extra memory to store the auxiliary indexes of
coarse quantizers.

II. RELATE WORK
The fast ANN search is an important task in content-based
image retrieval andmany other fields of information sciences.
There are many works which have been proposed in the past
decades. In this section, we briefly describe several related
algorithms and analyze their performances.

A. VECTOR QUANTIZATION (VQ)
VQ [11] is a widely used low-bit-rate data compression
technique, which can be regarded as a mapping from a
D-dimensional space to a finite set, which is called a
codebook. The codebook C = {CW1,CW2, . . . ,CWk} is
pre-trained by the well-known LBG algorithm [11] and the
centroids of trained cells are called codewords, where CWi is
the i-th codeword in codebook C and k is the size of C .

37060 VOLUME 7, 2019



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

In the encoding procedure, VQ finds the nearest codeword
of an input vector x in the pre-trained codebook C as below.

d(x,CWbm) = min
CWi∈C

d(x,CWi), (1)

where CWbm is the best match codeword of x in the
pre-trained codebook C and its index is bm. d(x,CWi) out-
puts the Euclidean distance between two vectors x and CWi.
Then, the input vector x is encoded by using the index bm of
its nearest codeword CWbm.

VQ has also be used in ANN search. For a database Y =
{y1, y2, . . . , yi, . . . , yn}, where yi = (y1i , y

2
i , . . . , y

D
i ), yi ∈ R

D

is the i-th D-dimensional feature vector and n is the size of
the database, VQ encodes the database vectors and produces
a n-size index table for database Y . Each element of this index
table is the codeword index of the corresponding database
vector yi. Because the memory bits for storing the index table
are far less than the bits used to straightforwardly store the
original database vectors, the database Y can be efficiently
compressed.

In the decoding procedure, a simple table look-up tech-
nique is used and a VQ compressed database can be easily
reconstructed by using the index table and the codebook. The
flowchart of VQ is shown in Fig. 1.

FIGURE 1. The flowchart of VQ.

B. PRODUCT QUANTIZATION (PQ)
Although VQ is popularly and successfully used in ANN
search applications, VQ is inefficient for high-dimensional
and large-scale databases. To overcome this drawback of VQ,
PQ is proposed in [9] and has been proved to be an efficient
solution for encoding high-dimensional vectors. In PQ algo-
rithm, the high-dimensional space is firstly decomposed into
m low-dimensional subspaces, then PQ applies VQ in each

subspace independently. It is easy to see that VQ is a special
case of PQ when the number m of sub-spaces is taken as
m = 1. Assuming that the quantizers of all m sub-spaces
have the same size of k∗, the main codebook C of PQ can
be described as the Cartesian product of m sub-codebooks of
m low-dimensional sub-spaces:

C = C1
× C2

× ...C j
× ...× Cm, (2)

where C j is the pre-trained sub-codebook of j-th sub-space.
Obviously, the size of C is k = (k∗)m and PQ can easily gen-
erate a tremendous number of cells to quantize the database
vectors even though k∗ is a small value. In the framework
of PQ, a database vector yi is divided into m sub-vectors
yi = [u1(yi), u2(yi), . . . , uj(yi), . . . , um(yi)], where the func-
tion of uj(yi) outputs the j-th sub-vector of a vector yi and
uj(yi) ∈ RD/m. PQ quantizes each sub-vector uj(yi) by the
nearest codeword in the corresponding j-th sub-codebook C j.

d(uj(yi),CW
j
bmj ) = min

CW j
i ∈C

j
d(uj(yi),CW

j
i ), (3)

where CW j
bmj is the best match codeword of uj(yi) in the pre-

trained sub-codebook C j and its index is bmj.
In this paper, we define each PQ cell Cell ji as the

set of database vectors which are quantized by CW j
i in

j-th sub-quantizer. Similar to VQ, PQ quantizes a database
into mn-size index tables. The cost of storing each database
vector is m log2 k

∗ bits. The flowchart of PQ is shown
in Fig. 2.

