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ABSTRACT Access to reliable estimates of the wireless channel, such as the channel state information (CSI)
and the received signal strength would open opportunities for timely adaptation of transmission parameters
and consequently increased throughput and transmission efficiency in vehicular communications. To design
the adaptive transmission schemes, it is important to understand the realistic channel properties, especially
in vehicular environments where the mobility of communication devices causes rapid channel variation.
However, getting CSI estimates is challenging due to the lack of support for obtaining CSI from the chipset.
In this paper, we present our efforts towards enabling reliable, up-to-date channel estimates in vehicular
communications. We begin by designing and conducting a measurement campaign where we collect IQ (in-
phase and quadrature) samples of the IEEE 802.11p transmission and implement CSI extraction algorithms
to obtain and analyze wireless channel estimates from various real-world environments. We then propose a
deep learning-based channel prediction for predicting future CSI and received signal levels. The trace-based
evaluation demonstrates that our prediction approach improves the future power level estimate by 15% to
25% in terms of the root-mean-square-error compared to the latest known channel properties, thus, providing
a sound basis for future efforts in anticipatory vehicular communication transmission adaptation.

INDEX TERMS Channel state information, channel prediction, vehicular communications, neural networks,
LSTM.

I. INTRODUCTION
Adapting wireless transmission based on the received sig-
nal properties is one of the key paradigms enabling us to
achieve the communication performance of near Shannon
limit. Information on the received signal to noise ratio (SNR),
for example, is the basis of the whole span of transmission
rate adaptation protocols [1]–[3]. Similarly, fine-grain chan-
nel state information (CSI) in orthogonal frequency division
multiplex (OFDM) transmission enables sophisticated adap-
tation of the channel width [4].

The received signal properties, such as SNR andCSI can be
estimated either through models, describing the propagation
in the given environment, or through direct measurements of
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the desired properties. The models are often constructed for
a particular environment and assume a relative stability of
the setup. The measurements utilize a feedback loop between
the receiver, who measures the properties, and the sender,
who then uses the properties to adapt the transmission. Con-
sequently, the measurement-based approaches, too, expect
that the wireless channel does not change within the period
between the two consecutive packet receptions.

However, in the vehicle-to-vehicle (V2V) scenarios
the wireless environment varies rapidly. This, first, ren-
ders the constructed models unusable, as it is difficult to
generalize the surroundings between vehicle nodes [5]; sec-
ond, it calls for a reconsideration of measurement-based
approaches, as the channel may vary significantly within the
time between consecutive packets. For example, the current
channel information such as SNR and CSI can be easily
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outdated due to the rapid variation of vehicular channels.
In this case, the vehicle node cannot adapt its transmis-
sion parameters based on the current channel information.
Furthermore, there are no CSI feedback loops to adapt in
vehicular ad hoc networks. Thus in conventional vehicular
communications, the only available information the vehicle
can utilize to adapt the transmission parameters is the infor-
mation based on the latest received frame.

To facilitate future improvements in V2V transmission
understanding and adaptation in this paper we develop an
approach for channel properties measurement and prediction
in real-world V2V settings. To achieve our goal, we first
overcome the challenge of the lack of the CSI estimation sup-
port in commodity vehicular communication network cards.
We focus on IEEE 802.11p, a part of wireless access in vehic-
ular environments (WAVE), an OFDM-based WLAN stan-
dard specially designed for vehicular communications [6].
IEEE 802.11p is comparatively mature technology in the
market, which is categorized by non-HT (high through-
put) amendments, compared to the latest amendments to
the Wi-Fi standard such as IEEE 802.11ax [7]. Utilizing
the fact that each WAVE frame contains a short training
sequence (STS) and a long training sequence (LTS) in a
preamble [8], we devise a measurement campaign method
that uses off-the-shelf on-board units (OBUs) and a spectrum
analyzer to produce CSI estimations for each receivedWAVE
frame. Next, we conduct measurement campaigns in actual
driving environments, obtaining, to the best of our knowl-
edge, the first dataset of WAVE CSI data from real-world
V2V driving scenarios. Finally, we investigate the short-term
predictability of CSI and received power in the dataset, and
propose a channel information prediction.

To summarize, the main contributions of this paper are:
• The design and the implementation of a process for CSI
extraction, which is able to process raw IQ (in-phase and
quadrature) samples containing IEEE 802.11p frames.
We verify the CSI extraction tool in static over-the-air
(OTA) and cable-connection lab scenarios.

• The collection of a real-world channel characteristics
dataset containing WAVE communication from differ-
ent V2V driving scenarios, including both line-of-sight
(LOS) and non-LOS (NLOS) environments.

