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ABSTRACT Harvesting energy from the surrounding environment is an important and practical solution to
prolong the life of the energy-constrained Internet-of-Things (IoT) devices, e.g., wireless sensors. Visible
light communications (VLC) has been proved able to provide high-speed data links while meeting the
illumination requirement. Thereby, the energy of VLC signals may be harvested by the energy-constrained
IoT terminals, such as indoor sensors and portable/wearable devices. This paper presents the concept of
simultaneous lightwave information and power transfer (SLIPT) with a particular focus on the design
of the receiver and the practical methods to realize SLIPT in the domains of time, signal components,
and photoelectric converters. Furthermore, this paper also introduces the applications of SLIPT to various
network topologies and communication technologies, e.g., multiple input multiple output, hybrid VLC–radio
frequency, and secure communications. Finally, a detailed discussion of future research directions and
challenges for the design of SLIPT systems is also presented.

INDEX TERMS Cooperative communications, energy harvesting, secure communications, simultaneous
lightwave information and power transfer, visible light communication.

I. INTRODUCTION
Nowadays, harvesting energy from the surrounding environ-
ment has been regarded as a promising and practical way to
prolong the lifetime of power-constrained systems, e.g., wire-
less sensor networks (WSNs), wireless personal and Black-
tooth networks, which operate under extremely low duty
cycles. Among the sources that can be used to harvest energy,
radio frequency (RF) signals have gained special attention in
the recent years, due to their capability to controllably deliver
energy to the intended terminals at long distances [1], [2].

However, there is a safety problem, which cannot
be avoided in practical applications with wireless RF
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power transmission. To this end, the transmit power of RF sig-
nals cannot be too high, because in this case there are electro-
magnetic effects on human health. For instance, the general
population exposure limits (power density) for electromag-
netic fields from 1500 ∼ 100,000 MHz presented by Fed-
eral Communications Commission (FCC) are 1 mW/cm2

within 30 minutes, and from 300 MHz to 1500 MHz
are f /1500 mW/cm2 (where f is the frequency in MHz),
respectively [3]. However, it should be mentioned here that
RF wireless power transfer is subject to stringent transmit
power constraintsčň due to safety regulations, e.g., the max-
imal transmit power regulated by the FCC limits. Because
of this, ambient RF sources, e.g., base stations, radio and
television broadcasting, global positioning systems (GPS)
and Wireless Fidelity (Wi-Fi), etc., usually operate far below
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the FCC limits. Moreover, using extra RF sources for wireless
power transfer or increasing the power of existing sources to
facilitate energy harvesting will lead to strong electromag-
netic interference, which in turn negatively affects the elec-
tronic equipment precision and the performance of wireless
communication systems.

In order to overcome the aforementioned problems, energy
harvesting (EH) through visible light communications (VLC)
systems has been proposed as an alternative solution for
energy constrained systems [4]–[14]. This is motivated by the
fact that VLC systems can support high data-rate transmission
without producing any electromagnetic pollution, compared
with the traditional RF [15]. In LED-based VLC systems,
LEDs are adopted as the optical sources to convert the
non-negative electrical signal to the modulated optical signal,
while photoelectric converters (PECs) are used as the detector
at the receiver to convert the optical power back into electrical
current for signal processing. It is highlighted that lightwave
wireless power transfer is fundamentally different to RF, due
to divergent channels characteristics, transmission/reception
equipment, and EH model, among others.

As an effective complementary technology to conven-
tional RF communications, VLC can offer a potential of
very high data rate. Benefiting from the ever-increasing
popularity of solid-state lighting, compared with other arti-
ficial light sources, such as the incandescent light bulbs,
LEDs exhibit several merits, such as longer lifetime, higher
brightness, no health hazards, and lower power consump-
tion. As a unique advantage, LEDs also provide a dual
functionality of supporting lighting and data communication
by using the same high-brightness LEDs. Also, the level
of indoor lighting has been proved to be enough to power
electronic devices [16], [17], with respect to the eye safety
regulations [18]. Consequently, VLC is an eco-friendly and
sustainable technology. These advantages lead to a whole
range of interesting and important applications of VLC in
the era of internet-of-things (IoT), including but not limited
to indoor networks, like high-speed data transmissions via
lighting infrastructures in offices, airplane cabins, trains and
hospitals, and outdoor networks, e.g., car-to-car communica-
tion and access point-to-train communication.

