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ABSTRACT It is difficult to extract both structural and functional information from the input grey magnetic
resonance imaging (MRI) and pseudo-color positron emission tomography (PET) images using the same
decomposition scheme inmulti-scale transform fusionmethods. To overcome this limitation, we propose two
algorithms based on intrinsic image decomposition to decompose MRI and PET images into its two separate
components in the spatial domain. Algorithm 1 could extract structural information while reducing the noise
from the MRI image. Algorithm 2 is for averaging the color information from the PET image. As for the
image fusion rule, the defined importance of image coefficients is used to combine the decomposed two-scale
components to produce the final fused image, which could keep more spatial resolution with substitution
strategies. It demonstrates that the proposed fusion methods could improve the values of mutual information
by the metrics on the disease database. Furthermore, the proposed methods produce the competitive visual
signal-to-noise ratio values on experiments for robustness database. In addition to the variance in metrics
values, the non-parametric Friedman test and the post-hoc Bonferroni-Dunn test are used to analyze the
significant difference between the proposed and the state-of-the-arts methods.

INDEX TERMS Two-scale MRI-PET fusion, intrinsic image decomposition, structural and functional
information, statistical significance test.

I. INTRODUCTION
Medical image has witnessed a rapid growth in recent
decades, i.e. computer tomography (CT), magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
and single photon emission computed tomography (SPECT).
Anatomic and functional information are essential for diag-
nosis in oncology for head tumors. In 1998, PET/CT scan-
ner is introduced combining anatomic CT imaging and
functional PET imaging in a single image. The huge suc-
cess of PET/CT imaging is a proof of the strong interest
in medical image fusion. Compared to PET/CT imaging,
PET/MRI imaging includes additional advantages: (1) It pro-
vides high-resolutionMRI image for studying abnormal brain
structure and low-resolution multispectral PET image for
studying metabolism information of brain. (2) The radiation
dose is reduced. (3) The scanning time is reduced [1]–[3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Weiyao Lin.

Notably in this paper, MRI image is presented in grey. And,
PET image is presented in pseudo-color.

PET/MRI medical image fusion is to merge multiple
images with different features, such as anatomic and func-
tional information. The purpose of medical image fusion
is to preserve the specific features for increasing applica-
tions in handling with medical problems [4]. Nowadays,
a broad range of medical image fusion methods are available
in research institutes and hospitals worldwide. According
to the representation format of processed image informa-
tion, the image fusion methods could perform at pixel-level,
feature-level, and decision-level, for respectively [5], [6].
Numerous research papers focus on medical image fusion at
pixel-level using raw image pixel values. Therefore, we focus
on the image fusion methods at pixel-level. Two aspects
can be explored in pixel-level fusion methods: advanced
image decomposition schemes and advanced image fusion
rules [5]. According to the advanced image decomposition
schemes, prospective methods for image fusion at pixel-level
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can be roughly grouped into three categories: (1) single-scale
methods [7]–[12], (2) multi-scale transform (MST) meth-
ods [13]–[25], and (3) two-scale methods [26]–[31].

The first category refers to measure the activity level
of input raw images in a single-scale feature space for
combining image coefficients. Principle component anal-
ysis (PCA) [7]–[9] based methods refer to the linear
combination of vectors constructed from the input source
medical images to form new irrelevant principle components.
Fuzzy logic [10] is used to measure the local feature of the
image in which the sharper edge in the image corresponds
to the higher value of fuzzy logic. Furthermore, dense scale-
invariant feature transform (DSIFT), a local feature descrip-
tor, is introduced to extract the salient feature from the input
images [11]. Due to that the higher intensity corresponds to
the higher contrast, the intensity component of low-resolution
PET image is replaced by higher-resolutionMRI image using
intensity-hue-saturation (IHS) [12] method. However, single-
scale based methods introduce artificial effects, such as block
effects and ringing effects.

The second category refers to MST including pyramid
transform (PT) and wavelet transform (WT) performed in
the transform domain. MST methods decompose inputs into
low and high frequency bands. To begin with, Laplacian
pyramid transform (LAP) [13] has been used to decom-
pose the input image into a low frequency band and many
high frequency bands. Next, Zheng et al. [14] builds a new
advanced PT scheme using support value transform (SVT).
Similarly, the salient features of the input source images
can be obtained by the neighbor distance (ND) filter [15],
as well. With the development of MST, WT has been iden-
tified as an ideal method for fusing images. Examples of
these methods include discrete wavelet transform (DWT)
[16], [17], curvelet transform (CVT) [18], contourlet trans-
form (COT) [19], [20], non-subsampled contourlet transform
(NSCT) [21], shearlet (ST) [22]–[25], etc. Especially, ST pro-
vides a true two-dimension spare representation for images
with edges using a tight frame of well localized waveforms
at different scales and directions. Wang et al. [25] firstly
explored to use ST in the field of medical image fusion.
However, MST based methods produce noisy fused images.