• The construction and evaluation of a deep learn-
ing method for subcarrier-level CSI and frame-level
received signal strength indicator (RSSI) data prediction
in vehicular environments.

II. RELATED WORK
For WLAN-based vehicular communications, a number of
adaptive transmission approaches have been implemented
and proposed to overcome the limitations and improve the
performance [9]. To maximize the performance of adaptive
transmissions, it is extremely important to obtain the corre-
sponding channel properties as accurately as possible.

In fast varying channel environments such as V2V driving
scenarios, the channel models may not be as effective as the

ones from other static environments. In the same context,
there have been many attempts to explore the V2V channels
not only in general cases, but also in special cases which are
not covered by general channel models [10]–[13]. To under-
stand the dynamic vehicular channel properties, monitoring
the variation of RSSI in real world measurements has been
popular in research fields of V2V communication due to its
simplicity [14], [15]. In most cases RSSI is available to users
so it is relatively easy to collect the RSSI measurement data.
However, RSSI is limited in its ability to capture channel
characteristics as it merely represents aggregated received
signal strength. For instance, information about subcarrier
performance in an OFDM system cannot be obtained through
RSSI analysis. Consequently, the performance of an adaptive
transmission such as link adaptation based on RSSI can be
degraded if the frequency selective fading is severe where a
few subcarriers have relatively weak responses compared to
others.

On the other hand, channel state information (CSI) is
able to represent the channel response in both time and fre-
quency domains, so called channel impulse response (CIR)
and channel frequency response (CFR), respectively. More
importantly, CSI is an actual metric of channel utilized in the
receiver, calculated with specific known sequence and it is
used for equalization of the channel effects. Therefore, for
understanding channel characteristics the investigation of the
CSI variation is far more useful than the investigation of RSSI
variation.

There have been some research efforts regarding the inves-
tigation of the CSI. Halperin et al. [16] have released a CSI
tool for IEEE 802.11n measurement and experimentation
as a firmware and drivers built on the specific commercial
network interface card (NIC). However, this tool is inappro-
priate for our purpose since it is restricted to the specific
NIC with IEEE 802.11n standard. Bloessl et al. [17] have
introduced the software defined radio (SDR) based IEEE
802.11p prototype. It contains CSI extraction functions, but
still we believe that the spectrum analyzer is more accurate
than the SDR when it comes to the measurement since the
main objective of the spectrum analyzer is the measurement
itself. Ye et al. [18] have shown the capability of deep learn-
ing for channel estimation and signal detection in OFDM
systems. This work focuses on the channel estimation itself
purely based on simulation data, while our main interest is the
channel prediction with measurement data. Yang et al. [19]
have introduced the inter-vehicle cooperative channel estima-
tion schemes for IEEE 802.11p.

Channel prediction has been studied in the past years.
Duel-Hallen [20] has analyzed fading prediction methods
and evaluated their performances. This work demonstrates
that auto-regression (AR) model-based linear prediction
method shows the best prediction performance in fading
channels, when compared to other algorithms such as sum-
of-sinusoids (SOS) model-based methods and band-limited
process model-based and other basis expansion algorithms.
Zeng et al. [21] also have utilized AR model-based linear
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prediction method for the channel prediction in VANETs for
the scheduling of data dissemination. Zemen et al. [22] have
demonstrated time-variant channel prediction with dynamic
subspace selection in flat-fading channels. Navabi et al. [23]
have introduced a channel prediction using neural network,
which aims to predict the angle-of-departure (AoD) of dom-
inant path in base stations for mobile communications.
Potter et al. also have shown the channel prediction using
recurrent neural networks with extended Kalman filter [24].
Nevertheless, above works are based on simulation data
generated from the channel models. On the other hand,
Luo et al. [25] have proposed CSI prediction with measured
channel data using a deep learning approach. However, this
work targets 5G wireless communications in static environ-
ments. There have been few works that address channel
prediction in vehicular scenarios. Anderson [26] claimed that
the channel prediction using neural networks is inappropriate
because of the randomness of channel properties, however,
it used channel data generated from the simulation with
channel models. In contrast, we experiment the possibility
of channel prediction using neural networks with our CSI
data from the measurement. To the best of our knowledge,
this is the initial attempt to predict the V2V channel with
real-world measurement data using both deep learning and
AR approaches.

III. VEHICULAR CHANNEL DATA
COLLECTION APPROACH
Wireless chip vendors enable only limited access to received
signal properties via software drivers. Knowing fine-grain
channel properties, such as CSI, is crucial for sophisticated
wireless transmission adaptation. Therefore, our first objec-
tive is to enable the collection of channel properties, such
as CSI and SNR for WAVE-based communication in V2V
settings.