In the pre-processing, PQ off-line quantizes the database
and each database vector yi is encoded asm indexes of log2 k

∗

bits by using m corresponding sub-codebooks of size k∗.
When inputting a query vector x, PQ firstly on-line computes
the squared Euclidean distances of d2(uj(x),CW

j
i ) for i =

1, 2, . . . , k∗ and j = 1, 2, . . . ,m between the j-th sub-vector
of x and all k∗ codewords in the corresponding j-th sub-
codebook, and stores these squared Euclidean distances as
a m × k∗ look-up table. Then, the asymmetric distance
computation (ADC) is used to approximate the real squared
Euclidean distance between x and a database vector yi. The
ADC distance between query x and a database vector yi is
defined as the squared Euclidean distance between x and PQ
quantized yi, which can be computed as

d̃2(x, yi) ,
m∑
j=1

d2(uj(x),CW
j
bmj ), (4)

where CW j
bmj is the nearest codeword of uj(yi) in the

j-th sub-quantizer and its index is bmj. For calculating the
squared ADC distance of each database vector, PQ only
needs to load m squared distances d2(uj(x),CW

j
i ) for j =

1, 2, . . . ,m from the look-up table and adds them together.
The computational costs in this step are only n(m − 1) addi-
tions for a n-size database.

VOLUME 7, 2019 37061



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

FIGURE 2. The flowchart of PQ.

C. INVERTED INDEXING AND ITS
FURTHER IMPROVEMENTS
Inverted index (IVF) [12] is a widely-used non-exhaustive
search algorithm, which can be used in PQ algorithm to avoid
vector-by-vector search. An auxiliary coarse VQ quantizer of
k ′-size is introduced and the database is firstly divided into k ′

cells. IVF searches each of k ′ cells and chooses the database
vectors in the first w nearest cells of x as the candidate
list, which are a very small portion of (w/k ′) (w � k ′) of
the database vectors. An overwhelming majority of database
vectors can be rejected in this efficient cell-level search and
only about n(w/k ′) database vectors in the candidate list need
to be exhaustively searched (here we use ‘‘about’’ because
the cells usually contain different numbers of vectors). For
the reasons above, PQ search can be efficiently accelerated
by IVF algorithm.

A 2-D toy example of IVF is shown in Fig. 3.
The inverted multi-index (IMI) [13] can be considered

as a generalized IVF algorithm. Different from conven-
tional IVF, the database Y is divided into two sub-spaces
and IMI employs two PQ coarse sub-quantizers instead
of one VQ coarse quantizer like IVF for quantization.

FIGURE 3. A 2D toy example of IVF. The number of IVF cells is k ′ = 64 and
the candidate list returned by IVF contains w = 4 cells which are the
nearest 4 cells to the query vector x .

Because IMI uses far more cells than IVF to quantize the
database, the candidate list of IMI can achieve much higher
search accuracy than that of IVF when the two candidate lists
have the same length.

A 2-D toy example of IMI is shown in Fig. 4.

FIGURE 4. A 2D toy example of IMI. The number of IMI cells is k ′ = 64
and the candidate list returned by IMI also contains w = 4 cells which are
the nearest 4 cells to the query vector x .

The key idea of inverted index and inverted index-based
non-exhaustive search algorithms is that for a query vector x
and a database Y of size n, efficient cell-level search is con-
ducted on coarsely quantized database Y to firstly generate a
short candidate list and then only the database vectors in the
candidate list are exhaustively searched. Because the size of
candidate list is usually far smaller than the database size of n,
a majority of real Euclidean distance calculations among x

37062 VOLUME 7, 2019



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

and all database vectors can be avoided to speed up the ANN
search.

However, we find that in many cases, the computational
costs of coarse quantization in IVF and IMI cannot be
neglected and need to be re-evaluated. The coarse quantiza-
tion of IVF and IMI in fact require a lot of extra additions and
multiplications, and these extra computational costs depend
on the dimensionalities of databases and the sizes of coarse
codebooks. For convenience, we assume the total numbers
of cells are k ′ = kIVF for IVF and k ′ = k2IMI for IMI.
Table 1 shows the computational costs of coarse quantization
of IVF and IMI.

TABLE 1. Computational costs of coarse quantization of IVF and IMI.

Note that exhaustive search in PQ on vector-level requires
n(m − 1) additions. If DkIVF � nm or 2DkIMI � nm is
not satisfied, the computational costs for coarse quantization
should not be neglected. For example, when kIVF = 4096,
n = 1000000, D = 960 and m = 8, to find the first w nearest
cells, IVF needs to calculate the real squared ADC distance
between an input query vector x and each codeword yi in
the coarse codebook. exhaustive search of PQ on vector-level
requires n(m − 1) = 7000000 additions to calculate the real
squared ADC distances between x and yi, i = 1, 2, . . . , n.
In comparison, IVF takes (2D−1)kIVF = 7860224 additions
and DkIVF = 3932160 multiplications for coarse quantiza-
tion. Obviously, IVF is less efficient than exhaustive search
of PQ in this case. Generally, inverted index-based algorithms
are not efficient when the size of coarse codebook is large,
the dimensionality of database is high and the size of database
is not extremely large.