In this paper, we investigate the concept of simultaneous
lightwave information and power transfer (SLIPT )
for VLC systems, in order to extend the lifetime of
energy-constrained terminals and hence alleviate the bot-
tleneck of energy-sensitive networks, while avoiding safety
problems imposed by traditional wireless RF power transfer
systems. Specifically, compared with the existing works on
SLIPT [4], [10], the main contributions of this work are listed
in the following:

1)We provide a comprehensive review for works on SLIPT
for first time in the literature;

2) The basic theory is established for several novel different
architectures for SPLIT receivers;

3) Several different techniques and designs have been pre-
sented in this work to enable SPLIT.

The reminder of this work is organized as follows:
in Section II, the indoor optical power distribution of
LED lights is introduced. In Section III, first, solar panel
and photodiode (PD) based light EH models are dis-
cussed. Next, in the same section, various types of SLIPT
receiver architectures are introduced, evaluated and com-
pared. In section IV, V and VI, we discuss the applications
of SLIPT in multiple-input multiple-output (MIMO) sys-
tems, hybrid VLC-RF systems, and secure communication
systems, respectively. Section VII provides some interest-
ing future directions, including hardware design, fundamen-
tal limitations, resource allocation, and imperfections, and,
finally, section VIII concludes the paper.

II. ENERGY DISTRIBUTION IN INDOOR SLIPT SCENARIOS
In a SLIPT system, LED lamps are adopted as energy sources
and large-area photodetectors are used as receivers to col-
lect as much energy as possible. The transmission range for
indoor VLC is relatively short, because of the pathloss atten-
uation. According to [19] and [20], the line-of-sight (LOS)
propagation model of VLC clearly reveals that the transmis-
sion gain over the VLC channel is inversely proportional
to the square of the distance between the LED lamp and
the receiver. Therefore, the received optical energy is also
inversely proportional to the square of the distance between
the LED lamp and the receiver.

Fig. 1 illustrates the optical energy distribution in indoor
scenarios with two different heights of the receive plane,
0.5 m and 1 m, in which the locations of 4 LED arrays
are (1.25, 1.25, 3), (1.25, −1.25, 3), (−1.25, −1.25, 3) and
(−1.25, 1.25, 3), semiangle at half power is 70 degrees,
the transmit power per LED is 20 mW, the number of the
LEDs in each array is 60 × 60, and the active area of the
receiver PEC is 1 cm2. It is obvious that the received optical
power ranges from −2.5 dBm to 1.75 dBm, and −2.7 dBm
to 4.1 dBm for heights 0.5 m and 1 m, respectively. Another
important feature of the energy distribution is that there will
be four peak areas for the received optical power, when the
height of the receive plane is 1 m. Also, the worst received
optical energy appears in the four corners of the room.
Moreover, regarding Fig. 1, it can be seen that the received
optical power is on the order of mW. By considering the
power conversion efficiency for LED light (13.5%, 19.4%
and 21% for silicon, GaAs, Al0.2Ga0.8As photovoltaic cells,
respectively) [21], then, the achieved charging power is on
0.1 mW order. So, it is enough to charge low power nodes
for their regular operations. For example, [22, Fig. 8] reveals
that the total average power consumption is 0.274 mW for the
strain sensor and 1.73 mW for the accelerometer, which are
used for monitoring buildings to assess earthquake damage.
Therefore, VLC is capable of providing sufficient power to
realize wireless energy harvesting.

III. BASIC SLIPT RECEIVER DESIGNS
A. PD VS SOLAR PANEL BASED EH
There are two potential architectures to realize lightwave EH,
i.e., solar panel and PD based [16], [17], which correspond to
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FIGURE 1. Indoor optical energy distribution with the room size of
5 m × 5 m × 3 m. (a) The height of the receive plane is 0.5 m.
(b) The height of the receive plane is 1 m.

photovoltaic (zero-bias) and photoconductive (reverse bias)
PEC working modes, respectively. More information about
these two modes are provided below.

1) PHOTOVOLTAIC MODE
In the photovoltaic mode, the PEC is zero biased to exploit
the photovoltaic effect, which is the basis for the solar cells.
The utilization of this mode for EH is quite simple and energy
efficient, since no external power or other components are
needed. Also, this mode can be effectively used for informa-
tion decoding (ID), when precision and reliability are more
important than high data rates, since it suffers less from
noise than photoconductive mode, at the expense of higher
capacitance.