We devise an approach that consists of two steps: 1) raw
IQ data collection (explained in this Section) and 2) channel
state extraction (explained in Section IV). We utilize two off-
the-shelf WAVE OBUs and one outdoor spectrum analyzer
(Fig. 1). For the experiments in outdoor V2V driving scenar-
ios, each OBU is installed in a separate car and connected to
the antenna mounted on the roof of the car. One OBU peri-
odically sends basic IEEE 802.11p safety messages (BSMs)
at a rate of 10 Hz, while the other OBU receives BSMs
and saves them into a log file. At the receiver, a spectrum
analyzer is additionally installed to record the IQ samples of
IEEE 802.11p frame. Raw samples would quickly overfill the
data storage, thus, we trigger the IQ recording only when the
signal power surpasses a certain threshold (above the noise
level which is set to−70 dBm in our measurement campaign)
and only for the time sufficient to capture a whole WAVE
frame. The complex baseband sampling rate of the spectrum
analyzer is 14 mega-samples per second (MS/s).

The transmission parameters used in our measurement
campaign are as follows. To configure the communication to
be as robust as possible, we set the lowest data rate and the

FIGURE 1. Measurement campaign for channel measurements in
vehicular environments. Each vehicle is equipped with off-the-shelf OBU
and the antenna mounted on the roof of the car. A signal power-triggered
spectrum analyzer is installed at the receiving end.

highest transmission power since the lowest data rate utilizes
a modulation and coding scheme that is the least likely to be
affected by noise. The data rate is set to 3 Mbps which means
binary phase shift keying (BPSK)modulationwith a code rate
of 1/2 in 10 MHz bandwidth. The center frequency for BSM
transmission is 5.86 GHz. A transmission power is assigned
to 23 dBm.

IV. CHANNEL PROPERTIES EXTRACTION FROM IQ DATA
Once the IQ samples for the measurement are collected
from the spectrum analyzer, signal processing algorithms are
applied to extract CSI.

A. STRUCTURE OF IEEE 802.11P FRAME
Traces collected by our measurement approach (Section III)
contain IEEE 802.11p frames. The structure of an IEEE
802.11p frame is described in Fig. 2. The frame is composed
of three fields: a preamble, signal and data. A signal field
includes the information of data rate and the length of the
payload data that follows. Since our objective is to extract
the channel information from the frame, our focus remains
in the preamble only. The preamble consists of one known
STS and one known LTS, irrespective of the transmission
parameters used. STS is made of ten equal short symbols
and LTS is composed of a half of a long symbol (i.e. cyclic
prefix) and two consecutive long symbols. Often, wireless
protocols use STS for frame detection and coarse frequency
offset correction and LTS for alignment and fine frequency
offset correction.

B. CSI EXTRACTION
We implement the CSI extraction algorithms by the
IEEE 802.11 standard as a reference. CSI extraction
algorithms include down sampling, frame detection,

27848 VOLUME 7, 2019



J. Joo et al.: Deep Learning-Based Channel Prediction in Realistic Vehicular Communications

FIGURE 2. IEEE 802.11p frame structure.

FIGURE 3. Magnitude of one example of received frame (top) and its
corresponding frame detection result (bottom).

symbol alignment, frequency offset correction and training
sequence extraction [17].

According to the IEEE 802.11 standard, each STS and LTS
has 161 samples for 16 µs, respectively, implying 10 MS/s
of sampling rate. However, raw IQ measurement data in our
spectrum analyzer have 224 samples for 16 µs because of
a 14 MS/s sampling rate. Thus, we need to downsample the
raw IQ measurement data with the ratio of Ntx/Nrx, where
Ntx and Nrx are the number of samples for a sequence in the
transmitter and the receiver, respectively.

After downsampling of the measured IQ samples, we have
to verify that the frame exists in the IQ data. We implement
the frame detection algorithm by applying the autocorrelation
function because STS is composed of ten repetitions of the
same pattern [27]. The autocorrelation rss[n] includes the
complex number multiplication and is calculated as follows.

rss[n] =
Nwin∑
k=0

s[n+ k]s̄[n+ k + lS] (1)

where s[n] and s̄[n] denote a received IQ sample and its
complex conjugate, respectively. lS represents the number of
IQ samples for one short symbol in STS and it is 16 in IEEE
802.11p. Nwin represents the window size for the autocor-
relation and we obtain the value of Nwin as 48 in our mea-
surement data through experimentation with a reference [17].
Then the normalization is applied to rss[n] to be independent
from the input power level by dividing rss[n] with the signal
power. By comparing the peak value of the result and the
threshold 0.5 which is predefined through experimentation

with a reference [17], we can detect the frame and obtain its
rough starting point in the IQ trace. Fig. 3 shows an example
of conducting the frame detection algorithm. The top graph
depicts the magnitude of a received frame and the bottom one
depicts the result of the frame detection.