In addition, because inverted index-based algorithms need
to store the index of each database vector due to introduc-
ing auxiliary coarse codebook, the inevitable extra memory
consumption of them for each database vector is consider-
ably large. IVF need log2 kIVF bits for storing k ′ auxiliary
indexes of IVF coarse codebook. IMI cells are generated by
using two PQ sub-quantizers. Because each of the two PQ
sub-quantizers has kIMI codewords, the coarse quantization
of IMI requires 2 log2 kIMI bits to store the auxiliary indexes
of two sub-quantizers for each database vector. Table 2 shows
the extramemory consumptions of coarse quantization of IVF
and IMI.

Because the extra memory consumptions of coarse quanti-
zation in IVF and IMI depend on the database size n, the extra
memory consumptions are considerably large and should not
be neglected, especially when the database size n is a large
value. For example, considering the case of kIVF = 1024,
the extra memory consumption of coarse quantization for a

TABLE 2. Memory consumption of IVF and IMI for coarse quantization.

FIGURE 5. The accumulational frequency of each database vector in the
sorted U .

n-size database is 10× n bits for IVF-accelerated PQ, which
is considerably large and cannot be neglected.

III. THE PROPOSED CELL-LEVEL SEARCH BASED
NON-EXHAUSTIVE ANN SEARCH ALGORITHM
Inverted index-based non-exhaustive search algorithms
coarsely quantize database at first to generate k ′ cells and
then use cell-level search to extract a short candidate list
from the k ′ cells efficiently. However, the coarse quantization
is computationally expensive. For this reason, computation
speed of inverted index-based algorithms is limited. In addi-
tion, inverted index-based algorithms need a large amount
of extra memory consumption to store the auxiliary index of
each database vector in the coarsely cells. These drawbacks
of inverted index-based algorithms show that the coarse quan-
tizers used in inverted index-based algorithms are inefficient.
In this section, we propose a new cell-level PQ search based
non-exhaustive ANN search algorithm called Cell-level PQ,
which applies cell-level search by only reusing the PQ cells
without using any other coarse quantizer.

In our proposed Cell-level PQ, we assume that the
sub-codebook size of PQ is k∗, the size of database is n,
the dimensionality of each database vector is D and PQ uses
m sub-quantizers for quantization.
Our proposed Cell-level PQ algorithm consists of three

parts as follows: (1) Initializing the ‘‘so far’’ smallest squared
Euclidean distance. (2) Extracting the candidate list by
cell-level searching the PQ cells. (3) Accelerating the search
by partial distance search (PDS) [14]. The overview of our
proposed Cell-level PQ is shown in Fig. 6. We now explain
how our proposed Cell-level PQ runs.

VOLUME 7, 2019 37063



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

FIGURE 6. Framework of cell-level PQ.

A. INITIALIZING THE ‘‘SO FAR’’ SMALLEST
SQUARED ADC DISTANCE
Let us consider the j-th sub-space. At the beginning, all
squared ADC distances of d2(uj(x),CW

j
i ), i = 1, 2, . . . , k∗

are calculated and the PQ cells are sorted according to
d2(uj(x),CW

j
i ) in an ascending order. We find the first PQ

cell Cell j1 of uj(x), which with CW j
1 as its centroid is the

nearest codeword of uj(x) in the sorted C j. The database

37064 VOLUME 7, 2019



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

vectors in the PQ cell of Cell j1 quantized by CW j
1 are highly

possible to be the nearest database vectors of uj(x) because
at least these database vectors are best match vectors of x in
the j-th sub-space. The squared ADC distance between uj(x)
and CW j

1 is defined as d2bmj and stored. We also store the

value of
m∑
j=1

d2bmj for the cell-level candidate list extraction in

Section III.B. Then, we calculate the union set U = Cell11 ∪
Cell21 ∪ ...∪Cellm1 , meanwhile the accumulational frequency
of each database vector appearing in Cell j1, j = 1, 2, . . . ,m
is counted. Finally, U is sorted according to their accumu-
lational frequencies in a descending order. An example of
sorted U is shown in Fig.6.
In this example, PQ uses m = 16 sub-quantizers to

quantize the SIFT 1M database [15], which contains 106

128-dimensional vectors.U contains 57385 database vectors,
and there are 3 database vectors with the highest accumula-
tional frequency of 10. The sorted U is used in Section III. C
for fast PDS search.

