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ABSTRACT Research on IoT that merely aims at connecting and communicating is about to past. Thereafter,
general objects should have the capability to learn, think, and understand both physical and social areas
by themselves. Cognitive Internet of Things (CIoT) attempts to empower the current IoT with a ‘‘brain’’
for high-level intelligence, requiring networks to have the ability to bridge the physical and social worlds.
This attempt means matching equipment and resources with people and their behavior. Therefore, accurate
location information is crucial for equipment connecting to CIoT. This endeavor sets a higher requirement
for the localization technology of wireless sensor networks in terms of accuracy, energy, and efficiency
compared with that in the past. In this paper, we propose an efficient and accurate mobile anchor node
assisted localization algorithm for WSNs based on diameter-varying spiral line (LDVSL), which broadcasts
coordinates of the anchor node to assist localizing unknown sensor nodes. The proposed algorithm has two
main innovations. First, we obtain the mobile anchor node position through a time and angle mechanism
instead of GPS, given the unique characteristics of the diameter-varying spiral line. Second, the linear fitting
method is adapted to select the key virtual node, which has the real maximum received signal strength
indicator. Simulations indicate that the proposed LDVSL algorithm outperforms other similar algorithms in
terms of average localization error and positionable node ratio. The simulations also show that the LDVSL is
not affected by obstacles seriously and has good robustness. The LDVSL has a wide prospect of application
in CIoT.

INDEX TERMS CIoT, localization, mobile anchor node, diameter-varying spiral line, linear fitting.

I. INTRODUCTION
With the rapid development of wireless communication tech-
niques in the past few years, IoT has been widely used as
a cyber physical systems in the fields of modern intelligent
services such as ecological protection, smart homes, food
safety, environmental, logistics, transportation, and national
information coverage [1], [2]. According to the latest sur-
veys, approximately 600 billion devices will be connected
to the IoT by 2020. With the increasing interconnectivity
among general things or objects, many new services or
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applications are emerging, generating massive data in an
explosive manner [3]. However, many of the existing Inter-
net of Things applications are still not intelligent enough
to perceive data and perform decision making, and they are
highly dependent on human beings for cognition process-
ing [4]. Therefore, cognitive computing has gained the inter-
est of IoT researchers [5]–[7]. Related researchers attempt
to infuse intelligence into objects to learn from the physi-
cal world [8], [9]. The IoT with cognitive ability is called
cognitive Internet of Things (CIoT), which enables objects
and groups to learn data from connected devices, sensors,
machines and other sources. Briefly, CIoT enhances the cur-
rent IoT by integrating the human cognition process into the

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

28487

https://orcid.org/0000-0002-8999-8967
https://orcid.org/0000-0002-9161-6366


X. Wang et al.: Robust Localization for CIoT via the Mobile Anchor Node

system design. The advantages are multifold, e.g., saving
people’s time and effort, increasing resource efficiency, and
enhancing service provisioning [10], [11].

WSN, which collects information from the users and envi-
ronment while the actuators transfer the data to CIoT frame-
work through gateway controller, is an important part of
CIoT [12]. As one can imagine, objects within CIoT can
understand correctly and behave appropriately only if the
localization information of the sensor nodes is accurate and
robust. The localization of WSNs can help establish dynamic
routing, search optimal transmission path adaptively and opti-
mize configuration of each node to improve the transmission
performance of CIoT [13]. To solve the localization problem
for WSN, equipping each sensor node with a GPS receiver
is the most simple and precise solution [14], [15]. However,
adding GPS to all nodes is not always practical because of
cost, limited power, size, and work condition. A reasonable
method for the problem is to make certain node called an
anchor node to identify their location information through
GPS or fixed positions [16]. These anchor nodes can help
the location-unaware sensor nodes called unknown nodes
calculate locations by assistant information of distance, RSSI,
or time by broadcasting location periodically.