Symbol alignment is the procedure to determine the start-
ing position of long symbols from LTS at a sample level. The
positions of two long symbols are identified by the peaks from
the result of cross-correlation between received IQ samples
and the whole pattern in LTS. As LTS is composed of a half
of pattern and two consecutive patterns, one low peak and
two high peaks are detected if the IEEE 802.11p frame exists
in the received IQ samples. Each peak indicates the start-
ing point of the patterns. The cross-correlation coefficients
between two high peaks are suppressed due to the sequence
characteristic.

FIGURE 4. Cross-correlation results between LTS and received samples.
The simulation result with perfect channel condition (top) and the result
of real-world measurement (bottom).

Fig. 4 illustrates the cross-correlation results between LTS
and received samples for symbol alignment. The top fig-
ure shows the simulation result with a perfect channel condi-
tion which is an identical result to the autocorrelation of LTS.
The bottom figure describes the cross-correlation result for
the over-the-air measurement in the laboratory. A part of the
discrepancy comes from the carrier frequency offset (CFO)
between the transmitter and the receiver.

To correct the CFO, we conduct both coarse and fine CFO
correction [28]. Coarse frequency offset correction utilizes
the repetition property of STS. As one sample in STS should
be the same as the sample that is 16 samples apart within the
STS, conjugate multiplication of these two samples produces
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the frequency offset estimation. The calculation of the coarse
frequency offset utilizes the last five short symbols of STS
and is given by

1fSTS =
1
lS
angle

5lS−1∑
n=0

s̄[n]s[n+ lS]

 (2)

where angle() denotes the phase angle in radian. Therefore,
coarse frequency offset for LTS is compensated by

s[m]← s[m]e−jm1fSTS (3)

where m = 0, 1, ..., 127 since LTS is composed of 128 sam-
ples. After coarse CFO correction, fine frequency offset is
obtained in a similar manner by

1fLTS =
1
lL
angle

lL−1∑
n=0

s̄[m]s[m+ lL]

 (4)

s[m] ← s[m]e−jm1fLTS (5)

where lL represents the number of samples for one long
symbol and in our case it is 64.

FIGURE 5. Cross-correlation results between LTS and received samples
after the frequency offset correction. The simulation result with perfect
channel condition (top) and the result of real-world measurement
(bottom).

Fig. 5 describes the result of a symbol alignment after the
frequency offset correction. The result shows that the noise
effects are suppressed in LTS compared to the symbol align-
ment result without the frequency offset correction in Fig. 4.
We now have sufficient data to extract the CSI. From

the symbol alignment, starting points of LTS patterns are
determined by two peaks. Since IEEE 802.11p utilizes the
64-point fast Fourier transform (FFT), we apply the 64-point
FFT to the 64 samples from first peak and the 64 samples
from second peak, respectively, which yields a pattern of
LTS affected by the channel. Then in the frequency domain,
two CFRs from two long symbols are averaged and we
employ the minimum mean square error (MMSE) algorithm
to estimate channel [29]. To calculate the CSI with MMSE
channel estimation, we first utilize least square (LS) estimator

FIGURE 6. CSI extraction results from the measurement conducted on
cable connection between the signal generator and the spectrum
analyzer. The CIRs (top) and the CFRs (bottom) acquired from the channel
estimation in the frequency domain.

which minimizes (Y − XH)H (Y − XH)where Y denotes the
averaged CFR, X is the long symbol in the frequency domain
and H is the CSI. H operator means the conjugate transpose.
The LS estimator of H is given by

_

HLS = X−1Y (6)

Then the MMSE estimator of H is as follows.

_

HMMSE = RHH

{
RHH + σ 2

(
XXH

)−1}−1 _
HLS (7)

where RHH can be calculated by

RHH = E
{
HHH

}
= E

{
(Fh) (Fh)H

}
= FRhhFH (8)

where E means the expectation and F is a discrete Fourier
transform (DFT) matrix.

V. VEHICULAR CHANNEL MEASUREMENT IN
REAL-WORLD ENVIRONMENTS
We conduct measurements in different environments.
First, for validation and reference purposes, we perform
cable-connected measurements. The second measurement is
over-the-air (OTA) measurement in the laboratory to verify
the functionalities of our measurement campaign. The third
one is conducted in an outdoor campus environment with
two realistically moving vehicles in order to collect the data
and investigate channel variation in a V2V communication
setting.