After obtaining sorted U , we calculate the squared ADC
distance between x and each database vector in U to find
the nearest database vector of x in U . By using the stored
squaredADC distances in the look-up table, the squaredADC
distance between x and a database vector yi can be calculated
by using (4). Next, we define yBM the nearest database vector
of x in U , and the ‘‘so far’’ smallest squared distance d2min is
the squared ADC distance between x and yBM .
Moreover, the calculation of finding the nearest database

vector of a query vector x in U can be further accelerated by
using partial distance search (PDS). The detailed accelerating
procedures are described in Section III.C.

B. CELL-LEVEL CANDIDATE LIST EXTRACTION
In this section, we will explain how to use the ‘‘so far’’
smallest squared ADC distance d2min to search the PQ cells.
Let us consider an arbitrary Cell ji in j-th sub-space, where
i = 1, 2, . . . , k∗, j = 1, 2, . . . ,m. The squared ADC distance
between x and the database vectors in Cell ji satisfies

d̃2(x, y) ≥ d2(uj(x),CW
j
i )+ ((

m∑
j=1

d2bmj )− d
2
bmj ), (5)

where d2bmj is the squared ADC distance between uj(x) and
its nearest codeword in C j, which has been calculated and
stored in Section III.A. We do not need to calculate the
value of

m∑
j=1

d2bmj because this value is fixed and is stored

in Section III.A for fast calculation so that it only needs on

on-line substitution to obtain ((
m∑
j=1

d2bmj )− d
2
bmj ).

Obviously, if Cell ji with CW
j
i as its centroid satisfies,

d2(uj(x),CW
j
i )+ ((

m∑
j=1

d2bmj )− d
2
bmj ) ≥ d

2
min, (6)

all database vectors in this Cell ji are not nearer than yBM .
Because in Section III.A the PQ cells in each j-th sub-space
have been sorted according to d2(uj(x),CW

j
i ) in an ascending

order, once (6) is satisfied, all database vectors in the PQ
cellsCell ji ,Cell

j
i+1, . . . ,Cell

j
k∗ can be safely rejected. The set

of remaining database vectors in the remaining PQ cells of
Cell j1,Cell

j
2, . . . ,Cell

j
i−1 in each j-th sub-space is obtained

by RC j
= Cell j1 ∪Cell

j
2 ∪ ...∪Cell ji−1. Then, we defined CL

as the candidate list. When all PQ cells have been searched,
CL can be constructed as CL = RC1

∩RC2
∩ ...∩RCm. The

other database vectors which are not included in U or CL are
represented as O. The framework of extracting the candidate
listCL is summarized in Algorithm 1.

Algorithm 1 Extracting the Candidate List CL
INPUT: The database Y = [y1, y2, . . . , yn], a query vector

x, the sorted PQ cells according to d2(uj(x),CW
j
i ),

i = 1, 2, . . . , k∗, j = 1, 2, . . . ,m in an ascending
order, the ‘‘so far’’ smallest squared distance d2min.

OUTPUT: The candidate list CL.
1. for each sub-vector uj(x) of x, j = 1, 2, . . . ,m do
2. i = 1
3. c = (

m∑
j=1

d2bmj )− d
2
bmj

4. whilei ≤ k∗&& d2(uj(x),CW
j
i )+ c < d2min do

5. i = i+ 1
6. end while
7. RC j

= Cell j1 ∪ Cell
j
2 ∪ ... ∪ Cell ji−1

8. end for
9. CL = RC1

∩ RC2
∩ ... ∩ RCm

10. Return CL.

C. ACCELERATING SEARCH BY PARTIAL DISTANCE
SEARCH
In the framework of PQ, d2(uj(x),CW

j
i ) in each j-th sub-

space is firstly computed and stored in a look-up table. When
computing d̃(x, yi), PQ simply needs to load m squared ADC
distances in the look-up table and calculate the real squared
ADC distance by using Eq. (4). Because the look-up table is
already computed and saved for a query vector x, the only
computational cost of PQ is (m − 1) times additions for
computing d̃(x, yi).