Based on the mobility state of anchor nodes, existing
anchor nodes assisted localization schemes are generally cat-
egorized into two types: one is based on multiple stationary
anchor nodes [17]–[19], and the other is based on mobile
anchor node(s) [20], [21], namely the static anchor node
assisted localization and the mobile anchor node assisted
localization. In the former case, localization algorithms esti-
mate the location of unknown nodes by using a priori knowl-
edge of the absolute position of static anchor nodes and
information, such as distance and bearing mechanism, con-
nectivity between unknown nodes and anchor nodes. Static
anchor node assisted localization method typically requires
high anchor nodes density. In the latter case, numerous virtual
anchor nodes are generated to assist localization whenmobile
anchor nodes move. The methods based on mobile anchor
node can save the cost of deploying numerous static anchor
nodes, and that the localization reliability and accuracy can
be improved by planning the trajectory of the mobile anchor
nodes. Our research belongs to the latter, which studies the
path planning of mobile anchor node and the calculation of
the unknown nodes location. In addition, classic distance
measurement methods include angle of arrival (AoA), time of
arrival (ToA), time difference of arrival (TDoA), and received
signal strength indicator (RSSI). The first threemethods often
require complex hardware set up while RSSI is simpler than
the others but less accurate. We chose the RSSI to estimate
the unknown node location and improve the accuracy of the
algorithm by the linear fitting method after gathering the
information of anchor node.

The remainder of the paper is organized as follows.
Section II presents the related works on mobile anchor node
assisted localization algorithms. Section III describes the
network model. Section IV describes the LDVSL algorithm

in details. Simulation results are analyzed in section V, and
conclusions are drawn in section VI.

II. RELATED WORK
Mobile anchor nodes move in a sensing area and transmit
message packets with the information including coordinates
and time. The unknown node receives the packets, measures
a received signal strength indicator (RSSI), and calculates
the distance between itself and the mobile anchor node.
An important research issue of localization based on mobile
anchor nodes is to design the movement of mobile anchor
nodes to obtain good localization performance [22], [23].

In some research, mobile anchor nodes move among
unknown nodes with mobility model without considering
WSN conditions [24]–[27]. Lim et al. [24] use the sim-
plest mobility model in which mobile anchor nodes move
randomly. Many other mobile models such as Random
Waypoint (RWP), Gauss-Markov (GM) and Group mobil-
ity model have also been used in mobile anchor node
assisted localization schemes [25]–[27]. In fact, the localiza-
tion schemes based on mobility model are usually limited,
given that the random movement path of anchor nodes may
not cover all positioning areas [28].

Numerous researchers turned their attention to localization
schemes based on path planning, in which anchor nodes
move along the path particularly designed for localization.
In [29], Koutsonikolas et al. studied three trajectory trajecto-
ries, namely, Scan, Double Scan, and Hilbert for the mobile
landmark. The authors analyzed the influence of anchor
nodes collinearity on localization accuracy. Han et al. [30]
proposed a localization algorithm with a mobile anchor
node based on trilateration for WSNs (LMAT), in which a
mobile anchor node traverses in accordance with the trilat-
eration trajectory in the entire deployment area and broad-
casts its current position periodically. An efficient energy
model was proposed using breadth-first and backtracking
greedy algorithms to transform the path planning problem
into a spanning tree [31]. Zaidi et al. [32] proposed a spring
swarm localization algorithm (SSLA)which uses the network
topology information and a small amount of anchor node
location information to calculate unknown nodes position.
However, both [31] and [32] suffer from high error rate.
To enable a trade-off between location accuracy and energy
consumption, Han et al. [33] proposed a path-planning algo-
rithm SLMAT combined of LMAT and SCAN algorithm,
which ensures that each unknown node is covered by a
regular triangle formed by beacons. Virtual anchor nodes
compose regular triangles to solve the collinearity problem
well. Rezazadeh and Moradi [34] proposed a superior path-
planning algorithm for mobile anchor node-assisted local-
ization called Z-curve, in which a path planning scheme
in three-dimensional area is studied. Mobile anchor nodes
form a regular tetrahedron and traverse three-dimensional
region following a trajectory similar to Scan. Several meth-
ods have been proposed to introduce directional antennas
to mobile anchor nodes to expand the coverage [35], [36].
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An event-driven object localization method based on direc-
tional antennas was proposed for disaster rescue scenarios
in [37]. Obstacle avoidance traverse is realized through a
mobile anchor node with four directional antennas and a GPS
module, and the locations during mobility are broadcast. This
strategy allows the mobile anchor node to move along any
curve path and can be utilized under the event-driven scenario
to provide self-localization.