A. WIRED TESTING WITH CABLE CONNECTION
To investigate our CSI extraction algorithms and identify
possible distortions that the spectrum analyzer may induce,
we eliminate the wireless channel effects by connecting a
cable between the transmitter and the receiver. Controlled
by the power-level trigger, the spectrum analyzer records
104 frames, all of which are correctly decoded by our CSI
extraction module.
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CSI extraction results from the measurement conducted
on the cable connection are shown in Fig. 6. We show each of
the frame’s CSI overlapped in the same graph. As expected,
the CIRs from the measurement indicated one strong signal
path and the CFRs are practically flat over all subcarriers
indicating little frequency selectivity. A small peak is also
observed at the end of the CIRs due to the following repetitive
long symbol in LTS. A received power is around 22 dBm
indicating an almost 1 dB loss, as the transmission power in
our measurement campaign is set to 23 dBm.

B. WIRELESS TESTING IN THE LABORATORY
To further validate our measurement approach, we also con-
duct the measurement in the laboratory. In this measurement,
74 frames are detected and recorded by the spectrum analyzer,
while also being correctly decoded by our CSI extraction tool.

FIGURE 7. CSI extraction results from the measurement conducted in the
laboratory. The CIRs (top) and the CFRs (bottom) acquired from the
channel estimation in the frequency domain.

Fig. 7 describes the CSI extraction results with both CIR in
time domain and CFR in the frequency domain. CSI patterns
in the laboratory are similar to those in the cable-connected
measurement except the received power level. The signal loss
in this experiment is around 50 dB, considering the transmis-
sion power of 23 dBm and received power of −28 dBm. Flat
fading is observed in the CFRs as well. The extracted CSI
results are almost identical for all frames, which is expected
having in mind that the environment is static.

C. CAMPUS VEHICLE-TO-VEHICLE SCENARIO
After the validation of our measurement campaign and CSI
extraction tool, we extend the experiment to the campus V2V
scenario. One vehicle acts as a transmitter with OBU and the
other vehicle equipped with both the OBU for monitoring the
packet receptions and the spectrum analyzer for recording IQ
samples of the IEEE 802.11p frames. Two vehicles drive in
the campus of Kyungpook National University so there are a
variety of propagation environments due to the surrounding

FIGURE 8. Snapshots taken in the receiver vehicle during the
experiments in campus driving V2V scenario. Yellow circle marks the
transmitter vehicle.

FIGURE 9. CSI extraction results from the measurement conducted in
campus driving V2V scenario. The CIRs (top) and the CFRs (bottom)
acquired from the channel estimation in the frequency domain.

buildings, parking lots, etc. Fig. 8 shows the campus driving
V2V scenario.

Fig. 9 represents the CSI extraction results from the
measurement conducted in campus driving V2V scenario.
Each CSI is accumulated in the graph. In this measurement,
3,165 frames are detected and recorded at the spectrum
analyzer, but 1,886 frames are correctly decoded by our
CSI extraction module. We consider that one of the main
reasons for these decoding failures is dynamic propagation
environment experienced in our measurements i.e., NLOS
and multipath induced by surrounding obstacles.

CSI patterns in the campus V2V scenario remain almost
same to those in cable-connected and laboratory measure-
ments. However, the CFRs vary dramatically compared to
previous two static experiments due to the dynamic envi-
ronment in the campus V2V scenario. Fig. 10 shows the
CSI variation of the campus V2V scenario in time with a
three dimensional representation. We observe both an overall
received power change (e.g. higher overall level of frames
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FIGURE 10. CSI extraction results from the measurement conducted in campus driving V2V scenario.

received in the beginning, at the end, and around 300 sec-
onds into the drive), as well as frequency selective fading in
individual frames. Since the experiment in the campus V2V
scenario has diverse environments and numerous collected
frames, the CFR analysis in time domain is able to help
understanding the channel characteristics.

D. DISCUSSION
The CIRs extracted in previous three experiments exhibit a
similar form although we expected to observe multipath in
campus V2V driving scenario due to the surrounding obsta-
cles. We hypothesize that the reason lies in the temporal
resolution of our channel sounding approach, which is limited
by the IEEE 802.11p frame structure. Paschalidis et al. [11]
report that the RMS delay spread of multipath for campus
V2V scenario is measured from minimum 0 ns to maximum
100 ns. An IEEE 802.11p frame, on the other hand, has
64 samples in 6.4µs, leading to a 100 nsminimum resolution,
rendering it unsuitable for short-distance multipath inference.
For more sophisticated multipath analysis, a high-resolution
channel sounder should be used. Nevertheless, our goal is
to investigate channel properties extraction and prediction
in a practical setting that utilizes commodity WAVE com-
munication equipment, thus we continue our analysis while
acknowledging the above limitations.