The third category is to construct a fast two-scale image
decomposition scheme performed in the spatial domain
for image fusion. Unlike MST based fusion methods per-
formed in the transform domain, two-scale image decom-
position scheme focuses on processing its raw image pixels
in the spatial domain. And two-scale image decomposition
scheme divides the inputs into smooth and detail parts.
Shutao et al. [26] constructs the salient feature weighted map
of the input source images using an edge-preserving smooth-
ing filter: GFF [27], which can blur the detail informa-
tion while preserving the edge information of the input
images. Inspired from edge-preserving filter, the smooth
layer is defined as the averaging of local minima and maxima
envelops [28], [29]. And the detail layer is obtained by the
subtraction of smooth layer from the input medical image.

Furthermore, the input image is decomposed into two layers
with spatial feature and spectral feature using retina-inspired
models (RIM) [30]. With the consideration of psychological
and physiological mechanisms of the human visual system,
internal generative mechanism (IGM) is proposed to decom-
pose the input image into smoothed and detailed images [31].
However, the fused image that is obtained by two-scale based
methods [28]–[31] is with low contrast.

Recently, the existing image fusion method combined
with the image enhancement is used to obtain a final
fused image with high-contrast detail information, simultane-
ously. Kou et al. [32] applies the gradient domain weighted
least square (GWLS) after the pyramid transform-based
fusion to enhance the details. Zhao et al. [33] uses adap-
tive gain function as the fusion rule for the detail images
results from the total variation multi-scale decomposition
method. Jang et al. [34] and Rahman et al. [35] constructs
the multi-scale scheme using Retinex to obtain the image
fusion and image enhancement. Inspired by these works
in [32]–[34], the intrinsic image decomposition (IID) used
as the multi-scale image decomposition scheme is proposed
for the fusion of MRI and PET medical images in this
paper. By the proposed method, the final fused image with
enhanced detail information is obtained. Generally, the lim-
itation of advanced image decomposition schemes is that
the same scheme is adopted to decompose different source
medical images. For the problem of image decomposition
schemes, we construct two models of perceiving function
of human vision to decompose input MRI and PET images
into their two-scale detail-enhanced image representations by
IID methods [8], [34]–[38] in this paper. Two directions of
the new IID methods are the advanced reflectance estima-
tion and the advanced illumination estimation methods [39].
Algorithm 1 [34], [35] based on Retinex method is used to
estimate high-quality illumination image which is good at
extracting salient information while reducing the noise from
MRI image in grey. And Algorithm 2 [37] based on Grey-
world method is used to estimate high-quality reflectance
image by extracting the color information from a PET image
in pseudo-color. For the problem of image fusion rules,
PCA [9], the importance of image coefficients (IIC) [10], and
intensity-hue-saturation (IHS) [12], which could keep more
spatial resolution with substitution strategies, are selected as
the image fusion rules for combing the decomposed two-scale
images that are obtained by IID methods. The advantages of
the proposed methods are shown as follows:
(1) MST based fusion methods require more than two

scales. This paper presents a simple two-scale fusion
method performed in the spatial domain using two
different IIDmethods for the input twomedical images.
Hence, the reflectance and illumination layers obtained
via IIDmethods could preservemuchmore detail infor-
mation.

(2) Inspired by the work in [10], the Dempster-Shafer
(D-S) evidence theory is used to evaluate the impor-
tant information in the decomposed reflectance and
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illumination image. Compared to the existing fusion
framework, the final fused image is obtained by per-
forming IIC based fusion rule on all the decomposed
images at various scales from the inputs.

(3) The experimental results illustrate both subjective and
objective evaluations on the testing imaging data with
respect to resolution changes, motion artefacts and syn-
thetic noise. This paper gives a discussion on the values
of the selected full-reference image quality metrics
using non-parametric tests for judging whether there
exists a significant difference between the state-of-the-
arts and proposed fusion methods.

The remainder of the paper is organized as follows.
In Section II, the theory of IID and its related research
works: Retinex and Grey-world methods are described.
In Section III, the proposed fusion methods based IID are
illustrated. Section IV gives the experiments. Finally, the con-
clusion is shown in Section V.