The above mentioned methods demonstrate unique advan-
tages in their application scenarios. However, GPS devices
are adopted to provide location information formobile anchor
nodes. GPS increases the cost and energy consumption of
mobile node, and limits the application scenario of localiza-
tion system. In this paper, we focus on the path planning of
mobile anchor nodes for uniform deployment and propose
a mobile anchor node Localization method based on the
Diameter-Varying Spiral Line (LDVSL). Owing to the unique
characteristics of the path planning, the position information
of the mobile anchor node can be obtained by time and angle
mechanism rather than by GPS. In addition, the maximum
RSSI value is selected by the linear fitting method to improve
the localization accuracy.

III. NETWORK MODEL
A. NETWORK MODEL AND REGION SEGMENTATION
The WSN to be considered consists of a number of unknown
sensor nodes and one mobile anchor node. The unknown
node is the node to be located. The mobile anchor node
travels in the network following the path which is planned in
this section. The communication radius of the mobile anchor
node is R, which is adjustable. The mobile anchor node
periodically sends position message packet with coordinates.
We assume that the distance between the mobile anchor node
and the unknown node is estimated using RSSI technique.

All unknown nodes are randomly distributed in a square
region, namely, region of interest (ROI). To clearly describe
the trajectory of a mobile anchor node, the ROI is divided
into n equal parts, and the width of each part is equal to
the communication distance of anchor node R, as illustrated
in Fig. 1. The width of the ROI is denoted as L, L = nR.

B. MOBILE PATH PLANNING
The classic spiral moving path is a standard Archimedean
spiral, the pitch of which increases continuously. However,
this moving path may make a few unknown nodes unable to
be located given the change in spiral pitch. We assume that
an anchor node moves along a diameter-varying spiral line,
which is composed of arcs with specific angle, to solve the
above mentioned problem.

It is generally considered that the spiral line and the arc are
different. However, the arc with its center deviated is indeed
a spiral line. An arc is a part of a circle, and the distance
from any point to the center of the circle in the arc is equal,
while the distance from any point to the pole of the spiral
line is gradually changing. In Fig. 2, the diameter-varying

FIGURE 1. Region segmentation.

FIGURE 2. Diagram of a diameter-varying spiral line.

spiral line extends into a spiral by increasing the radius and
switching the center of arc regularly. The 180◦ arc is adopted
here to connect the arcs smoothly. The distance between the
two connected semicircles centers is R/2. The radius of arc
is increased by R/2 every time. The pitch of arc is defined as
the arc diameter that varied at 360◦. Therefore, the pitch of
the diameter-varying spiral line is constant.

Fig. 3 illustrates the path planning in accordance with
the 180◦ diameter-varying spiral line and the distribution of
nodes. The coordinate system is established in a square region
of 500 m × 500 m, and the center of the area is taken as
the original point. The spiral pitch is fixed and equal to the
communication radius of mobile anchor node.

The mobile anchor node moves along the special diameter-
varying spiral line and broadcasts its location regularly.
We assume that there is a virtual anchor node in each loca-
tion where the mobile anchor node broadcasts a packet. The
path planning provides the opportunity for the time angle
geometry method for localization.

C. DIRECTIONAL ANTENNA MODEL
An antenna is a passive device which does not offer any added
power to the signal. Instead, an antenna simply redirects the
energy it receives from the transmitter. The redirection has
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FIGURE 3. Path planning and node distribution of a diameter-varying
spiral line.

FIGURE 4. Diagram of directional antenna for mobile anchor node.

the effect of providing more energy in one direction, and less
energy in all other directions. Directional antenna can divert
the RF energy in a particular direction to farther distance
in wireless networks. Therefore, a directional antenna can
make node cover long range, while the effective beam width
decreases. Directional antenna can help counteract fading
and multi-path, and help cut down the loss of energy in the
ineffective direction.

A directional antenna is suitable for deployment in the field
environment given the superiority in high forward gain and
flexible radiation angle. A bi-directional antenna is fixed to
themobile anchor node in the proposedmethod. The radiation
pattern of directional antenna for the mobile anchor node is
shown in Fig. 4, where α is the radiation angle, and R is the
communication radius. The centerline of the radiation range
of two directions is constantly perpendicular to the moving
direction of the anchor node.