VI. EXPERIMENTAL RESULTS OF CHANNEL PREDICTION
Up-to-date knowledge of channel properties can greatly
enhance the wireless communication by allowing sophis-
ticated rate adaptation and resource allocation. Often, the

adaptation is performed at the transmitter based on the last
measured properties piggybacked from the receiver. How-
ever, in a dynamic environment, such as those observed in
vehicular communications, the piggybacked informationmay
already be stale by the time it reaches the sender. Therefore,
in this section we explore the opportunities for predicting
channel properties in a vehicular network setting.

We base our prediction method on the long short-term
memory (LSTM) network. LSTM network is a type of a
recurrent neural networks (RNN) well known for its time
series prediction capabilities, and while mostly used in other
domains, such as financial predictions [30], LSTM network
has recently gained attraction among wireless researchers as
well [31]. LSTM network is able to overcome the vanishing
gradient problemwhich is the main issue for the conventional
RNN. The structure of LSTM unit is made by adding the cell
state with a forget gate layer, input gate layer and output gate
layer to a hidden state of the RNN unit. Input gate i controls
level of cell state update. Forget gate f controls level of cell
state reset. Cell candidate g adds information to cell state
and output gate o controls level of cell state added to hidden
state. Each component has the input weightsW , the recurrent
weights R and the bias b and calculated as follows.

it = σg (Wixt + Riht−1 + bi)

ft = σg
(
Wf xt + Rf ht−1 + bf

)
gt = σc

(
Wgxt + Rght−1 + bg

)
ot = σg (Woxt + Roht−1 + bo) (9)

where σg denotes the state activation function which is the
hyperbolic tangent function and σc is the gate activation
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function which is the sigmoid function. Therefore, the cell
state ct and the hidden state ht at time t is given by

ct = ft � ct−1 + it � gt
ht = ot � σc (ct) (10)

where � denotes the Hadamard product which takes two
same-dimensional matrices and generates another matrix
where each element i, j is the product of elements i, j of the
original two matrices.

The neural network we utilize consists of four types of
layers: a sequence input layer with one dimension, a variable
number of LSTM layers with a variable number of hidden
units, a fully connected layer, and a regression output layer.
Data are standardized before the input layer. For the opti-
mization algorithm, Adam [32] is applied with a maximum
epoch of 250, a gradient threshold of 1, an initial learn rate
of 0.005 and a learn rate drop period of 125 by the factor
of 0.2.

In the rest of the paper we employ LSTMmodels for chan-
nel prediction and compare their performance to the base-
line determined by the last observed (non-predicted) channel
property value.

A. CHANNEL PREDICTION IN CAMPUS V2V SCENARIO: A
SUBCARRIER LEVEL
As described in Section V-C, we have 1,886 frames-by-
52 subcarriers of CSI data from the decoded frames. We first
examine the ability of the LSTM network to predict a single
carrier’s SNR variation using a single LSTM layer (we use
−26th subcarrier). In Fig. 11 we show the variation of CSI
of the subcarrier obtained in a real-world V2V campus drive
scenario. We use the first 60% of the CSI data, which is
the −26th subcarrier SNR values in the channel estimation
results, as a training dataset and the remaining 40% of CSI
as a test dataset for the prediction. The network state keeps

FIGURE 11. SNR variation of −26th subcarrier calculated from the CSI
extraction in IQ samples measured in the campus V2V scenario. First 60%
of the data (blue line) are used for training and remaining 40% of the
data (orange line) are used for testing.

FIGURE 12. RMSE calculated between the channel prediction results and
the actual CSI values in the subcarrier level campus V2V scenario.
Legends describe the number of hidden units for a single LSTM layer in
our experiments. Baseline represents the results utilizing the latest
observed channel metric without prediction.

updatingwith the observed CSI since the actual values of time
steps between predictions are available in our environment.

Fig. 12 shows the root-mean-square error (RMSE) of the
baseline method and our channel prediction approach built
with a different number of hidden units in the LSTMnetwork.
We calculate the RMSE using the actual measured power
level at step ti and the predicted power level for step ti so
the unit for the RMSE in our case is dB. The time steps
values in the x-axis denote the number of frames in future
that the LSTM network is making a prediction for. Overall,
the prediction results show reduced RMSE compared to the
baseline. Interestingly, a smaller number of hidden units in the
LSTMnetwork performs better implying that the training CSI
data and the test CSI data are less correlated, which might be
explained by the fact that the drive does not re-visit locations.
Considering the number of hidden units as 3, the reduced
RMSE margins between baseline and prediction are same
20.47% for 1 time step and 3 time steps, 23.30% for 5 time
steps and 22.61% for 10 time steps, with the absolute value
of LSTM’s RMSE remaining almost the same. The RMSE
results in this experiment are uneven with the number of
hidden units due to a modest amount of data, but still we
observe the advantage of neural network approach for the
channel prediction.

