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ABSTRACT Even though speaker recognition has gained significant progress in recent years, its perfor-
mance is known to be deteriorated severely with the existence of strong background noises. Inspired by
a recently proposed clean-frame selection approach, this work investigates a relatively elegant weighting
method when computing the Baum-Welch statistics of Gaussian mixture models (GMMs) in i-vector extrac-
tion. By introducing weighting parameters to the frames of enrollment/testing utterances, the optimization
problem is redefined and solved. New updating rules are derived by incorporating weights to the computation
of posterior probabilities, mean vectors, and covariance matrices of the GMM. The experiments conducted
on the Speakers in the Wild (SITW) database show that the proposed algorithm has significantly improved
the performance of i-vector-based speaker recognition systems in noisy environments. Compared with the
GMM i-vector baseline, the equal error rate is reduced from 5.75 to 4.72 and the minimum value of cost
function (Cmin

det ) is reduced from 0.4825 to 0.4505. Slight but significant superiority is also observed over the
method with an additional feature enhancement frontend by using deep neural networks.

INDEX TERMS Gaussian mixture models, frame weighting, Baum-Welch statistics, i-vector, robust speaker
recognition.

I. INTRODUCTION
A key property of a good automatic speaker recogni-
tion (ASR) system is being able to model the uncertainty
and variation of the utterances of the same speaker. Towards
this goal, a lot of statistical approaches, such as Vector
Quantization (VQ), Gaussian mixture models (GMMs) [1]
and i-vectors [2] have been proposed and investigated exten-
sively over the past decades. Those classical approaches have
obtained satisfying performance on clean conditions and have
been applied in miscellaneous scenarios where a speaker’s
identity needs to be recognized by voice. Recently, with
the rise of deep learning, deep Neural Networks (DNNs)
and deep Convolution Neural Networks (CNNs) have also
been explored to speaker recognition by extracting deep
features [3]–[5] Among those deep models, deep speaker
embedding has shown promising performance using limited
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enrollment and testing data [6]. Compared with deep learning
methods, GMM holds relatively low computing complexity
and does not require additional backend software (e.g. Caffe,
TensorFlow). It is thus easy to be implemented in miscella-
neous computing platforms. Therefore, it is still meaningful
to improve the performance of the GMM+i-vector recipe in
real-world scenarios with the existence of many kinds and
SNR levels of background noises.

In realistic scenarios, due to the mismatch between training
data (usually clean) and testing data (usually contaminated
by unknown noises with different intensities), the recognition
performance of the system will degrade drastically. To deal
with this problem, researchers have proposed many methods
to enhance the quality of features at different levels, such as
speech signal enhancement by statistical processing [7]–[9]
or by deep learning [10]–[12], DNN based cepstral feature
de-noising [13], i-vector de-noising [14], multi-task adver-
sarial network (MAN) for extracting noise-invariant bottle-
neck (BN) features [15] etc. Backend classifiers have also
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been investigated by parallel model combination [16], robust
variants of the Probabilistic Linear Discriminative Analy-
sis (PLDA) model [17], [18], multi-style training [19], [20],
etc. These techniques usually work as plug-in tools to aug-
ment the performance of GMM+i-vector. As a substitution
of GMM+i-vector, our work could also be further improved
by the techniques above.

Besides improving the quality of contaminated features,
feature selection by discarding noisy frames is another idea
to improve the performance of speaker recognition. The work
in [21] showed that, voice segments drowned in noises, could
play a negative role, which could be improved by conducting
frame selection. SoftSAD was proposed in [22] to perform
soft selection of speech frames by weighting the frames in
the calculation of Baum-Welch statistics. Though the moti-
vation of this work was to choose ‘‘speech-like’’ frames
from clean speech, it provided meaningful grounding for
our work by showing the benefit of using frame-weighted
Baum-Welch statistics. The work in [23] studied nonlinear
frame-likelihood weighting method which proved the practi-
cability of the frame dependent non-linear weighting method.
Our work would extend above ideas to a more practical aspect
of noise-robustness on speaker recognition.