II. INTRINSIC IMAGE DECOMPOSITION
Intrinsic image decomposition (IID) is defined as the problem
of separating an image into its reflectance and illumination
components [36]. The IID problem can be defined as follows:

I = R+ L (1)

where I denotes an input image, R denotes the reflectance
component corresponding to the intrinsic reflectivity of a
surface, and L denotes the illumination component referring
to the illumination of the scene and texture of the objects.
The high-quality reflectance and illumination components
are recovered from a single image using Retinex and Grey-
world based methods.

A. RETINEX-BASED METHODS
Decomposition with a single image is studied using Retinex-
based method in this paper. Retinex method simulates the
human visual system and explains the color constancy phe-
nomenon. The primary goal of Retinex-based methods is
to decompose one image into a reflectance image and an
illumination image [34], [35]. Taking a digital image I as an
input, the output of the method is the reflectance image R on
a pixel by pixel in the following manner:

R(x, y) = log(I (x, y))− log(I (x, y) ∗ F(x, y)) (2)

where ∗ denotes spatial convolution operation and

F(x, y) = α exp(−
(
x2 + y2

)
/σ 2) (3)

in which σ is the scale factor that controls the width of
the kth surround function and α is the normalization factor.
Fig. 1 gives the input grey image and its corresponding
reflectance images using three scale factor values. The input
natural image in greyscale in Fig. 1(a) presents noise struc-
tural information of tissues and organs. To increase contrast
of the image, the single scale Retinex (SSR)method is applied
on the input MRI with different scale parameters, displayed

FIGURE 1. The input MRI and its results of scale factor with different
values (σ = 5,11,25).

in Fig. 1(b)-(d). Fig. 1(b) (σ = 5) displays high-contrast
foregrounds characterized by enhanced illumination of white
matter. Fig. 1(c) (σ = 11) presents clear shape information
around the boundary and introduces much more illumination.
And, Fig. 1(d) (σ = 25) presents high-contrast illumina-
tion but the modified structural information of white matter
from the input MRI. That is, the parameter σ determines
the contrast of the reflectance image. The larger σ retains
more detail information of the white matter characterized by
higher-contrast illumination. On the other side, the smaller σ
means the more spatial detail information of the structural
information. The scale factor is used to balance structural
information and white matter.

Fig. 2 displays four examples of image decomposi-
tion results applying different values of the scale factor
(σ = 5, 13, 11, 7) by Retinex-based method. From Fig. 2,
it can be cleared that the four different types of images: the
woman, the man, CT and MRI are respectively decomposed
into a reflectance component and an illumination component.
The former preserves the primary visual information of the
source image, such as structural information. On the other
hand, the latter preserves the illumination information, such
as the high contrast in the latter part.

B. GREY-WORLD-BASED METHODS
Grey-world method is another developed to address the prob-
lem of color constancy. In human visual system, light is
received by the eyes which send signals to the visual cortex.
And color constancy is a process described as the procedure
of allowing the human brain to recognize a familiar object
as being a consistent color regardless of the amount of light
reflecting from it at a given moment [37]. The pixel values of
the input RGB (red, green, blue) color image are dependent
on the light source, the surface reflectance and the camera
sensitivity function. Grey-world method estimates the illumi-
nation component by the average color of the selected image
resulted from the color constancy [40].∫

R(λ, I (x, y))dI (x, y)/
∫
dI (x, y) = c (4)

where λ is the wavelength, I (x, y) denotes each pixel at the
location (x, y), R(λ, i) is the surface reflectance and c is a
constant setting by the average values of separate channels
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FIGURE 2. Four examples of intrinsic image decomposition method:
Retinex-based method (σ = 5,13,11,7).

FIGURE 3. Four examples of intrinsic image decomposition method:
Grey-world algorithm.

in the color image. Using Grey-world method in the image
processing, the original intrinsic image is recovered by elim-
inating the reflection of the light. Fig. 3 shows four examples
of image decomposition using Grey-world method. From the
Fig. 3, it can be observed that each source image is separated
into a reflectance component and an illumination component.
Compared to Retinex method, the reflectance part filtered by
Grey-world method looks more like the source image. Fur-
thermore, as for the color source images, the first one shows
good visibility and discards the color shifting, the second
one is obtained by subtracting the reflectance image from the
source image according to Eq. (1). In the illumination image,
it is with high contrast.

TABLE 1. Important notation and terms used in this paper.