2) PHOTOCONDUCTIVE MODE
In the photoconductive mode, an external reverse bias
is needed to generate the photocurrent, which is linearly

proportional to the illumination intensity. The voltage across
the PD lowers its capacitance, which enables faster amplifica-
tion. This characteristic motivates the utilization of this mode
for high speed information detection. It needs to bementioned
that it is quite challenging to use common PDs (e.g., positive-
intrinsic-negative, PIN) for EH. Except of decreasing the
energy efficiency due to the requirement of external power
for operation, the hardware complexity is also increased. This
is because a Schottky diode needs to be employed in the
EH branch as rectifier to convert alternating current (AC)
components to direct current (DC) ones for EH [16].

B. SLIPT RECEIVER DESIGN
In the following, three efficient SLIPT receiver architectures
are proposed to realize separation of the signals used for EH
and ID in three different domains: time, power, and PEC.

1) TIME SWITCHING RECEIVER
SLIPT can be easily realized by using two disjoint circuits,
each of which has different functionality, i.e., either EH or ID.
When a time switching (TS) scheme is employed, the receiver
switches in time between the energy harvester and informa-
tion decoder (Fig. 2a). That is to say, the signals are split

FIGURE 2. SLIPT receiver architectures. (a) Time switching receiver.
(b) Signal component separation receiver. (c) PEC receiver architectures.
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in the time domain and the received signal is processed
either for EH or for ID at each PEC, for fractions of time
θ and 1 − θ , respectively. Thus, TS creates an interesting
trade-off between the harvested energy and communication
performance, which calls for conscious regulation of θ .

2) SIGNAL COMPONENT SEPARATION RECEIVER
This scheme relies on a unified EH and ID receiver. Under
the signal components separation (SCS) scheme the received
photocurrent is split into two streams: DC for EH, and AC
(which carries the information) for ID, as shown in Fig. 2b,
where the inductor L0 in the EH branch is used as the RF
choke. The inductor L0 is adopted to attenuate the AC signal,
thus removing ripples from the DC signal and improving
the gain for ID process [6], while capacitor C0 is used to
block the DC component of the signal. The performance
of the SCS can be adjusted by tuning the fraction ρ of the
maximum input bias current, IH, that is occupied by the DC
bias added to the electrical signal during the modulation of
the optical intensity of the LED. As ρ increases, the harvested
energy also increases. However, as ρ deviates from the value
1
2 (IH+ IL)/IH, with IL being the minimum input bias current,
then the communication performance is negatively affected.
This is because the communication performance depends on
the peak amplitude of the modulated electrical signal, which
is constrained by both IH and IL. Considering the above,
it becomes evident that the mechanism for the adjustment of
ρ, which is performed at the transmitter, is fundamentally dif-
ferent to the regulation of θ under TS scheme, since the latter
is performed at the receiver. Also, it should be noted that SCS
scheme can achieve higher EH efficiency compared to TS
scheme, since it realizes EH and ID at the same time, without
wasting the DC component for the sake of ID. However, this
comes at the expense of a more sophisticated receiver design.

3) PEC GROUPING RECEIVER
When there are multiple PECs employed at the receiver,
EH and ID can be simultaneously realized by using a subset
of PECs for EH and the remaining PECs for ID (Fig. 2c).
Differing from SCS and TS schemes, under the PEC grouping
(PECG), stringent time synchronization and hardware per-
fection are not needed at the receiver. SLIPT with multiple
PECs is especially important since it enables the utilization
of different PEC working modes, giving the capability to
increase both the ID and EH rate. Moreover, the receiver can
control the subset of PECs, which are used for EH and ID,
by using a switching key.

C. PERFORMANCE OF THE PROPOSED RECEIVERS
The performance of the proposed SLIPT receivers is pre-
sented and compared in Fig. 3, where the height of LED
lamps is 3 m, semiangle at half power is 70, the noise power
is 0 dBm, the number of the LEDs is 60× 60, the active area
of the receiver PD is 1 cm2, the time duration is 3.6 ×104 s,
ρ denotes the power splitting factor, NE denotes the num-
ber of the PCs adopted for EH under PCS scheme. In the

FIGURE 3. Performance comparison among the proposed three receivers.
(a) Outage probability. (b) The harvested energy.

considered system setup, a group of LED lamps located at the
center of the ceiling of the room and a receiver with multiple
PECs is uniformly distributed in a disk with radius 3 m on
the floor. The receiver employs the proposed SLIPT schemes
(namely, TS, SCS and PECG) to harvest energy and decode
the information. We only consider LOS propagation and omit
reflections from surrounding surfaces for simplification. The
performance metric is the outage probability and an outage
event occurs when the received signal-to-noise ratio (SNR)
is below a predefined threshold (γth). We also assume that
the receiver is equipped with a battery with infinite energy
storage size.