Recently, an algorithm, Noise Invariant Frame Selec-
tion (NIFS), was proposed in [24], where the input test-
ing utterance was artificially-noised to help choose noise
invariant frames. Experiments showed the effectiveness of
this algorithm on speaker recognition in noisy environments,
except under low signal-to-noise ratios (SNRs). Another inef-
ficiency of the algorithm was that a key threshold needs to
be chosen to judge which frames to retain and which ones
to remove. In this work, to improve the noise robustness of
speaker recognition and to get rid of the difficulty of choosing
such a threshold, we introduce frame weighting to the com-
putation of Baum-Welch (BW) statistics of GMM in i-vector
extraction. Experiments have demonstrated the effectiveness
of the proposed approach, compared with several recently
proposed algorithms. It is worth noting that our algorithm
can also be used in other speech processing tasks where noise
robustness is required during i-vector extraction, e.g. spoof-
ing detection in [25] and speaker identification in [26].

This paper focuses on improving the noise robustness of
GMM+i-vector based ASR system. Specifically, an algo-
rithm is proposed to incorporate frame weights to the calcu-
lation of Baum-Welch statistics in the procedures of i-vector
extraction The main contributions of this paper are listed as
follows.

1) An improved Baum-Welch algorithm to train GMM
with data weighting, which outperformed a similar
approach presented in [27].

2) A straightforward approach to evaluate the noise
robustness of speech frames without additional manual
efforts on choosing a threshold in [24].

The remaining part of this paper is organized as follows.
In Section II, a convention recipe of noise robust ASR by
using GMM and i-vector extraction is presented, as well

as on which part our algorithm will improve. The detailed
mathematical derivation of the algorithm to solve GMMwith
data weighting is given in Section III. In Section IV, how the
weights are calculated is stated, which serves as inputs to the
algorithms derived in Section III The experimental results of
the proposed algorithm and its comparison with other state-
of-the-art ones are discussed in Section V. The conclusion is
given in Section VI.

II. i-VECTOR BASED NOISE ROBUST ASR
AND THE ROLE OF OUR WORK
In this section, we introduce the noise robust ASR system by
using the recipe of GMM+i-vector and explain on which part
our work will improve. First of all, a conventional recipe of
noise robust ASR by using GMM and i-vector extraction is
presented in Fig.1, which has several components: training,
enrollment and testing [28], as is illustrated in Fig.1.

FIGURE 1. A conventional recipe of noise robust automatic speaker
recognition by using GMM and i-vector. The dashed boxes from left to
right refer to enrollment, training and testing, respectively. The proposed
algorithm of this paper is going to improve the highlighted boxes of
Baum-Welch statistics.

In the training stage (see the dashed middle box of Fig.1),
a universal background model (UBM) is firstly trained on
the features extracted from training data (Training Features
in Fig. 1) which is usually collected from a large number of
speakers. Baum-Welch (BW) statistics of the training stage
are subsequently obtained by adapting the UBM to the train-
ing features of each training speaker A total variability (TV)
subspace model is then learned from the BW statistics of
all the training speakers and is deployed to yield a low
and fixed dimensional latent factor, i.e. i-vectors. With a
further dimension reduction by using Linear Discriminative
Analysis (LDA), a Probabilistic LDA (PLDA) is learned as
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the classifier to facilitate speaker recognition. The routine
developed in [28] is utilized for the LDA-PLDA step.

In the enrollment/testing stages (see the dashed left/right
box of Fig.1), their corresponding BW statistics are gen-
erated by adapting the UBM to the enrollment/testing fea-
tures. The learned TV subspace model is then applied
on the corresponding BW statistics to extract i-vectors of
enrollment/testing speakers.

Finally, the i-vectors from the enrollment speakers and the
testing speakers are sent to the PLDA classifier which outputs
the log-likelihood ratios as scores for evaluation.

The algorithm proposed in this paper is going to improve
the three highlighted parts, Baum-Welch statistics, in the
recipe depicted by Fig. 1. Data weighting will be introduced
to the modeling of GMM when computing Baum-Welch
statistics to reflect the degree to which the data is contam-
inated by noises. The rigid mathematical derivation of the
algorithm will be presented in the next section.