III. PROPOSED MRI AND PET IMAGES FUSION METHODS
A. INPUTS
Please refer to Table 1 for important definitions used through-
out the rest of this paper. The inputs areMRI and PETmedical
imaging data. According to the standard of imaging system,
medical imaging data can be divided into structural and func-
tional image. MRI, structural image, provides information
about the tissue type of the human brain. PET, functional
image provides better information on blood flow and flood
activity with low space resolution in general. For PET image,
functional information is likely to result in changes in appar-
ent shape during acquisition as the tracer redistributes. The
fusion of MRI and PET images aims to preserve both the
detailed image of anatomical structures of the human brain
and image-wide quantification of physiological and biochem-
ical processes within the body. The input source images are
assumed to be co-registered.

B. TWO-SCALE IMAGE DECOMPOSITION
Due to the properties of images with different modal-

ities, Algorithm 1 and Algorithm 2 are applied to MRI
and PET images to get their two-scale image representa-
tions, respectively. Algorithm 1 built on Retinex method is
good at recovering reflectance from MRI while reducing
noise. In pseudo-color PET image, the correlation between
three channels is helpful for tracing tumors. Therefore,
Algorithm 2 built on Grey-world method is used to extract the
high-intensity information of the image with color constancy.

Inspired from the smoothed L1-Retinex method illustrated
in the paper [41], the MRI images are decomposed into
their two-scale image representations of illumination and

Algorithm 1 Intrinsic Image Decomposition – MRI
Input: MRI image IA
Output: Reflectance image IA1 and illumination image IA2
1. Apply the defined low-pass filter FL on IA to get

cartoon image C
2. Smoothed image: S = C
3. Reflectance image of smoothed image:

RS = (R+ G+ B)./3
4. Illumination image of smoothed image: LS = S − RS
5. Illumination image: IA2 = LS
6. Reflectance image: IA1 = IA − IA2
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Algorithm 2 Intrinsic Image Decomposition – PET
Input: PET image IB
Output: Reflectance image IB1 and illumination image IB2
1. Apply Gaussian filter on image IB to get filtered image

I ′B I
′
B = imfilter(gaussian, IB)

2. Apply color consistency on the filtered image I ′B to get
reflectance image IB1

IB1 = (R ∗
(R+ G+ B)/3

R
,G ∗

(R+ G+ B)/3

G
,

B ∗
(R+ G+ B)/3

B
)

3. Illumination image: IB2 = IB − IB1

reflectance images by Algorithm 1. In medical images such
as MRI, the digital signals sometimes are corrupted by bias
field. It is a good idea to apply Retinex method for recovering
the reflectance image from the original signals. The assump-
tion of Algorithm 1 is that illumination image equals to the
illumination of the smoothed image. Firstly, the smoothed
image of input images is obtained from the cartoon part C
using the defined low-pass filter in [42] with the local window
size (σ = 3),

C = w (σ )
(
FσL ∗ IA

)
+ (1− w (σ )) IA (5)

where w (σ ) denotes the increasing weighted function. Then,
the reflectance image of smoothed image is computed by
averaging the channel information to get. Consequently,
the reflectance image is recovered by subtracting the illumi-
nation of the smoothed image from the original medical MRI
image.

Since pseudo-color PET image provides significant details
of the lesion region in human brain, the goal of Algorithm 2
is to separate the original PET medical image into reflectance
image containing the normal regions and illumination images
containing the lesion regions. On the assumption of color con-
stancy, Grey-world algorithm is applied to the pseudo-color
PET image for discovering the lesion region. Because of
the input PET image destroyed by the noise, the input PET
image is firstly smoothed using Gaussian filter firstly to
get high-quality intrinsic images. Then, the color constancy
is defined as the grey value by averaging of R, G and B
channels. The illumination image is estimated by the ratio of
the grey value to the average value of the image matrix with
the separated color channel. Finally, the reflectance image is
obtained by the difference between the input image and the
illumination image.