The comparison shows that the outage performance of the
TS scheme with θ = 0.1 and 0.2 outperforms the others,
where the harvested energy under the TS scheme with θ =
0.1 is the lowest one among the ones under the three proposed
schemes. The harvested energy of the SCS scheme for ρ =
0.5 and ρ = 0.7 is larger than that of the PECG scheme with
NE = 2 andNE = 3, respectively. On the contrary, the outage
probability (OP) of the PECG scheme with NE = 2 and
NE = 3 outperforms that of the SCS scheme for ρ = 0.7
and ρ = 0.5, respectively.
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IV. MIMO SLIPT
Normally, a group of LED lamps are placed to close to each
other on the ceiling of a room to provide illumination, which
facilitates their employment as multiple sources during the
process of data communications. Therefore, MIMOVLC can
be employed to achieve diversity gain, especially for the
case where the receiver is located in poor-connection zones,
e.g., in the corners of the room (see Fig. 1).

However, the aforementioned benefit provided by the
MIMOVLC systems comes at the cost of increased hardware
complexity of the systems. Fortunately, advanced transceiver
designs, originally developed in traditional RF communica-
tion systems, can be applied to MIMO SLIPT VLC systems
to reach a suitable tradeoff between EH, data transmission,
and cost. When SLIPT is adopted in MIMO VLC systems,
the design of the receiver will be much more complex and
difficult, compared with that with a single PEC, so that
multiple copies of the received signals are effectively uti-
lized. For example, one or more multiple LED lamps can be
selected to transmit the data information, while other LED
lamps are used only for illumination. Then, the complexity
of the signal processing at the source will be significantly
reduced, as well as that of the received signal processing
at the terminal. Another example is the selecting combining
scheme, which can also be adopted at the terminal in MIMO
SLIPT VLC systems. Under this case, the optimal signal with
the maximum optical power is chosen for ID and the others
are used for EH.

Moreover, MIMO SLIPT VLC systems also exhibit a
multidimensional pool of resources, e.g., signal-spaces, light
transmit powers, time slots, sub-carriers, codes, and users,
which can be exploited by signal processing techniques
to enhance the system performance. Therefore, efficient
resource allocation schemes can be designed to deal with
the tradeoff between optimality and feasibility and to realize
a balance between information transmission and lightwave
energy transmission. In more detail, there are mainly three
aspects that need to be considered by a resource policy for
MIMO SLIPT VLC systems: 1) transmission rate and light
transmit power control, that provide quality of service (QoS)
of information delivery, light EH, and inter-user interference
guarantee; 2) multiple access techniques to schedule resource
components among various types of users, while satisfying
the individual QoS requirements on ID/EH; 3) a signaling
policy to allow simultaneous information and light wave
energy transmission of independent data or/and light wave
energy streams to the scheduled users. Normally, some QoS
metrics, e.g., transmission rate, outage probability, fairness,
energy efficiency, and EH efficiency, can be considered
to assess the system performance of MIMO SLIPT VLC
systems.

Particularly, when multiple LED lamps and multiple PECs
are respectively adopted at the transmitter and the receiver,
precoding and beamforming techniques can be employed to
realize spatial steering of independent signals and to coor-
dinate interference mitigation, as shown in Fig. 4. In other

FIGURE 4. Optical beamforming in MIMO VLC.

words, precoding and beamforming schemes aim to manipu-
lating these independent signals’ amplitude and phases and
adding them up constructively in desired directions and
destructively in the undesired ones, which lead to the coexis-
tence of various data/light wave energy streams conveyed to
the concurrent receivers. Furthermore, the design of precod-
ing and beamforming schemes rely on some system factors to
fully exploit the spatial domain, e.g., the amount of channel
state information (CSI) available at the LED lamp, the net-
work scenario (like single-LED-cell or multi-LED-cell) and
the LED lamp settings. Thus, CSI acquisition, control sig-
naling, and coordinated scheduling are challenging tasks for
MIMO SLIPT VLC systems to implement precoding and
beamforming schemes.