Let the mobile anchor node move along the diameter-
varying spiral line from (−R/2, 0) left of the coordinate
origin, as demonstrated in Fig. 3, and end at (R(n−1)/2, 0).
The initial time is set as 0, and the angular velocity is a
fixed valueω(rad/s). The antenna broadcasts packets period-
ically in two directions simultaneously. Each packet has four
fields: ID, Antenna direction, Time, and Angular velocity.
Antenna direction field is noted as ‘‘left’’ when the packet
is transmitted by the left antenna; and noted as ‘‘right’’ when
the packet is transmitted by the right antenna.

IV. LOCALIZATION METHOD USING THE
DIAMETER-VARYING SPIRAL LINE
The mobile anchor node travels along the planning path
and periodically broadcasts information to help unknown
nodes for localization. Three assumptions are made: (a) The
mobile anchor node has sufficient energy for moving and
broadcasting information packets during localization. (b) The
mobile anchor node has identical communication range R at
all anchor points. (c) The speed of the mobile anchor node is
adjustable and uniform in the process of localization.

A. LOCALIZATION PRINCIPLE
In the proposed LDVSL algorithm, we set one mobile anchor
node, and let the anchor node traverse the networks along the
diameter-varying spiral line mentioned above. This anchor
node broadcasts information packets, including ID, Time,
Antenna direction and Angular velocity periodically. The
current coordinates of the mobile anchor node can be cal-
culated by information of time and angular velocity given
the characteristics of the diameter-varying spiral line. That is,
the point (x, y) in the spiral line can be obtained by

x = b
ω × Time

360
c × cos(ω × Time mod 360); (1)

y = b
ω × Time

360
c × sin(ω × Time mod 360), (2)

where ω is the angular velocity, and Time is the current time
value.

FIGURE 5. Local schematic of time and angle geometric localization
mechanism.

Fig. 5 exhibits the local schematic of the time and angle
geometric localizationmechanism. Themobile anchor node S
moves counterclockwise along a spiral line. Virtual anchor
nodes are generated at the point where data packets are broad-
casted. The distance between the two arcs is R, the communi-
cation radius of anchor node. S1, S2, S3, S4, S5 are the virtual
anchor nodes, which can transmit packets to the unknown
node P. Here, packets are all from the left antenna of the
anchor node. α is the radiation angle of a directional antenna.
P is in the overlap of the communication range of multiple
virtual anchor nodes. Node P is considered to locate in the
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straight line from S3 to the center point of the arc because S3
is the middle among virtual anchor nodes. The location of P
can be obtained through the distance from virtual anchor node
to node P.

B. ALGORITHM LOCALIZATION PROCESS
The time and angle geometric localization mechanism based
on the proposed diameter-varying spiral line in this paper can
be described in detail in the four steps as follows.

1) NETWORK INITIALIZATION AND PACKETS COLLECTION
The moving path for mobile anchor node should be planned
by using the diameter-varying spiral line, and the coordinate
system is established, as displayed in Fig. 3. The anchor node
moves and broadcasts packets periodically along the path
with constant angular velocity. Simultaneously, the unknown
nodes in the region will receive the packets those are broad-
casted by the anchor node. Here, each point where anchor
nodes send packets is recorded as a virtual anchor node.

The virtual anchor node as S(1)1 is denoted when the
unknown node to be located receives a data packet for the
first time. Moreover, its time value is recorded as T (1)

1 and
the RSSI as RSSI (1)1 . Similarly, the virtual anchor node is
recorded as S(1)2 when the second packet is received, and
its time value is recorded as T (1)

2 and the RSSI as RSSI (1)2 .
Repeat this process until the packet is no longer detected.
The last virtual anchor node that is detected by the unknown
node is recorded as S(1)n with time value T (1)

n and the
RSSI as RSSI (1)n . Then, we obtain the virtual anchor node
set {S(1)1 , S(1)2 , · · · , S(1)n }, the time value set {T (1)

1 ,T (1)
2 , · · · ,

T (1)
n }, and the RSSI set {RSSI

(1)
1 ,RSSI (1)2 , · · · ,RSSI (1)n }.