III. WEIGHTED GMM IN i-VECTOR EXTRACTION
In this section, we consider different frames with different
weights when computing BW statistics of GMM in i-vector
extraction. The weights are denoted by {α1, · · ·αi, · · ·αN } for
frames {x1, · · ·xi, · · ·xN } where {αi ≥ 0, i = 1, · · ·N }. The
definitions of the weights will be discussed in Section IV.

A. WEIGHTED GMM AND PARAMETER ESTIMATION
In speaker recognition, a GMM can be utilized to model the
probability density of spectral features extracted from utter-
ances of a particular speaker. For a D-dimensional feature
vector, xi, the probability density is given by,

Pr (xi; θ) =
K∑
k=1

wkN (xi;mk , 6k), (1)

where N (xi;mk , 6k) is a D dimensional Gaussian distri-
bution, mk the mean vector, 6k the diagonal covariance
matrix,wk the weight of the k-th Gaussian with the constraint∑K

k=1 wk = 1,K the total number of Gaussians and θ =
{wk ,mk , 6k}

K
k=1 the set of the GMM parameters.

Given N feature vectors extracted from an utterance,
the Maximum-Likelihood Estimation (MLE) of θ is going to
maximize the following data likelihood,

L (xi; θ) =
N∏
i=1

Pr (xi; θ). (2)

Thanks to the property of the exponential family, log-
likelihood, J (θ) is usually used as the optimization goal,

max
θ

J (θ) = max
θ

N∑
i=1

logPr(xi; θ ). (3)

By introducing weighting parameter αi for each feature
vector xi, the log-likelihood objective function becomes,

max
θ

J (θ) = max
θ

N∑
i=1

αi log
K∑
k=1

wkN (xi;mk , 6k). (4)

It is obviously seen from (4) that the objective function is
consistent with the conventional model in (3) when no frame
weighting is conducted where αi = 1.
In order to optimize (4), inspired by the derivation of the

conventional ExpectationMaximization (EM) algorithm [29]
an auxiliary function Q

(
θ;θ̂

)
,

Q
(
θ; θ̂

)
=

N∑
i=1

αi

K∑
k=1

β̂ik (logwk+logN (xi;mk , 6k))+ C

(5)

is firstly constructed by introducing an intermediate variable,

β̂ik =
ŵkN

(
xi; m̂k , 6̂k

)
∑K

j=1 ŵjN
(
xi; m̂j, 6̂j

) , (6)

where C is a nonnegative constant term,

C =
N∑
i=1

αi

K∑
k=1

β̂ik log
1

β̂ik
≥ 0, (7)

and θ̂ = {ŵk , m̂k , 6̂k}
K
k=1 is the parameter estimation of the

previous iteration in EM.
It is straightforward to show that Q

(
θ̂;θ̂

)
= J

(
θ̂
)
and

J (θ)≥Q
(
θ;θ̂

)
, given

∑K
k=1 β̂ik = 1 and β̂ik ≥ 0. There-

fore, for every iteration, one only needs to maximizeQ
(
θ;θ̂

)
(w.r.t. θ ) to increase the value of J (θ) until convergence.
Given the fact that Q

(
θ;θ̂

)
is a concave function of θ the

stationary point would be the optimization solution,

∂Q
(
θ; θ̂

)
∂mk

= 0,
∂Q

(
θ; θ̂

)
∂6k

= 0. (8)

Hence, mk and 6k are calculated by,

mk =

∑N

i=1
αiβ̂ikxi∑N

i=1
αiβ̂ik

, (9)

and

6k = diag


∑N

i=1
αiβ̂ik (xi − mk )(xi − mk )T∑N

i=1
αiβ̂ik

, (10)

where diag refers to the diagonalization operator by which
only the diagonal entries in a matrix are retained. Lagrange
multiplier is subsequently applied to optimize the function
with respect to wk

max
wk

Qnew = max
wk

(
Q+ λ

(
K∑
k=1

wk − 1

))
. (11)

By solving ∂Qnew
/
∂wk = 0, the updated wk is

obtained by,

wk =

∑N

i=1
αiβ̂ik∑N

i=1
αi

. (12)
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FIGURE 2. The algorithm of calculating different weights for different frames. d i is the averaged Euclidean distance over the three-noise cases of
the i-th frame. dmin is the minimum among {d1d2, . . . ,dN }. The weights αi can be obtained by using Eqn. (17).