We conducted a same experiments with 5 LSTM layers for
1 time step to evaluate the impact of the number of LSTM
layers. The results are as follows: RMSE of 5.2759 with
3 LSTM units, 5.3759 with 5 units, 3.8906 with 10 units,
3.9299 with 20 units, 3.9170 with 30 units, respectively. The
results indicate modest improvement despite significantly
increased network complexity, thus it appears that using a
single LSTM layer is sufficient for our purpose.

For a reference of prediction performance using neural
networks, we provide not only a baseline with no prediction,
but also a prediction with linear AR using previous measure-
ment values. Fig. 13 shows the RMSE of prediction using AR
modeled by the previous observations. Our ARmodel utilizes
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FIGURE 13. RMSE calculated between the channel prediction with AR
results and the actual CSI values in the subcarrier level campus V2V
scenario.

ordinary least squares which minimizes the sum of squared
errors for the fitting. The results demonstrate that channel pre-
diction using an AR cannot achieve the performance of neural
networks even in modeling with large number of previous
measurements. For example with one time step, the minimum
RMSE values for the AR and neural networks are 4.2053 and
3.9364, respectively.

To compare the performance of channel prediction meth-
ods, we demonstrate the best results from a deep learning
and an AR in Fig. 14. In the subcarrier level campus V2V
scenario, two channel prediction methods outperform the
baseline but the difference between two methods is small.
A deep learning shows better performance for the time step
of 1 while an AR shows better performance for the time step
of 10.

B. CHANNEL PREDICTION IN CAMPUS V2V SCENARIO:
A FRAME LEVEL
A subcarrier-level SNR variation is highly fluctuating
compared to a frame-level received power variation.

FIGURE 14. RMSE comparison between the best results from the channel
prediction with a deep learning and an AR in the subcarrier level campus
V2V scenario.

FIGURE 15. SNR variation of a decoded frame in IQ samples measured in
the campus V2V scenario. First 60% of the data (blue line) are used for
training and remaining 40% of the data (orange line) are used for testing.

A frame-level channel prediction is also useful as a
subcarrier-level channel prediction for the applications such
as power allocation and power adaptation, etc. With IQ
samples measured in campus V2V scenario, We are able to
analyze in not only the subcarrier level but also the frame
level. The frame level power variation in campus V2V sce-
nario is calculated and illustrated in Fig. 15. Similarly with
the subcarrier level analysis, We use the first 60% of the CSI
data as a training dataset and the remaining 40% of CSI as a
test dataset for the prediction.

Fig. 16 shows the RMSE of the baseline method and
our channel prediction approach built with a different num-
ber of hidden units in the LSTM network for frame level
SNR analysis in the campus V2V scenario. Considering the
number of hidden units as 5, the reduced RMSE margins
between baseline and prediction are 14.32% for 1 time step,
19.02% for 3 time steps, 21.82% for 5 time steps and 24.51%
for 10 time steps. Again, the results are uneven due to a

FIGURE 16. RMSE calculated between the channel prediction results and
the actual SNR values in the campus V2V scenario. Legends describe the
number of hidden units for a single LSTM layer in our experiments.
Baseline represents the results utilizing the latest observed channel
metric without prediction.
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FIGURE 17. RMSE calculated between the channel prediction with AR
results and the actual SNR values in the campus V2V scenario.

FIGURE 18. RMSE comparison between the best results from the channel
prediction with a deep learning and an AR in the frame level campus V2V
scenario.

modest amount of data. Compared to the previous channel
prediction results in a subcarrier-level, the overall RMSEs for
channel prediction are lower in frame-level. We argue that,
compared to the subcarrier-level received power, the frame-
level received power is already averaged over subcarriers,
thus remains less sensitive to the noise leading to smoother
frame-to-frame SNR measurements.

Fig. 17 shows the RMSE of prediction using AR modeled
by the previous observations as a performance reference. The
results also demonstrate that channel prediction using an AR
has lower performance than a deep learning approach.

We also present the best results from a deep learning and
an AR in Fig. 14 to compare the performance of channel
prediction methods. In the frame level campus V2V scenario,
a deep learning-based method shows better performance in
all time steps. For time step of 1, an AR shows worse RMSE
even compared to the baseline.