C. IMAGE FUSION RULES
Image fusion rules refer to algorithms that seek to highlight
the features of interest in images and restrain the features
of insignificance. The main contribution of fusion rules is
the combination of multiple images into a single image [5].
Effective fusion rules are closely related to the quality of
the fused image. Usually, the averaging-maximum scheme

has been widely used to produce the fused coefficients. This
scheme, however, loses spatial information [23], [25]. There-
fore, PCA, IIC and IHS [9], [10], [12] are chosen as the image
fusion rules for combining the decomposed images by Algo-
rithm 1 andAlgorithm 2with the advantages of implementing
using a simple operation on image pixels in spatial domain.
PCA is the combination of principal components from two
decomposed images which refers to the linear combination of
vectors forming new irrelevant principal components. Based
on D-S evidence theory, IIC is performed on the four decom-
posed image coefficients IA1, IA2, IB1 and IB2 simultaneously
to obtain the final fused image IF , expressed as,

IF =
∑

i∈{A1,A2,B1,B2}

[wi(x, y) ∗ Ii(x, y)]
wi

(6)

where the weight w for importance coefficient of each image
is calculated by [25],

wi =
1− ci

max {1− cA1, 1− cA2, 1− cB1, 1− cB2}
(7)

where the function max is used to get the maximum value
among the input parameters. And the correlation of the image
cI is defined as,

ci = di/
∑

i∈{A1,A2,B1,B2}

di + c (8)

where the difference of every decomposed image di is
obtained from the percentage of the total Euclidean distance
of the image (di =

√ ∑
i∈{A1,A2,B1,B2}∩i6=j

(Ii − Ij)2). In IIC,

the greater the variance among the decomposed components,
the higher value the decomposed image gets. In IHS, the low
resolution in PET is replaced by a grey MRI image with
higher spatial resolution by which the fused image can keep
the same spatial resolution as the original high-resolution
image.

D. PROPOSED METHODS
Figs. 4 summarize the main processes of specific fusion
examples. Firstly, Algorithm 1 andAlgorithm 2 are utilized to
get the two-scale image representations. The IID used as the
two-scale image decomposition scheme is proposed in this
paper. The decomposed reflectance image denotes the outline
information of the input grey MRI and pseudo-color PET
images. And the decomposed illumination image denotes
the high-intensity information of the input images. Then,
the decomposed layers are combined into a single image
using PCA, IIC, and IHS based fusion rules for preserving
much more spatial information, respectively. (1) IID+PCA
based fusion method: As shown in Fig. 4, the input MRI
and PET images are firstly decomposed into its correspond-
ing reflectance and illumination images by Algorithm 1 and
Algorithm 2, respectively. The fused reflectance image I1F
that is obtained by the PCA based fusion rule is similar
in pseudo-color information to the decomposed reflectance
image of the input PET image. The fused illumination image
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FIGURE 4. Schematic diagram of the proposed image fusion methods: IID+PCA, IID+IIC and
IID+IHS.

I2F that is obtained by the PCA based fusion rule is similar
in high-intensity grey matter of the brain to the decomposed
illumination image of the input MRI image. (2) IID+IIC
based fusion method: To combine two-scale representations
of input MRI and PET images, IIC is proposed as the rule
for the reflectance and illumination images on the assumption
that the fused image is composed of the uncertain proportion
of image coefficients from the decomposed image inputs.
In Fig. 4, the four decomposed inputs are combined into
the fused image using the weighted average calculated by
the D-S theory. The fused image presents low-intensity color
information. (3) IID+IHS based fusion method: The input
images are presented by their reflectance and illumination
images. To preserve high-intensity information, IHS based
fusion rule is applied to obtain both the fused reflectance
image and the fused illumination image. Notably, the fused
illumination image and shows high-intensity white matter of
the brain, shown Fig. 6. The fused reflectance image presents
high-contrast detail information, such as the textural informa-
tion. And then, the final fused image is obtained by addition
of the fused reflectance image I1F and the fused illumination
image I2F . In Fig. 4, the fused image not only preserves the
intensity information from the input images but also enhances
the contrast.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
1) BASIC SETTINGS
The experiments are performed on two databases, i.e., dis-
ease database which contains 30 pairs of abnormal brain

from Harvard University [44] and the clinical cases [45], and
the second database provided for analysis of robustness which
includes 6 pairs of images with resolution changes (3 pairs for
fusing MRI and PET images with the resolution of 128×128
and 3 pairs with the resolution of 512 × 512, respectively),
6 pairs with motion artifacts, and 6 pairs with synthetic
noise. The purpose of disease and robustness databases in
subsections IV.B and IV.C is to verify the performance the
experimental results on the standard data and the artificial
data, respectively. The testing imaging data contains high
resolution MRI images and pseudo-color PET images with
the resolution of 256× 256 except for the resolution changes
sets. The corresponding pixels of MRI and PET image have
been co-registered. From the input source images in figures,
it can be noticed that MRI image captures the anatomical
structure information of the human brain, while it fails in
displaying functional information. In contrast, PET image
reflects the blood flow changes in apparent shape acquisition
clearly, while hardly shows bones of human brain. In addi-
tion, the proposed methods are compared with eleven image
fusion methods based on LAP [13], DWT [16], CVT [18],
COT [19], NSCT [21], ST [23], SVT [14], GFF [26], ND [15],
LES [29], and DSIFT [11]. The compared fusion methods
include two categories: methods performed in the trans-
formed domain and in the spatial domain. LAP, DWT, CVT
and COTmethods apply sampled resolution sizes in the trans-
formed domain. NSCT, ST, SVT and ND methods apply the
same resolution sizes as the input images for reducing block
effects in the transformed domain. On the other side, LES
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FIGURE 5. One example of result images with Mild Alzheimer’s disease by different fusion methods.