In the next EM iteration, β̂ik is firstly computed by (6) with
the updatedwk ,mk and6k , and (9) (10) (12) are subsequently
conducted to update θ = wk ,mk , 6k}

K
k=1.

B. BMODIFICATIONS OF THE I-VECTOR
EXTRACTION PROCEDURES
With a pre-trained speaker and channel independent
super-vector µKD×1 from the means of the universal back-
ground model (UBM), the i-vector ωR×1 is extracted by
solving the following equation,

M = µ+ Tω, (13)

whereMKD×1 is the super-vector computed by concatenating
themeans of the GMMwhich has been adapted to the features
from a specific speaker as presented in (9), TKD×R a low-rank
matrix to model the speaker and channel variability and ωR×1
the i-vector which is a random vector following a standard
normal distribution Matrix T models the total variability
subspace and has been learned from the training data by using
the EM algorithm as presented in [2].

For the speech frames of a specific speaker from the
training/enrollment/testing data, by using the weighed GMM
presented in subsection A, a weighted version of M will
be obtained, which boils down to computing the following
modified zeroth and first order BW statistics,

Nk =
N∑
i=1

βikαi and Fk =
N∑
i=1

βikαixi. (14)

Also, the centralized first order statistics are required later

F̃k =
N∑
i=1

βikαi (xi − µk), (15)

where µk is the k-th sub-vector of µ. It is straightforward to
see that, F̃k/N k is the k-th sub-vector of the centralized statis-
tics M − µ With uniform weighting, i.e. αi = 1,∀i, (15) is
consistent with the corresponding step of the conventional
i-vector extraction method, given the fact that

∑K
k=1 βik = 1.

Finally, the i-vector for this speaker is obtained by,

ω = (I + T
′

6−1NT )−1T
′

6−1F̃, (16)

where IR×R is an identity matrix, NKD×KD a diagonal matrix
with diagonal blocks {Nk ID×D, k = 1, · · · ,K }, F̃KD×1 a
super-vector obtained by concatenating F̃k ’s, 6KD×KD a
diagonal covariance matrix estimated during factor analysis
training (see [30]) which models the residual variability not
captured by the total variability matrix T .

IV. WEIGHTS DEFINITION TO IMPROVE
NOISE ROBUSTNESS
In Section III, weighted GMM for i-vector extraction has
been presented. In this section, we describe how to cal-
culate different weights for different frames as shown
in Fig.2 Inspired by [24], in our proposed algorithm, different
types of noises are added to the original testing speech to
explore the noise-robustness of different frames. In order to
make straightforward comparison w.r.t. [24], in the following
experiments, three types of noises, i.e. white, babble, and
pink, are chosen the same as in [24]. Then the Euclidean
distances of MFCCs between the frames of the resulted noisy
speech and the frames of the original noisy speech are cal-
culated. The three distances are averaged for each frame,
as depicted in Fig.2. The weight for the i-th frame xi is
subsequently defined by,

αi = e−
(
d i−dmin

)
, (17)
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FIGURE 3. (a) Speech waveform. (b) Spectrogram. (c)(d)(e) Weights calculated by (17) (18) (19), respectively.

where d i is the averaged Euclidean distance over the three-
noise cases of the i-th frame and dmin the minimum among
the average values {d1d2, . . . , dN }.
It is worth mentioning that the impacts of different noise

combinations, different SNRs and the number of noises on
the robustness of the selection of frames are analyzed in [24].
Although the performance varies a bit with these factors,
every combination and their average performance perform
better than the baselines. Hence, we will not study this topic
here.