Partial distance search (PDS) technique [14] is employed
in our proposed Cell-level PQ to avoid completely calculating
(m−1) times additions to obtain real squaredADCdistance of
the database vectors inU andCL. PDS is a popular fast search
algorithm, which uses the partial squared ADC distance to
reject database vectors in U and CL. In Cell-level PQ, a two-
stage PDS is introduced for fast search.

For database vectors in sorted U , the ‘‘so far’’ nearest
database vector is initialized as the first database vector yi
in the sorted U , and the ‘‘so far’’ d2min is initialized as the
squared ADC distance between x and the first database vec-
tor in U . For database vectors in CL, the ‘‘so far’’ nearest

VOLUME 7, 2019 37065



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

database vector is initialized as yBM , and the ‘‘so far’’ d2min is
initialized as d̃(x, yBM ). For a database vector yi in U or CL,
the first-stage partial squared ADC distance between x and yi
is defined as,

d2p1(x, yi) =
m/4∑
j=1

d2(uj(x),CW
j
bmj ), (7)

where CW j
bmj is the nearest codeword of uj(yi) in the

j-th sub-quantizer and its index is bmj. d2min is the squared
ADC distance between x and the ‘‘so far’’ nearest database
vector. If d2p1(x, yi) ≥ d2min, then yi cannot be nearer
than the ‘‘so far’’ nearest database vector yBM and can be
safely rejected. Otherwise, we check the second-stage partial
squared ADC distance between x and yi,

d2p2(x, yi) = d2p1(x, yi)+
m/2∑

j=m/4+1

d2(uj(x),CW
j
bmj ). (8)

If d2p2(x, yi) ≥ d
2
min, yi also cannot be the nearest neighbor

of x and can be safely rejected. Otherwise, we completely
calculate the squared ADC distance between x and yi by,

d̃2(x, yi) = d2p2(x, yi)+
m∑

j=m/2+1

d2(uj(x),CW
j
bmj ). (9)

If d̃2(x, yi) < d2min, yi is the nearer database vector to x
than the ‘‘so far’’ nearest database vector yBM so that the ‘‘so
far’’ d2minis updated and replaced by d̃

2(x, yi), meanwhile the
‘‘so far’’ nearest database vector yBM is updated and replaced
by yi.
By rejecting the database vectors in U or CL using Eq. (7)

and Eq. (8), a majority of squared ADC distance calculations
of PQ can be avoided. The flowchart of the PDS checking
procedures is shown in Fig. 7.

IV. EXPERIMENTAL RESULTS
In this section, we firstly introduce the databases used in our
experiments. Then, the computational cost of our proposed
Cell-level PQ is evaluated and compared with two existing
non-exhaustive algorithms, which are inverted index (IVF)
and inverted multi index (IMI). Finally, the performances of
search accuracy of these three algorithms are compared and
analyzed.

A. DATA SETS
To evaluate the performance of our proposed Cell-level
PQ, the experiments are performed on two well-known and
widely used databases:

1. SIFT 1M [15] database. SIFT database consists
of a gallery set which contains one million (106)
128-dimensional SIFT descriptors, a learning set which
contains 100k (105) SIFT descriptors, a query set
with 10k (104) SIFT descriptors and the precomputed
groundtruth (the Euclidean nearest neighbors) of the
query set.

FIGURE 7. The flowchart of PDS search.

2. GIST 1M [16] database. GIST database consists of
a gallery set which contains one million (106) 960-
dimensional GIST descriptors, a learning set which
contains 10k (104) GIST descriptors, a query set
with 10k (104) GIST descriptors and the precomputed
groundtruth of the query set.

Codebooks with different sizes are generated off-line by
the popular LBG algorithm [11] using the learning sets of
different databases. Following the settings of IVF, the coarse
codebook sizes of IVF are set to k ′ = 1024 and k ′ = 4096.
In order to making a fair comparison, the coarse codebook
sizes of IMI for each sub-quantizer are set to

√
1024 = 32 and

√
4096 = 64, respectively. In these two cases, the numbers

of IMI cells are the same as the numbers of IVF cells. In each
of these two cases, the number of IMI cells is the same as
the number of IVF cells. Following recent related PQ-based
fast ANN works, the number of PQ sub-spaces is typically
set to m = 8 or m = 16 and the size of PQ sub-codebooks
is set to k∗ = 256. All of our experiments are implemented
by using Visual Studio 2017, which works on a PC with Intel
Core i5-6500 3.2GHz processor and 8GB RAM using single
thread.