FIGURE 6. Zoom regions of one example result images with Mild Alzheimer’s disease.

and DSIFT methods employ salience feature descriptors as
the advanced image decomposition scheme and image fusion
rule. In this paper, full-reference metrics based on human
visual system (i.e. structural similarity (SSIM) [46], infor-
mation content weighted SSIM (IWSSIM) [47], mutual infor-
mation (MI) [48], gradient similarity scheme (GSM) [49],
and visual signal-to-noise ratio (VSNR) [50], [51] metrics)
are adopted for evaluating the quality of fused images. The
bigger the metrics SSIM, IWSSIM, MI, GSM, and VSNR are,
the better the fused images are.

B. EXPERIMENTAL RESULTS ON DISEASE DATABASE
Fig. 5 shows one example of abnormal brain images with
Mild Alzheimer’s disease. By carefully observing the fused
images in Fig. 5, it can be noticed that the brain structures
in Fig. 5(c), (j), (k) and (p) are perfectly captured as what they
like in Fig. 5(a). And the functional information is completely
preserved in the result images by SVT and IID+IHS fusion
methods in Fig. 5(i) and (p). In Fig. 5(f), (g), and (l), the result
images produce obvious color distortion. In Fig. 5(m) and (o),
the result images show low contrast. In addition, by compar-
ing the zoom regions of the result images in Fig. 6, the pro-
posed IID+IHS method works better in preserving both edge
and texture information from the source images.

Figs. 7-8 show the MRI and PET input images with
Glioma disease. From Fig. 7(f), (g), and (n), the result images
obviously introduce color distortion using COT, NSCT and

IID+PCA methods. However, the white region is better pre-
served by IID+PCA method than that by COT and NSCT
methods. The result images completely preserve the struc-
tural information using DWT, ND, and DSIFT methods
in Fig. 7(d), (k), and (m). Furthermore, the intensity of PET
image directly relates to the saliency information of the tissue.
Higher intensity information can be observed in the result
images using IID+IHS method in Fig. 7 (p). By carefully
observed the zoom regions in Fig.8, the ND and IID+IHS
methods work better in combing structural information and
intensity information.

Next, Figs. 9-10 show two clinical cases of neurologic
disease to demonstrate the availability of the proposed meth-
ods. Simultaneous acquisition fused images from MRI and
PET image are shown in Fig. 9 (c)-(p) and Fig. 10(c)-(p).
In the first case, the background of results images is not clear
using DSIFT and IID+IICmethods in Fig. 9(m) and (o). SVT
and IID+IHSmethods introduce higher intensity information
which indicates greater activity of the tissues. In the second
case, the result image presents structural information in low
resolution using GFF method in Fig. 10(j). Color distortion
exists in the result image using COT method in Fig. 10(f).
In addition, SVT, IID+PCA, and IID+IHS methods preserve
both brain structure and blood tissues from source images
in Fig. 10 (i), (n), and (p).

Lastly, Table 2 shows the quantitative assessment of dif-
ferent image fusion methods on disease database in terms of
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FIGURE 7. One example of Result images with Glioma disease by different fusion methods.

FIGURE 8. Zoom regions of one example result images with Glioma disease.

FIGURE 9. The first clinical case of MRI-PET fusion for neurologic application.

SSIM, IWSSIM, MI, GSM and VSNR metrics [40]–[45]. The
mean (Mean) and standard deviations (Std) values of objec-
tive metrics are listed in Table 2, where the best metric has
been highlighted in bold. From Table 2, it can be obviously
observed that the proposed methods perform better in terms
of four metrics: IWSSIM, MI, GSM, and VSNR. Moreover,
the MI value of the proposed IID+IHS method is the largest
over 30 pairs of the input MRI and PET image. That is,
IID+IHS method can well preserve the original information
from the original source images. On the other hand, LAP
method gets the best Mean value for the metric SSIM.