In Fig3, the waveform of an utterance and its corre-
sponding spectrogram together with the weights extracted
by Eqn. (17) are shown. It can be seen from the figure that
high weights correspond to formants in the spectrogram
and high-energy parts of the signal, which makes sense
For speaker recognition tasks, formants and voiced sounds
contribute more than other parts to the recognition results.
Increasing their weights will help improve the robustness
of the system One may argue that other statistics could be
taken to replace d i. We hereby replace d i with the maxi-
mal or minimal value of the distances regarding the three
noise types, which is denoted by d̂i (for maximum) or ďi
(for minimum), respectively. Correspondingly, to facilitate
normalization, dmin in (17) should be replaced by theminimal
value of d̂i’s (denoted by d̂min) or the minimal value of ďi’s
(denoted by ďmin), respectively. Therefore, the formulae to
calculate frame weights are switched to,

αi = e
−

(
d̂i−d̂min

)
, (18)

and

αi = e
−

(
ďi−ďmin

)
, (19)

respectively. Fig.3 shows the weights of the frames of an
utterance calculated by (17), (18) and (19), respectively. From
Fig.3 it is straightforward to see that the contours of the
weights from the three schemes are quite similar, which
has also induced their similar performance on EER values
in our experiments1. Besides this similarity, the amounts
of weights decease monotonously in the order of the mini-
mum scheme (19), the mean scheme (17) and the maximum
scheme (18), which is as expected. The best performance
of the mean scheme (17) in our experiments implies that
the scheme is able to reflect the degree to which a frame
is contaminated by noises more adequately than the maxi-
mum scheme (18) and the minimum scheme (19). Therefore,
the weighting scheme is always taken as (17) in the following
experimental setting.

V. EXPERIMENTS AND RESULTS
A. AEXPERIMENTAL SETUP
In this work, D = 39 dimensional MFCC features with
13 MFCCs, 13 1 and 13 11 were utilized. Each frame of
an utterance was processed by a 25 ms Hamming window
with 10 ms shifts. A first-order high pass pre-emphasis filter
with α = 0.97 was applied. 27 Mel-channels were used in
the filter-bank. K = 2048 Gaussians were taken in GMM.
R = 400 dimensional i-vectors were extracted.

The experiments were carried out on the SITW speaker
recognition database, TIMIT VoxCeleb1 and VoxCeleb2.
SITW contains hand-annotated speech samples from
open-source media for the purpose of benchmarking text-
independent speaker recognition technology on single and
multi-speaker audio acquired across unconstrained or ‘‘wild’’

1For readers’ reference, EERs on SITW involving the three weighting
schemes: 4.72% with (17), 4.77% with (18) and 4.74% with (19).
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conditions, which consists of 2800 recordings of 299 speak-
ers, with an average of eight different sessions per person [31]
TIMIT was designed for speech recognition, especially for
phoneme recognition, which consists of 6300 recordings
of 630 speakers and served as a good choice for training
models [32] VoxCeleb1 is a large-scale text-independent
speaker identification dataset collected in the wild, which
was extracted from videos uploaded to YouTube and consists
of 153516 utterances of 1251 speakers. The dataset is gender
balanced, with 55% of the speakers male. The speakers span
a wide range of different ethnicities, accents, professions
and ages. The nationality and gender of each speaker is
also provided. Crucially, all are degraded with realworld
noise, consisting of background chatter, laughter, overlapping
speech, room acoustics, and there is a range in the quality of
recording equipment and channel noise [33] VoxCeleb2 con-
tains over 1 million utterances for over 6,000 celebrities,
extracted from videos uploaded to YouTube. The dataset is
fairly gender balanced, with 61% of the speakers male. The
speakers span a wide range of different ethnicities, accents,
professions and ages [34] VoxCeleb1 and VoxCeleb2 provide
a large amount of data to model the diversity of speaker
characteristics.

Our algorithm presented in Section III and IV was evalu-
ated on the core-core subset of SITW, which involves single
speaker files and focuses on the solution of single speaker
recognition problem. It is worth noting that the core-core
condition in SITW SRC is similar to NIST SRE but more
challenging since the utterances in SITW was recorded in
real-world environment with reverberation and noises.