B. COMPUTATIONAL COSTS EVALUATION
Our proposed Cell-level PQ is proposed to avoid the squared
distance calculations in standard PQ. In Cell-level PQ,
the database can be divided into three parts as below:

Part 1. The database vectors in U which are used to initial-
ize the ‘‘so far’’ smallest squared distance d2min.

37066 VOLUME 7, 2019



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

Part 2. The database vectors in candidate list CL which are
used to find approximate nearest neighbors.

Part 3. The database vectors in O which can be safely
rejected by using cell-level search.

The percentages of these three parts of database vectors
are represented as PU , PCL and PO, respectively. Because U
and CL are partially overlapped, the percentage PU∪CL of the
union set of U andCL is a little smaller than PU + PCL . The
percentages of three different parts of database vectors are
shown in Table 3.

TABLE 3. The average vector numbers in different parts of database.

Squared ADC distance computations between x and PQ
quantized database vectors yi in these three parts of database
are different. Database vectors in O can be rejected safely by
using the cell-level search and all of squared ADC distance
computations can be avoided.

For the database vectors in U ∪ CL, PDS technique can
be applied and a part of complete squared ADC distance
computations can be saved. If a database vector yi can be
rejected by using PDS at the first stage check by Eq.(7),
the computational costs are only (m/4 − 1) additions. Oth-
erwise, if yi can be rejected by using PDS at the second stage
check by Eq.(8), only (m/2 − 1) additions are required. For
other database vectors in U ∪ CL, complete real squared
ADC distance computations require (m−1) additions. For the
database vectors in U ∪CL, the percentage of remaining real
squared ADC distance computations can be calculated as:

RU∪CL =
(m4 − 1)P1 + (m2 − 1)P2 + (m− 1)P3

(m− 1)PU∪CL
× 100%,

(10)

where P1 and P2 are the percentage of database vectors in
U ∪ CL which can be rejected by the first stage rejection
of PDS and the second stage rejection of PDS, respectively.
P3 = PU∪CL − P1 − P2 is the percentage of remaining
database vectors in U ∪ CL. The percentage of the saved
computational costs of complete real ADC squared distances
can be evaluated as:

Rtotal = 1− RU∪CL × PU∪CL . (11)

The computational costs reduction performance of our pro-
posed Cell-level PQ is shown in Table 4. Table 4 shows that
for SIFT database, a majority of complete real squared ADC
distance computations for database vectors in U ∪CL can be
saved by using the PDS technique. For GIST database, PDS
technique also works, but the computational costs reduction
is not very significant. We can also learn from Table 4 that

TABLE 4. Computational costs reduction performance of cell-level PQ.

TABLE 5. Detailed search time (ms) of different non-exhaustive search
algorithms.

because the database vectors in O do not require any real
squared ADC distance computations, PQ can be efficiently
accelerated. Taking the SIFT database for example, when

VOLUME 7, 2019 37067



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

TABLE 6. The overall performance of different non-exhaustive search algorithms for different databases.

m = 8, 97.44% of real squared ADC distance computations
between x and database vectors can be avoided.

The detailed search time of different algorithms is given
in Table 5. In Table 5, t1 is the search time of coarse
quantization of IVF or IMI, and t2 is the search time of
vector-level search in different algorithms. We can see from
t2 in Table 5 that because the candidate list size of IVF and
IMI is about n(w/k ′) = n×(8/210) = n×(32/212) = n/128,
which is smaller than n × PU∪CL of our proposed cell-level
PQ, IVF and IMI require shorter time for searching their
candidate lists. Here PU∪CL is the percentage of the vectors
which require vector-level search in the database. However,
t1 in Table 5 demonstrated that the coarse quantization is
very complex. Taking SIFT 1M database as an example,
when m = 8, the coarse quantization of IVF costs 5.64ms
and searching in the candidate list costs only 0.46ms. Obvi-
ously, the search time of IVF is mainly determined by the

coarse quantization. For this reason, the search time of IVF
is even longer than that of standard PQ when the dimension-
ality of database is high. By completely avoiding the coarse
quantization, the search time of our proposed Cell-level PQ
is much shorter than that of IVF and is comparable to IMI
when m = 8. We can also see from Table 5 that IMI is the
fastest algorithm. However, the search accuracy of IMI is not
satisfactory, which will be detailly analyzed in Section IV.C.