C. EXPERIMENTAL RESULTS ON ROBUSTNESS DATABASE
The resolution changes and motion artifacts often occur in
MRI and PET images [52]. Fig.11 illustrates the performance

of methods for fusing MRI and PET images of resolution
128 × 128. The result images perfectly combine both struc-
tural information and intensity information using LAP, ND,
and IID+PCA methods. In Fig. 11(l), the fused image loses
much more structure information of eyes from the input MRI
image, compared to the other fusion methods. Higher inten-
sity information can be found in the fused images using SVT,
DSIFT, and IID+IHSmethods. However, color distortion can
be easily observed in fused images using COT and NSCT
methods in Fig. 11(f) and (g).

In addition, Fig. 12 illustrates an example of reducing
motion artifacts in fused MRI/PET images. Fig.12 (a) shows
the input MRI image corrupted by motion artifacts, while
PET image dose not in Fig. 12(b). The results are displayed
in Fig. 12(c)-(p). The results are blurring using ST, SVT, ND,
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FIGURE 10. The second clinical case of MRI-PET fusion for neurologic application.

TABLE 2. Performance comparison of fusion methods in terms of five metrics on disease and robustness databases.

FIGURE 11. Fusion results of resolution changes.

TABLE 3. Averaged running time of different methods (s).

and IID+IHS methods. However, from Fig. 12 (l), the quality
of the fused image is not deteriorated by MRI image using
LES method. IID+PCA method presents good statistics in

Fig. 12(n). When simulating method, it is important to add
synthetic noise to the input data to accurately model per-
formance. Therefore, we show the performance of fusion
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FIGURE 12. Fusion results of motion artifacts.

FIGURE 13. Fusion results of synthetic noise.

methods across four noise types including Gaussian noise
(variance = 0.020), Poisson noise, salt-and-pepper noise
(density = 0.20), and speckle noise (variance = 0.030) [53].
In Fig. 13, the result images using GFF and DSIFT meth-
ods looks the same as the input PET image. Unfortunately,
the images using GFF and DSIFT methods are seriously
destroyed by salt&pepper noise. Moreover, DWT and ND
methods introduce enhanced detail information while adding
noise from the inputs. COT and NSCT methods introduce
color distortion. However, the proposed IID+PCA, IID+IIC,
and IID+IHS methods are robust to noise due to that the
background of the results is clear.

Lastly, for the three groups of medical images: resolution
changes, motion artifacts, and synthetic noise, the detailed
quantitative evaluations on robustness database are given
in Table 2. Lines 7-11 in Table 1 display the values of the
metrics SSIM, IWSSIM, MI, GSM, and VSNR. The highest
value of themetric IWSSIM for the fused images indicates that
the image components obtained by the proposed IID+PCA
method contain more attracted visual information content.
Similarly, the proposed IID+IIC method performs best in
terms of GSM metric. Moreover, the fused image generated
with the proposed IID+IIC method has less noise (higher
VSNR) than the other result images.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
Table 3 records the average running time of fourteenmethods.
Experiments are using MATLAB R2012a on a computer

equipped with a 3.30GHz CPU and 8GB memory. From
Table 3, IID+PCA and IID+IIC methods run faster among
the other methods. LAP and IID+IHS methods gets the sec-
ond prize in the competition of running time. GFF, LES,
DSIFT, IID+PCA, IID+IIC, IID+IHS methods perform in
spatial domain, while LAP, DWT, CVT, COT, NSCT, ST,
SVT, ND methods perform in frequency domain. The aver-
age time of methods in spatial domain is 3.61(s). However,
the average time of methods in frequency domain is 15.74(s).
The running time of ST (70.02 (s)) is the lowest because of
the ST coefficients constructed by filter banks in frequency
domain. The average running time of methods in frequency
domain (LAP, DWT, CVT, COT, NSCT, ST, SVT, and ND)
is longer than that in spatial domain (GFF, LES, DSIFT,
IID+PCA, IID+IIC, and IID+IHS) in Table 3. COT method
gets the first prize among the methods in frequency domain.
But color distortion usually exists in the fused images using
COT method.

E. DISCUSSIONS
30 pairs of images in Section IV.B and 18 pairs of images in
Section IV.C are used to measure the performance of the pro-
posed methods. However, we do not make a conclusion what
the true translation performance is. Statistical significance is
a tool to evaluate the true translation quality [54], [55]. There-
fore, an extensive analysis (non-parametric Friedman test and
the post-hoc Bonferroni-Dunn test) is provided in Table 4-6
for evaluating the statistical significance of the observed
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TABLE 4. Ranking of competitor fusion methods, achieved by the Friedman test at two databases: disease and robustness.