Equal Error Rate (EER) and Cmin
det were computed to com-

pare the algorithms. The primary metric is based on the cost
function Cdet with modified parameters in SITW [31],

Cdet=Cmiss × Pmiss × Ptar + Cfa × Pfa × (1− Ptar ), (20)

where the prior target probability Ptar is set to 0.01 and costs
for missing detection and false alarm are set to 1 (Cmiss =
Cfa = 1,Ptar = 0.01) The primary metric, Cmin

det is the
minimum value of Cdet for the range of thresholds. The EER
is the rate at which both acceptance and rejection errors are
equal.

B. RESULTS AND DISCUSSION
In order to prove the efficiency of the proposed algorithm,
the following algorithms were chosen for compari-
son, GMM+i-vector baseline [28] NIFS [24], Denoised
i-vector [14], a fixed weighted-data EM algorithm
(FWD-EM) [27] and DNN feature enhancement
(DNN-FE) [13].

In order to evaluate the performance of the proposed algo-
rithm trained on both small-scaled dataset and large-scaled
dataset, we designed three groups of experiments on SITW.

For the first group of experiments, only TIMIT was used to
train UBM and PLDA, which contains 6300 utterances from
630 speakers. The performance is given in Table 1.

TABLE 1. The results for methods trained on ‘‘clean’’ TIMIT.

For the second group of experiments UBM and PLDA
were trained with contaminated TIMIT. To reduce mismatch
between training and enrollment/testing conditions, an effec-
tive approach is to augment the training dataset by noisy
samples. ‘‘Noised’’ train data was generated artificially using
a MATLAB tool provided in the REVERB challenge [35].
In contrast to ‘‘clean’’ data, the ‘‘noised’’ data was obtained
by distorting 50% of the audio recording. Babble noise and
reverberation were added to match real-world conditions.
The evaluation values of this group of experiments are listed
in Table 2.

TABLE 2. The results for methods trained on ‘‘noised’’ TIMIT.

For the third group of experiments, UBM and PLDA
models were trained with VoxCeleb1 and VoxCeleb2. Note
that there are 60 speakers in VoxCeleb1 and 118 speak-
ers in VoxCeleb2 that overlap with our evaluation dataset,
i.e. SITW. The utterances from the 178 speakers were firstly
removed from the dataset prior to training. Finally, a total
of 1236567 utterances from 7185 speakers were used to train
the models. The performance of the model is given in Table 3.

TABLE 3. The results for methods trained on VoxCeleb1 and VoxCeleb2.

Generally, all the algorithms demonstrated superiority over
the GMM+i-vector baseline, as reported by other research
groups and also seen from Table 1, 2 and 3. By utilizing
the weighting scheme in GMM and taking the weighting
scheme of (17), the proposed algorithm showed better perfor-
mance than four other recently proposed algorithms for robust
speaker recognition. By training the model with datasets
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FIGURE 4. DNN feature compensation module in SR system during enrollment and test stage.

created by adding noise and reverberation to the clean TIMIT
training set, the training and test mismatch issues are allevi-
ated By increasing the scale of training data, the robustness
of the system has been significantly improved and EER has
been reduced from 12.95 to 5.75 Detailed comparison and
discussion on the baselines are given as below.

1) NIFS ALGORITHM
By adding miscellaneous types of noises artificially, NIFS
selects noise invariant frames from utterances, where a hard
threshold is chosen and frames with energy lower than the
threshold are all discarded. NIFS has an obvious problem
where useful information could also have been discarded due
to the subjectively chosen threshold. Compared to NIFS, our
algorithm adopts a soft strategy and does not discard any
frames but just giving noise invariant frames higher weights
and the remaining frames lower weights. The experimental
results on SITW demonstrated the superiority of the proposed
algorithm over NIFS, as shown in Table 1, 2 and 3.

2) DENOISED i-VECTOR
Denoised i-vector is to estimate a clean i-vector given its
noisy counterpart [14]. Themethod is based on the hypothesis
that the probabilistic distribution of the noise is Gaussian
and the mixture is additive in the i-vector space. Maximal A
Posteriori is hereby computed as an estimation of the clean
i-vector.

However, the two assumptions may not be satisfied in
the real-world scenario. Compared to Denoised i-vector,
our algorithm does not make any assumption on the pos-
sible distribution of i-vectors, which would not introduce
any additional error to deteriorate the model’s final per-
formance, especially when the density of i-vectors is not
Gaussian. Significant improvements were observed by com-
paring Denoised i-vector and our algorithm on the results of
SITW in Table 1, 2 and 3.