V. HYBRID VLC-RF SLIPT
VLC aims at providing broadcast communications and serv-
ing as an alternative for the existing RF systems, like
Wi-Fi. However, there are some inherent disadvantages of
the VLC technology, which limit its application in practical
scenarios [23]:

1) It is a challenge for VLC to realize bidirectional com-
munications, as VLC over the backward link (uplink) may
produce glare, which can be a safety or discomfort issue to
human.

2) LOS propagation is crucial to VLC and hence non-LOS
communications is challenging, e.g., sending signals across
obstacles.

So far, traditional RF transmission, e.g., Wi-Fi and mil-
limeter wave communications, is considered as a suit-
able alternative for the backward link (uplink) of VLC
systems [24] and it can also be adopted as cooperative links
to extend the coverage of the system [9]. So, hybrid VLC-RF
systems have been suggested and designed to exploit
the advantages of both RF and VLC technologies, while
avoiding the weaknesses [4]. Unfortunately, it is normally
impractical and challenged for power-hungry terminals,
e.g., portable devices and sensors, to implement bidirectional
communications and to increase the coverage by using RF
technologies only. Therefore, hybrid VLC-RF SLIPT is an
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alternative and promising solution to overcome the aforemen-
tioned energy bottleneck problem. In the following, coopera-
tive hybrid VLC-RF systems with SLIPT will be discussed.

In traditional RF communication systems, cooperative
communication was introduced to expand the coverage of
wireless networks, by using spatial diversity. Inspired by this,
cooperative communication can also be adopted in hybrid
VLC-RF systems to overcome the inherent limitations of
VLC, e.g., the light cannot penetrate walls, which results in
a short transmission range, compared with Wi-Fi and other
RF technologies. It can also be used to extend the data
transmission range of the indoor VLC systems to outdoor,
e.g., vehicular networks.

FIGURE 5. Hybrid VLC-RF system in cooperative scenarios.

As depicted in Fig. 5, in a cooperative SLIPT VLC sys-
tem, each relay is equipped with a PEC and an RF antenna.
Especially, by using SLIPT at the relays, the information
delivery over the link between the jth (j = 1, 2, 3) relay
and the destination (Rj-Di (i = 1, 2) link) can be carried
out by making the use of the harvested energy from the light
signal over LED-Rj link. Then, the terminals which are out
of the coverage of the LED lamp, such as D1 and D2, can
also communicatewith the LED.Moreover, one should notice
that RF communication technologies should be adopted over
Rj-LED link to avoid the glare produced by using VLC, when
D sends back data to the LED via the relays. In multiple-relay
scenarios, as shown in Fig. 5, relay selection should be con-
sidered to achieve the tradeoff between system performance
and consumed system resources. Moreover, it is also easy
to observe that the amount of the harvested energy depends
on the optical transmission distance, namely, the length of
LED-Rj link, while the channel gain of the link between the
jth relay and Di (Rj-Di link) relies on the distance between
Rj and Di. So the locations of the relays play an important
role in the cooperative hybrid SLIPT VLC system, as shown
in Fig. 5. In this case, the deployment of the relays should be
optimized in order to exploit the benefits of SLIPT. Another
interesting issue is that, for certain positions of the relays,
the optimizations of the SLIPT can also be implemented at
each relay, to deal with the tradeoff between EH and ID.

VI. SECURE SLIPT
Because of the inherent broadcast nature of VLC chan-
nels, the information transmission may be eavesdropped by

unauthorized terminals in the coverage of the LEDs in spite
of LOS propagation and better signal confinement, since light
signals are transmitted without optical fibers or any sort of
wave-guiding [25]. In SLIPT VLC systems, the transmitted
signals consist of both information bits and light wave energy,
which may increase the eavesdropping probability of the
transmitted information. This is because there may exist two
modes of terminals in SLIPT VLC systems, one for light EH
only and the other for information detection, then, compared
with traditional VLC systems, the information security prob-
lems are more prominent in SLIPT VLC systems, because
some of the EH terminals might become malicious nodes
and overhear the data transmission between the source and
legitimate receiver.

Recently, physical-layer (PHY) security has been recog-
nized as a promising way to protect the information-theoretic
security from eavesdropping, which makes use of the char-
acteristics of transmission channels [26]. Thus, PHY security
approaches can be applied in SLIPT VLC systems to improve
the secrecy performance, by exploiting the intrinsic random-
ness of the VLC channels and reaping the benefits offered by
SLIPT. Next, two examples on secure SLIPT VLC are given:

1) Cooperative jamming, which was proposed to improve
the secrecy performance of RF systems, can also be
employed in SLIPT VLC/VLC-RF systems. More specifi-
cally, in SLIPT VLC systems the cooperative LED lamps that
are close to the eavesdropper can send jamming light signals
to degrade the received SNR at the eavesdropper.