C. CHANNEL PREDICTION IN HIGHWAY V2V SCENARIO:
A FRAME LEVEL
Besides the campus scenario, we assess our method’s ability
to predict channel properties in a highway V2V scenario

FIGURE 19. Snapshots taken in the receiver vehicle during the
experiments in the highway V2V scenario. Yellow circle marks the
transmitter vehicle.

depicted in Fig. 19. The experimental configurations are
set up same as the campus scenario. The average speed
of the cars in a highway is around 100 km/h and we col-
lect the measurement data for around 1 hour. Measurement
campaign for the received frame power collection is con-
figured with off-the-shelf WAVE OBUs. The number of
transmitted frames and received power information for col-
lected frames is 120,308 and 110,372, respectively. Received
power of the frame in the highway V2V scenario are shown
in Fig. 20. We also apply the first 60% of received power
data as a training dataset and the last 40% of received
power data as a test dataset for the prediction. The network
state keeps updating with the observed value as well in this
experiment.

FIGURE 20. Received power variation measured in the highway V2V
scenario. First 60% of the data (blue line) are used for training and
remaining 40% of the data (orange line) are used for testing.

Fig. 21 shows the RMSE results of baseline and received
power predictions for highway V2V data using different
number of hidden units for the LSTM network. Generally,
the prediction results show similar RMSE compared to the
baseline similar to the results of channel prediction in the
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FIGURE 21. RMSE calculated between the channel prediction results and
the actual CSI values in the highway V2V scenario. Legends describe the
number of hidden units for a single LSTM layer in our experiments.
Baseline represents the results utilizing the latest observed channel
metric without prediction.

frame level campus V2V scenario. Considering the number
of hidden units as 5, the reduced RMSE margins between
baseline and prediction are 13.35% for 1 time step, 16.76%
for 3 time steps, 15.80% for 5 time steps and 16.35% for
10 time steps. Compared to the previous channel prediction
results in a subcarrier-level, the overall RMSEs for channel
prediction are lower in frame-level, same as described in
the campus V2V scenario. Another observation is that the
number of hidden units has a minimal effect on the predic-
tion performance when the training data are large enough.
Therefore choosing a small number of hidden units is possible
and should be used for the channel prediction to reduce the
amount of computation needed for neural network training.
In addition, the RMSE results in this experiment are relatively
evenly distributed with the increasing number of hidden units
compared to the results with campus V2V scenario due to a
relatively modest amount of data.

We conducted a same experiments with 5 LSTM lay-
ers for 1 time step to evaluate the impact of the number

FIGURE 22. RMSE calculated between the channel prediction with AR
results and the actual CSI values in the highway V2V scenario.

FIGURE 23. RMSE comparison between the best results from the channel
prediction with a deep learning and an AR in the highway V2V scenario.

of LSTM layers. The results are as follows: RMSE
of 3.7138 with 3 LSTM units, 2.5709 with 5 units,
2.3104 with 10 units, 2.2679 with 20 units, 2.2496 with
30 units, respectively. We consider these results as little
improvements with a huge additional complexity of the
prediction system since the performance is almost same to
the results using a single LSTM layer network.

Again, for a reference of prediction performance using
neural networks, Fig. 22 shows the RMSE of prediction using
AR modeled by the previous observations in the highway
V2V scenario. The results in the highway measurements also
demonstrate that channel prediction using anAR shows lower
performance than the neural network.

Likewise, to compare the performance of channel predic-
tion methods, we demonstrate the best results from a deep
learning and an AR in Fig. 23. In the highway V2V scenario,
a deep learning-based method shows better performance in
all time steps. More interestingly, an AR shows worse per-
formance than the baseline in all time steps in the highway
measurement data.

VII. CONCLUSIONS
In this paper, we have developed the CSI extraction tool and
investigated the performance of channel prediction with a
deep learning approach and an AR approach based on real-
istic measurement data in vehicular environments. We first
have introduced our measurement campaign for recording IQ
samples in the outdoor environments and the CSI extraction
tool from measured IQ samples of IEEE 802.11p frame. The
detailed algorithms for CSI extraction in the implementa-
tion process have been provided with equations. The results
of CSI extraction in measured IQ samples have also been
presented for both static and dynamic environments. Fur-
thermore, we have exhibited the initial experimental results
for channel prediction based on the real-world measured
wireless channels in both subcarrier-level and frame-level.
Deep learning-based channel prediction results have shown
promising performance compared to the AR-based channel
prediction and the latest obtained channel information.
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Future work includes improving the performance of chan-
nel prediction by adding additional information to the neu-
ral networks such as the information on the surrounding
environment, which may be sensed by on-vehicle sensors.
Performance evaluation of adaptive transmission or resource
allocation schemes will be studied accordingly.
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