3) FWD-EM
FWD-EM is another recently proposed algorithm to intro-
duce weights to data points in GMM learning. By using
some approximation and simplification, the authors move
the exponential factor of the modified Gaussian distribu-
tion to the denominator of the covariance matrix. FWD-EM
is subsequently derived for the case with fixed weight for
each data point. FWD-EM solves the same problem as our
algorithm but with slightly different objective function and

the consequent updating rules. FWD-EM holds good prob-
abilistic probability but introducing additional approxima-
tion and assumption; while our algorithm directly imposes
data weights to the log likelihood without any probabilistic
interpretation nor simplification. The experimental results on
SITW showed that our algorithm outperformed FWD-EM
significantly as seen in Table 1, 2 and 3. One interpretation to
this outcome might be that the real-world data failed to fit the
assumptions taken in the approximation and simplification
when constructing their objective function of FWD-EM.

4) DNN-FE
Given the results of our experiments on SITW, DNN-FE
turns out the most competitive one among the baseline
algorithms. By following the recipe in [13], DNN-FE is
utilized to enhance the cepstral features before i-vector
extraction. The DNN is trained from parallel data of clean
and noise corrupted speech which are aligned in the frame
level. The training data is from VoxCeleb1 and VoxCeleb2.
To generate training data for DNN-FE, ‘‘noised’’ train-
ing data is generated using the MATLAB tool provided in
the REVERB challenge. In contrast to ‘‘clean’’ data, the
‘‘noised’’ data is obtained by distorting 50% of audio record-
ing. Babble noise and reverberation are added to match
real-world conditions. The features involved in DNN-FE are
39-dimensionalMFCC features with 25ms window and 10ms
shift. To predict clean MFCCs of frame, the sizes of the
DNN is 429×2048×2048×2048×39, where the input fea-
ture is 11 consecutive frames each of which is represented
by a 39- dimensional MFCC extracted from noisy speech,
specifically 5 pasts and 5 futures alongwith the current frame,
as shown in Fig.4 The target is a 39-dimensional MFCC
from the corresponding frame of the clean speech. There are
three hidden layers with 2048 nodes per layers in the DNN.
Each layer has a linear transform and a nonlinear activation
function. The input vector is linearly transformed byW (1) and
b(1) first, then goes through a sigmoid activation function to
form the output of hidden layer which is then forward further
to the subsequent layers till the output layer of DNN. A linear
activation function in the output layer is used to formulate
the regression task. Mean Square Error (MSE) on MFCCs is
taken as the objective function in DNN. Stochastic gradient
descent algorithm is used to train the network parameters.
The trained network could predict clean features by de-nosing
the noisy features. Fig.5 shows that the trained DNN per-
forms as a plug-in tool in the enrollment and testing stage
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FIGURE 5. DNN structure for feature compensation.

of speaker recognition. The role of DNN-FE is to transform
noisy MFCCs to clean ones towards better overall perfor-
mance on PLDA scoring.

In fact, DNN tries to convert the contaminated MFCCs to
corresponding clean versions; while our algorithm selects the
relatively clean frames. Given their similarity on improving
the quality of the input MFCC features, our algorithm per-
formed similarly with DNN-FE by only showing marginal
advantage on SITW. However, without a deep learning fron-
tend, our algorithm holds relatively low computing complex-
ity and does not require additional backend deep software.

VI. CONCLUSION
In the experience of human’s listening to identify a speaker’s
identity, we do not need all the information we heard. In fact,
some segments in speech, which are stronger than back-
ground noises, could have made positive contributions to the
recognition performance. Our proposed algorithm actually
modeled this phenomenon by introducing weight parame-
ters to the frames of the input speech. With a modified
objective function, new updating rules of Gaussian posteriori
probabilities were derived and utilized in i-vector extraction.
Experiments demonstrated the effectiveness of the proposed
algorithm w.r.t. existing ones. Future work would be investi-
gating more elegant ways to measure the noise-robustness of
the input frames.
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