2) Transmit beamforming techniques can be employed
to enhance the secure communication for the SLIPT VLC
systems with multiple LED lamps. Specially, the transmit
beamformer can be designed and optimized to maximize the
received SNR at the legitimate receiver, subjected to maxi-
mum SNR constraints imposed by the eavesdropper.

VII. FUTURE RESEARCH DIRECTIONS
There are several open problems for SLIPT VLC systems,
as information and energy are both transmitted through the
VLC channel at the same time. In the following we discuss
some of the research directions:

A. HARDWARE DESIGN
The unique features of SLIPT receivers require novel designs
for practical applications, compared to common PD receivers
or solar panels, which aim at realizing a single purpose:
information communication or EH. To this end, the utilization
of i) separate receivers, ii) lenses at the receiver to adjust the
field-of-view, and iii) new generation PECs (e.g., organic)
should be investigated. Among others, SLIPT transceivers
should be capable of adjusting the DC and AC components
in the optical signals to simultaneously satisfy the demands
of both EH and information communication. Also, there is
a trade-off between the size of the mobile devices versus
the receiver’s light collecting area. Moreover, the efficiency
of SLIPT can be further improved by the exploitation of
new bulbs, which utilize both visible and infrared light.
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Especially, the design should also utilize the popular process
technologies, like complementarymetal oxide semiconductor
(CMOS), for cost cutting and marketing.

B. FUNDAMENTAL LIMITS
It is particularly challenging to characterize the fundamental
limits of SLIPT, since the VLC channel is totally different
from the traditional RF ones. Stochastic geometry can be
applied to deal with the performance, while taking the ran-
domness of the terminals’ positions into account [27]. More-
over, the overall system performance should be carefully
defined and characterized, due to the complexity of the hybrid
systems.

C. RESOURCE ALLOCATION
As ID and EH performance should be jointly considered in
SLIPT VLC systems, how to effectively allocate the sys-
tem resources to achieve the optimal system performance
is a meaningful, but difficult task. In the hybrid SLIPT
VLC-RF systems, there are system resources, such as light
power, relays, LEDs, PECs, injection angle, and so on, which
can be adjusted and allocated during the performance opti-
mization process. For example, optimal PEC/antenna selec-
tion, optimal SLIPT relay selection, and optimal deployment
of SLIPT relays can be designed for cooperative hybrid
VLC-RF systems.

D. IMPERFECT CSI
Most existing works on VLC/VLC-RF relied on the assump-
tion of perfect CSI, however, it is difficult to achieve perfect
CSI in practical scenarios. Therefore, it is important to study
the impact of imperfect CSI on SLIPT VLC/VLC-RF sys-
tems. For example, strong CSI assumption plays an important
role during performance modeling, analysis, optimization,
and system design for SLIPT systems.

E. EMERGING APPLICATIONS
SLIPT is a promising technology to implement in order to
alleviate the bottleneck of energy constrained wireless net-
works. Potential applications include building/human health
monitoring, indoor environmental monitoring, network cov-
erage expansion, etc.

So far, several manufacturers have deployed EH prod-
ucts for commercial use; however, large-scale production of
these devices has not been yet attained. The most popular
source of indoor ambient energy is the light. Consequently,
harvesting energy from the light is a self-sustaining and
cost-effective solution for low-power autonomous devices
in indoor scenarios, such as remote sensors and embedded
devices. Thus, as a promising concept, SLIPT pertains to
different layers of applications such as smart housing, smart
manufacture/industry 4.0, healthcare, automotive, medical,
and aerospace, where each of these diverse domains are
assumed to be equally critical in EH.

VIII. CONCLUSION
In this paper, the basic concepts of the SLIPT in VLC systems
have been presented. Particularly, various receiver architec-
tures have been introduced and demonstrated. Also, the appli-
cations of SLIPT in MIMO and cooperative networks have
been discussed. Moreover, PHY security issues have also
been investigated and the potential security improving meth-
ods have been provided. Finally, future research challenges
and directions for SLIPT VLC systems have been discussed
and outlined.
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