TABLE 5. Adjusted p-values on two databases using the post-hoc Bonferroni-Dunn test.

performance differences. Given a set of 14 methods, the first
step in statistical analysis is to use non-parametric Friedman
test for ranking the performance of the methods presented

in Table 4. At the bottom of each column in the table,
the statistic for the Friedman test and its corresponding
p-value is reported. In Table 4, it can be easily observed that
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TABLE 6. Performance comparison with the post Bonferroni-Dunn test (statistical significance). The symbol ‘‘1’’, ‘‘0’’, or ‘‘−1’’ means that the proposed
method is statistically (with 95% confidence) better, indistinguishable, or worse than the corresponding method.

the proposed methods: IID+PCA, IID+IIC, and IID+IHS
are able to obtain the highest rank (better rank is high-
lighted in boldface). As for the disease database, the pro-
posed IID+PCA method performs better than the proposed
IID+IHS and IID+IIC methods. On the other side, the pro-
posed IID+IHSmethod is better than the proposed IID+PCA
and IID+IIC methods for the robustness database.

The second step is to use the post hoc Bonferroni-Dunn
test for detecting the cases in which the best performing
method exhibited a significant performance difference from
the others. The result of the post hoc Bonferroni-Dunn tests
for the Friedman are presented in Tables 5-6. Statistically
significant are marked in boldface. As the adjusted p-values
in Table 5(the value p < 0.05 is highlighted in bold-
face) suggest, the post hoc Bonferroni-Dunn’s procedure
rejects hypotheses 31 for five objective metrics. Comparing
the adjusted p-values in columns 7 and 12 (VSNR metric),
the post hoc analysis rejects most of the hypotheses (3, 7, 8,
10, 12-32, and 34-39) on disease database, and (7, 10, 12-26,
29, 34, 36, and 39) on robustness database. Furthermore, for
the significance differences, we list the detailed information
in Table 6, where the symbol ‘‘1’’, ‘‘0’’, or ‘‘−1’’ denotes that
the proposed method is statistically (with 95% confidence)
better, indistinguishable, or worse that the corresponding
method, respectively. As shown in Table 6, the proposed
IID+IIC method in terms of the VSNR metric significantly
outperforms all other methods on the two databases: disease
and robustness. As for the disease database, it is found that

the proposed IID+IHS method in terms of theMImetric per-
forms better than DWT, COT, NSCT, and IID+IIC methods.
And the proposed IID+PCA method performs better than
NSCT, ND, LES, and IID+IIC for the metric IWSSIM. How-
ever, IID+IIC method performs very worse for the metric
IWSSIM for the two databases.

V. CONCLUSIONS
This paper primarily aims at showing that IID, which mod-
els the function of human vision, works well for medical
image decomposition. We have presented three fusion meth-
ods based on IID models: Algorithm 1 and Algorithm 2. The
proposed image decomposition schemes can make full use of
the mechanism of visual cortex model to extract the illumina-
tion image and reflectance image from the input source MRI
image and to extract color constancy to separate the PET input
image into normal image and lesion image. Compared with
other widely used MRI-PET medical image fusion methods,
experiments carried on real medical imaging data show the
outstanding performance of the proposed methods including
IID+PCA, IID+IIC and IID+IHS, compared to the other
state-of-the-arts fusion methods that consume more com-
putation resource. Additionally, among the proposed three
methods in this paper, IID+PCA method achieves the best
performance by introducing enhanced structural information
while less color distortion in the final fused image and by
the well balance between the performance (Tables 2, 4-6) and
computation complexity (Table 3), as well.
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Although the proposed methods have shown good perfor-
mance, there is a lot of future work to be continued. (1) PCA,
IIC, and IHS are selected as the fusion rules for combing
the IID decomposed images. However, there exist strong
dependencies between IID coefficients of the intra-scale and
inter-scale. In the future, we will design an adaptive fusion
rule to make full use of the dependencies of the IID coeffi-
cients [56]. (2) The objective image fusion qualitymetrics can
onlymeasure the fused images from a limited perspective. For
example, IID+IIC method performs best in terms of VSNR
metric on the two databases: disease and robustness while
the result images in figures could not preserve the salient
information from the input images. In the future, we will
use deep neural networks to design the metrics for evaluating
functional information in the result fused images [57], [58].
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