The unknown nodes outside of the diameter-varying spiral
line or inside the central arc can only receive one round
of data packets. However, the unknown nodes between two
arcs can receive two rounds of packets from virtual anchor
nodes in different arc segments. We denote another round
of virtual anchor node as set {S(2)1 , S(2)2 , · · · , S(2)n }. The time
value and RSSI are recorded as {T (2)

1 ,T (2)
2 , · · · ,T (2)

n } and
{RSSI (2)1 ,RSSI (2)2 , · · · ,RSSI (2)n }, respectively.

2) CALCULATE ANGLE OF THE VIRTUAL
ANCHOR NODE IN THE MIDPOINT
If one unknown node receives two rounds of packets,
the round with smaller average RSSI will be selected. The
distance is extensive when the RSSI is small. Thus, numerous
virtual anchor nodes that correspond to the round will be
involved, and the angle will be accurate. The average RSSI
of the round is denoted as

RSSI kaverage =
n∑
i=1

RSSI ki , k = 1, 2., (3)

where k represents the round number.

The midpoint of round k-th is calculated by

T (k)
r =

T(n+1)/2, if n is an odd integer,
1
2
(Tn/2 + Tn/2+1), if n is an even integer.

(4)

Then, the angle of the midpoint is calculated by

θ (k)r =
180ω T (k)

r

π
. (5)

3) SOLUTION TO THE MAXIMUM RSSI OF
ROUND k-TH BY LINEAR FITTING
The RSSI of the midpoint is the largest because the cor-
responding virtual anchor node is nearest to the unknown
node P. However, the broadcast period of mobile anchor node
impacts the density of virtual anchor nodes. This mobile
anchor node may not send a packet in the point that corre-
sponds to θ (k)r , and the detected RSSI set may not contain the
corresponding RSSI value of θ (k)r . Based on the fading model
of RSSI [38], the relation between RSSI and distance is linear
in local. The two RSSI sets are fitted to two intersecting lines.
The RSSI is less than 0, and the fitting lines should be in the
fourth quadrant. We opt to demonstrate linear fitting in the
firstquadrant to observe conveniently.

In Fig. 6, L1 and L2 are two fitting lines in the coordi-
nates that consider time as the X-coordinate and RSSI as
the Y-coordinate. The intersection of two lines exhibits the
maximumRSSI, which is denoted as RSSImax ; we also denote
the vertical ordinate of the intersection point as RSSImax .
In Fig. 6(a), RSSI3 is the nearest to RSSImax among the RSSI
values that correspond to {T1,T2,T3,T4} and is on a straight
line L2. In Fig. 6(b),RSSI2 is the nearest toRSSImax and is on a
straight line L1. Obviously, no virtual anchor node presents at
the intersection point. Therefore, the actual maximum RSSI
that corresponds to the virtual anchor node is typically not
equal to RSSImax , and remains uncertain. If the time value
that corresponds to the actual maximum RSSI is on the left
of the time value of the intersection point, then the actual
maximum RSSI is on the fitting line L1, similar to Fig. 6(b).
Otherwise, the actual maximum RSSI is on line L2. The least
squares method is selected to fit two sets of coordinate points,
which are represented by (T ji ,RSSI

j
i ). For j = 1, 2, the left

and right points of the max RSSI are denoted, respectively.
For i = 1, 2, 3, · · · , n, n coordinate points are denoted. Then,
we obtain the fitting lines L1 and L2, which are expressed as

RSSI (1) = a1 + k1T (1)
; (6)

RSSI (2) = a2 + k2T (2). (7)

The time point corresponds to max RSSI is Tf , and the
fitting errors are calculated by{
e1 =

∑
(RSSIi − k1Ti − a1)2, i = 1, · · · , f ,

e2 =
∑

(RSSIi − k2Ti − a2)2, i = f + 1, · · · , n.
(8)
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FIGURE 6. Schematic of the RSSI linear fitting. (a) Actual maximum RSSI
corresponds to L2. (b) Actual maximum RSSI corresponds to L1.

Partial derivatives of e with respect to k and a are
calculated by

∂e
∂k
= 2

∑
(RSSIi − kTi − a)(−Ti) = 0,

∂e
∂a
= −2

∑
(RSSIi − kTi − a) = 0.

(9)

Then, the equation set of k and a is obtained by{
(
∑
T 2
i )k + (

∑
Ti)a =

∑
RSSIiTi,

(
∑
Ti)k + fa =

∑
RSSIi.