C. SEARCH ACCURACY EVALUATION
A non-exhaustive ANN search algorithm generates a candi-
date list firstly, which is a small portion of database in order
to avoid exhaustive search. Because only the database vectors
included in the candidate list are searched afterwards, ANN
search can be efficiently speeded up.

However, if the groundtruth vector is not included in the
candidate list, non-exhaustive ANN search cannot return the

37068 VOLUME 7, 2019



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

groundtruth anyway. We define the candidate lists which
contain the groundtruth as the ‘‘good’’ candidate lists and the
other candidate lists as the ‘‘bad’’ candidate lists. Assuming
that the number of ‘‘good’’ candidate lists is N1 and the
number of ‘‘bad’’ candidate lists is N2, QCL in our paper is
then defined as QCL =

N1
N1+N2

× 100%.
The search accuracy can also be evaluated in terms of

Recall@R, which is calculated as the ratio of query vectors
for whose groundtruth is presented in its nearest R quan-
tized database vectors. Obviously, QCL is the upper bound
of Recall@R, and a high QCL is a necessary condition for
obtaining a high Recall@R. The overall search speed and
search accuracy performance of our proposed Cell-level PQ
is summarized in Table 6.

We can learn from Table 6 that Cell-level PQ can keep the
highest QCL . We can also observe that the search accuracy is
slightly affected by Cell-level PQ. Note that the experimental
results are different from the result in [13], where the value of
Recall@R of IMI is higher than that of standard PQ and IVF.
But in our experiment, the value of Recall@R of IMI is worse.
The reason is that in [13], IMI sets kIMI = 214 and kIVF = 213

or kIVF = 216. In this case, IMI produces k2IMI = 228 cells,
which is far more than the cells of IVF. It means that IMI will
use about twice memory of IVF for storing the indexes of
two sub-codebooks. In our experiment, we set kIVF = k2IMI to
make IVF and IMI have the same numbers of cells for a fair
comparison. In this case, the candidate list of IMI achieves
much worse search accuracy performance than IVF.

Taking SIFT 1M database as an example, when the number
of cells is 210 and we select the database vectors in the first
8 nearest cells of the current query vector as the candidate
list, the QCL of IVF is 99.50%, whereas the QCL of IMI is
89.80%, which is quite smaller than 99.50% of IVF and 100%
of our proposed Cell-level PQ. It means IVF can achieve
better search performance than IMI when IVF has the same
cells as IMI. Taking the search time into consideration, our
proposed Cell-level PQ achieves the best trade-off between
search speed and search accuracy.

V. CONCLUSION
In this paper, we proposed a new cell-level search based
non-exhaustive ANN search algorithm named Cell-level PQ
in the framework of PQ, which completely avoids using the
coarse quantizer and reuses the PQ cells to extract a short
and high-quality candidate list for fast ANN search. In our
work, the inverted index-based algorithms are re-evaluated
and we find that they are inefficient for their non-negligible
extra computational costs and considerably large extra mem-
ory consumptions, especially when the database size is not
extremely large and the dimensionality of database is high.

Compared with the inverted index-based non-exhaustive
search algorithms, because our proposed Cell-level PQ only
requires very little extra computational costs and no extra
memory consumption, Cell-level PQ is more efficient than
inverted index-based algorithms.

Experimental results on different databases demonstrate
that PQ search can be significantly speeded up by using
our proposed Cell-level PQ, and compared with the state-of-
the-art algorithms, our proposed algorithm achieves the best
trade-off between search speed and search accuracy.

REFERENCES
[1] J. Tang, Z. Li, and X. Zhu, ‘‘Supervised deep hashing for scalable face

image retrieval,’’ Pattern Recognit., vol. 75, pp. 25–32, Mar. 2017.
[2] Y. Chen, X. Li, A. Dick, and R. Hill, ‘‘Ranking consistency for

image matching and object retrieval,’’ Pattern Recognit., vol. 47, no. 3,
pp. 1349–1360, Mar. 2014.

[3] J. Cheng, C. Leng, J. Wu, H. Cui, and H. Lu, ‘‘Fast and accurate image
matching with cascade hashing for 3D reconstruction,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1–8.

[4] C. Deng, X. Liu, Y. Mu, and J. Li, ‘‘Large-scale multi-task image labeling
with adaptive relevance discovery and feature hashing,’’ Signal Process.,
vol. 112, pp. 137–145, Jul. 2015.