(10)

Let A =
∑
T 2
i , B =

∑
Ti, C =

∑
RSSIiTi,D =

∑
RSSIi,

and equation (10) can be transformed to{
Ak + Ba = C,
Bk + fb = D.

(11)

Then, k and a can be calculated by{
k = (Cf − BD)/(Af − BB),
a = (AD− CB)/(Af − BB).

(12)

We obtain the vertical ordinate of intersection of lines
L1, L2, and RSSImax as follows:

RSSImax =
k1(a2 − a1)
k1 − k2

+ a1. (13)

4) CALCULATE THE COORDINATES
OF THE UNKNOWN NODE
RSSImax should be substituted into the RSSI-based distance-
estimated model because the angle of the midpoint virtual
anchor node θ (k)r and the corresponding RSSImax have been
obtained. The RSSI is denoted by

RSSI = PL(d0)+ 10nlog(
d
d0

)+ Xδ, (14)

where PL(d0) is the received signal intensity at distance d0,
which is typically set to 1 m. n is the path loss exponent
between 2 and 5. Xδ is the random Gauss distribution with
mean zero and refers to the influence of the surrounding
environment on the signal measurement. Thus, we obtain the
distance d between the virtual anchor and the unknown node
to be located at the moment with respect to the RSSImax .
The unknown node is inside the virtual anchor node,

dr = −d , when the node receives only one round packet and
the antenna direction of the packet field is ‘‘left’’. If the
antenna direction of the packet field is ‘‘right’’, then the
unknown node is outside the virtual anchor node, dr = d .
The k-th round with a small average RSSI is selected when

the unknown node receives two rounds of packets. Then,
we obtain the following equation:

dr =

{
−d, Antennadirection = left,
d, Antennadirection = right.

(15)

The coordinates of unknown node pi are set to (xi, yi), and
the radius of the arc in which the set coordinates are located is

r = R · m/2+ d, (16)

where m = [
θ
(k)
r

180
] + 1. Then, the coordinates of unknown

node pi can be calculated by

(xi, yi) =

{
(−r · cosθkr ,−r · sinθ

k
r ), m is odd,

(−r · cosθkr − R/2,−r · sinθ
k
r ), m is even.

(17)

Thus, we obtain location of the unknown node. Loop exe-
cution is performed until all unknown nodes are located.

V. PERFORMANCE SIMULATIONS
Our simulations were performed with MATLAB 7.0 plat-
form. For clarity, the proposed method is noted as
the LDVSL. We compared our LDVSL scheme with the fol-
lowing three localization schemes: a) Double Scan scheme,
where the collinearity problem is overcome by the anchor
node that moves in the horizontal and vertical directions,
b) Hilbert scheme [29], where the model enables the
unknown nodes to receive the non-collinear virtual beacon
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signals directly and obtain precise estimated coordinates, and
c) SLMAT scheme [35], which is a path-planning algorithm
combining a localization algorithm with a mobile anchor
node based on trilateration and SCAN algorithm. SLMAT
ensures that each unknown node is covered by a regular
triangle formed by beacons. To the best of our knowledge,
Double Scan and Hilbert are the classic localization schemes,
and SLMAT is the latest localization scheme under the same
scenario of the proposed scheme. We implemented five sets
of simulations. In subsection A and B, the performance of
the proposed algorithm is evaluated and compared with Dou-
ble Scan, Hilbert and SLMAT in accordance with the aver-
age localization error under two factors, including broadcast
period and antenna angle. In subsection C, we analyzed the
effects of the interaction of broadcast period and antenna
angle on the performance of the proposed algorithm. Sub-
section D presents the impact of unknown node number on
average localization error.We observe the impact of obstacles
on average localization error in subsection E. In subsec-
tion F, we compare the average runtime per unknown node
of LDVSL, Double Scan, Hilbert and SLMAT localization
algorithms to observe the energy cost.

TABLE 1. Simulation parameters.

The deployment area is set to 500m×500m. The unknown
nodes are randomly distributed in the middle 400 m× 400 m
of the deployment area given that blind coverage may be
located at the edge of the area. The initial position of the
mobile anchor node is (−25, 0). This node moves at a fixed
angular velocity ω. The signal fading model is in accordance
with [29], where,PT = −5 dBm,PL(D0) = 55 dBm, and η =
4 (outdoor). The mean value and variance of Xσ correspond
to 0 and 5. Other main parameters are listed in Table 1. A total
of 100 Monte Carlo are performed for each set of simulations
to ensure the reliability of the simulation results.

A. IMPACT OF BROADCAST PERIOD ON
AVERAGE LOCALIZATION ERROR
Average localization error is a basic and important index for
evaluating an algorithm. This index refers to the Euclidean
distance between the estimated and the real positions [39].
The actual and estimation coordinates of the unknown node
are denoted by (xi, yi) and (x̂i, ŷi), respectively. The number
of unknown nodes is N, and the communication radius of
the anchor node is R. The average localization error can be

calculated by

averageerror =

∑N
i=1

√
(xi − x̂i)2 + (yi − ŷi)2

N
. (18)

If the broadcast period is 1 s, the mobile anchor node
broadcasts its coordinates once a second, and the production
frequency of virtual anchor nodes is also once a second.
We obtain additional virtual anchor nodes when the period is
small.We demonstrate the changes in the average localization
errors of Double Scan, Hilbert, SLMAT and the LDVSL algo-
rithm with different broadcast periods to verify the improve-
ment of our algorithm in terms of location accuracy and
analyze the impact of the broadcast period.We set the antenna
angle to 60◦. In Fig. 7, the average localization errors of the
four methods increase obviously while the broadcast period
increases from 0.5 s to 3 s. However, the average localization
error of the LDVSL is constantly the lowest among four
algorithms. The average localization errors of the LDVSL
are 78%, 83.1% and 91.5% of the Hilbert, Double Scan
and SLMAT correspondingly, when the broadcast period
is 2 s. Therefore, the proposed LDVSL improves the average
localization accuracy of unknown nodes.

FIGURE 7. Impact of broadcast period on average localization error of
different algorithms.

B. IMPACT OF ANTENNA ANGLE ON
AVERAGE LOCALIZATION ERROR
In this subsection, we aim to observe the performance of
the different algorithms when antenna angle changes. The
broadcast period is set to 1 s. In Fig. 8, we compared the
average localization errors of Double Scan, Hilbert, SLMAT
and the proposed algorithm while the antenna angle changes
from 30◦ to 90◦. The average localization errors of the four
algorithms increase while the antenna angles enlarge because
the unknown node P is consistently within the overlap of
the communication range of multiple virtual anchor nodes.
A larger range will lead to a reduction in precision. However,
the average localization error of the proposed algorithm is
lower than the three other methods regardless of the antenna
angle.

VOLUME 7, 2019 28493



X. Wang et al.: Robust Localization for CIoT via the Mobile Anchor Node

FIGURE 8. Impact of antenna angle on average localization error of
different algorithms.

C. INTERACTION IMPACT OF BROADCAST PERIOD AND
ANTENNA ANGLE ON THE PERFORMANCE OF LDVSL
In this subsection, the performance of the proposed algorithm
is evaluated in accordance with the average localization error
and positionable node ratio (PNR) under different combina-
tions of antenna angle and broadcast period. The PNR refers
to the proportion of the number of unknown nodes below a
given average error threshold to the total number of unknown
nodes.

We have observed the impact of their different combina-
tions on the PNR in Fig. 9(a). The PNR performs well and
is above 96.1% when the broadcast period is 0.5 s, or when
the broadcast period is 1 s or 1.5 s and the antenna angle is
larger than 60◦. The PNR of a 2 s broadcast period at 30◦

of the antenna angle is only 69.1%. The average localization
error deteriorates seriously to 13.9, although the PNR of a 2 s
broadcast period can reach 92% with the increase in antenna
angle, as depicted in Fig. 9(b).

Furthermore, shown as Fig.10(a) and Fig.10(b), two three-
dimensional diagrams are given to illustrate the trend of
average localization error and PNR changingwith two param-
eters (broadcast period and antenna angle) simultaneously.
In order to give macroscopic diagrams of parameters vari-
ations, we adjust broadcast period range from 0.5 to 3 and
antenna angle range from 20 to 100.