[5] C. Silpa-Anan and R. Hartley, ‘‘Optimised KD-trees for fast image descrip-
tor matching,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2008, pp. 1–8.

[6] J. Yuan and X. Liu, ‘‘Product tree quantization for approximate near-
est neighbor search,’’ in Proc. IEEE Conf. Image Process., Sep. 2015,
pp. 2035–2039.

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, ‘‘Locality-sensitive
hashing scheme based on p-stable distributions,’’ in Proc. 20th Ann. Symp.
Comput. Geometry, 2004, pp. 253–262.

[8] S. Ercoli, M. Bertini, and A. Del Bimbo, ‘‘Compact hash codes for efficient
visual descriptors retrieval in large scale databases,’’ IEEE Trans. Multime-
dia, vol. 19, no. 11, pp. 2521–2532, Nov. 2016.

[9] H. Jegou, M. Douze, and C. Schmid, ‘‘Product quantization for nearest
neighbor search,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[10] Q. Ning, J. Zhu, Z. Zhong, S. C. H. Hoi, and C. Chen, ‘‘Scalable image
retrieval by sparse product quantization,’’ IEEE Trans. Multimedia, vol. 19,
no. 3, pp. 586–597, Mar. 2017.

[11] Y. Linde, A. Buzo, and R. M. Gray, ‘‘An algorithm for vector quantizer
design,’’ IEEE Trans. Commun., vol. 28, no. 1, pp. 84–95, Jan. 1980.

[12] J. Sivic and A. Zisserman, ‘‘Video Google: A text retrieval approach to
object matching in videos,’’ in Proc. IEEE Conf. Comput. Vis., Oct. 2003,
pp. 1470–1477.

[13] A. Babenko and V. Lempitsky, ‘‘The inverted multi-index,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 6, pp. 1247–1260, Jun. 2015.

[14] W.-J. Hwang, ‘‘Fast kNN classification algorithm based on partial distance
search,’’ Electron. Lett., vol. 34, no. 21, pp. 2062–2063, Oct. 1998.

[15] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[16] A. Oliva and A. Torralba, ‘‘Modeling the shape of the scene: A holistic
representation of the spatial envelope,’’ Int. J. Comput. Vis., vol. 42, no. 3,
pp. 145–175, 2001.

YANG WANG received the B.S. degree from
Xi’an Jiaotong University, Xi’an, China, in 2010,
where he is currently pursuing the Ph.D. degree
with the School of Electronic and Information
Engineering. His research interests include image
coding, image processing, and multimedia infor-
mation retrieval.

VOLUME 7, 2019 37069



Y. Wang et al.: New Cell-Level Search Based Non-Exhaustive ANN Search Algorithm in the Framework of PQ

ZHIBIN PAN received the B.S. degree in infor-
mation and telecommunication engineering and
the M.S. degree in automation science and tech-
nology from Xi’an Jiaotong University, China, in
1985 and 1988, respectively, and the Ph.D. degree
in electrical engineering from Tohoku University,
Japan, in 2000. He is currently a Professor with the
School of Electronic and Information Engineering,
Xi’an Jiaotong University. His current research
interests include image compression, multimedia

security, and object recognition.

RUI LI received the B.S. and master’s degree
from Xidian University, Xi’an, China, in 2012 and
2015, respectively. He is currently pursuing the
Ph.D. degree with the School of Electronic and
Information Engineering, Xi’an Jiaotong Univer-
sity, Xi’an. His research interests include vector
quantization and hyper-spectral image processing.

37070 VOLUME 7, 2019


	INTRODUCTION
	RELATE WORK
	VECTOR QUANTIZATION (VQ)
	PRODUCT QUANTIZATION (PQ)
	INVERTED INDEXING AND ITS FURTHER IMPROVEMENTS

	THE PROPOSED CELL-LEVEL SEARCH BASED NON-EXHAUSTIVE ANN SEARCH ALGORITHM
	INITIALIZING THE ``SO FAR'' SMALLEST SQUARED ADC DISTANCE
	CELL-LEVEL CANDIDATE LIST EXTRACTION
	ACCELERATING SEARCH BY PARTIAL DISTANCE SEARCH

	EXPERIMENTAL RESULTS
	DATA SETS
	COMPUTATIONAL COSTS EVALUATION
	SEARCH ACCURACY EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	YANG WANG
	ZHIBIN PAN
	RUI LI