D. IMPACT OF UNKNOWN NODE NUMBER
ON AVERAGE LOCALIZATION ERROR
To observe the impact of unknown node number on average
localization error, we conduct a set of simulation experiments
by considering the antenna angle of 50◦ and broadcast period
of 0.5 s as simulation parameters. We set two unknown nodes
randomly at 400 m × 400 m of the deployment area initially
and then add two nodes in each round until the number
becomes 100 to observe the effects of the unknown node
number in the deployment area on the performance of the
proposed algorithm. Five simulations are performed for each
round to obtain an average localization error, and there are
5 × 50 rounds in total. In Fig. 11, the average localization

FIGURE 9. Interaction impact of broadcast period and antenna angle on
performance of LDVSL. (a) Interaction impact on the PNR. (b) Interaction
impact on the average localization error.

error has a slight uptrend overall. However, the average local-
ization error only slightly changed when the number of the
unknown nodes increases. The variation of the unknown node
number has a minimal influence on the average localization
error of the proposed algorithm, thereby indicating that the
proposed algorithm is robust to the change in the unknown
node number.

E. IMPACT OF OBSTACLES ON AVERAGE
LOCALIZATION ERROR
Experiments discussed above are carried out without obsta-
cles. However, if there exist nodes or obstacles between the
unknown node and the anchor node, the RSSI value received
by the unknown node will be smaller than it should be.
Since it is difficult to guarantee the proportion of anchor
nodes affected by randomly setting obstacles, we decrease a
certain proportion of the RSSI values from RSSI value set
acquired by the unknown node mentioned in section IV-B.
In Fig. 12, we compare the variation of average localization
errors of Double Scan, Hilbert, SLMAT and the proposed
algorithm when the ratio of abnormal RSSI changes from
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FIGURE 10. Trend of average localization error and PNR changing with
broadcast period and antenna angle. (a) Trend of average localization
error. (b) Trend of PNR.

FIGURE 11. Impact of unknown node number on average localization
error.

0 to 30 percent. It is found that the average localization error
of the proposed algorithm varies from 3.237 to 3.762 and
is not significantly affected by obstacles when the ratio is
less than 10 percent. It is obviously more desirable than the
other three schemes. However, when the ratio is larger than
10 percent, average localization errors of all four schemes

FIGURE 12. Impact of obstacles on average localization error.

TABLE 2. Comparison of computational runtime among different
localization algorithms.

deteriorated seriously. The proposed algorithm can get over
the impact of the obstacles to some extent. There are two rea-
sons. First, as mentioned in part IV-B, the ‘‘round’’ with a
small average RSSI will be selected to satisfy the calculation.
The round selection is based on the average value of a set
of RSSI received by unknown node, rather than single RSSI
value, so the round selected is not affected seriously by single
RSSI value; second, the virtual anchor node whose RSSI is
decreased will induce a noise point in linear fitting. The linear
fitting method can measure the distance between the fitting
line and the noise point inherently, and remove the point
corresponding to the abnormal RSSI.

F. COMPUTATIONAL RUNTIME
In addition, we compared the average computational runtime
per unknown node of LDVSL, Double Scan, Hilbert and
SLMAT localization algorithms with and without obstacles
influence. The average computational runtime is the aver-
age CPU time for locating one unknown node. All runtime
data is provided in Table 2. Due to the unique characteris-
tics of the diameter-varying spiral line and efficient linear
fitting, the proposed algorithm has an overwhelmingly less
CPU runtime when compared to three competing algorithms,
regardless of whether there are obstacles. Therefore, the com-
putational load of the proposed algorithm is obviously the
lowest. The proposed algorithm is promising to be solidified
as a novel low energy cost technique.

VI. CONCLUSIONS
Many intelligent applications in Cognitive Internet of Things
depend on devices being able to accurately determine their
locations. For WSN, we propose a mobile anchor node
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assisted localization algorithm based on the diameter-varying
spiral line (LDVSL), in which the virtual anchor node posi-
tion is obtained by time and angle mechanism instead of
GPS given the unique path characteristics of the mobile
anchor node. The simulation results indicate that LDVSL
algorithm outperforms Double Scan, Hilbert and SLMAT
algorithms in terms of average localization error. Moreover,
we analyzed the influence of broadcast period and antenna
angle on the performance of the LDVSL algorithm in terms
of PNR and average localization error. The proposed algo-
rithm exhibits high accuracy, excellent coverage probabil-
ity, and good robustness under the premise of favorable
parameters.
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