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ABSTRACT For realizing the fine-grained access control with non-interactive approach, and effectively
guaranteeing the comprehensive security for information under the post-quantum environment, this paper
proposes an attribute-based signcryption (ABSC) scheme based on the intractability of lattices. The proposed
ABSC scheme is proved indistinguishable against the inner adaptive-chosen ciphertext attacks (IND-CCA2)
and existentially unforgeable against inner chosen-message attacks (EUF-CMA), in the standard model. The
theoretical analysis presents that the public key size and the computational cost of the signcryption operation
are both reduced obviously, comparedwith the signature and then encryptionmechanism.An efficient variant
is also presented that significantly decreases the computational complexity of unsigncryption operation at
the expense of an increase in the ciphertext size.

INDEX TERMS Signcryption, lattice, standard model, attribute-based, fine-grained access control.

I. INTRODUCTION
As a distributed open computing environment, the Internet
integrates computing resources and improves system utiliza-
tion. Cloud computing reduces the hardware and software
costs, energy consumption and system maintenance expense
due to undertaking the computing and storage tasks of users.
As a result, cloud computing has become a prospective form
of computing. The user data is migrated from local devices
to the cloud, which brings security issues to the data. In the
multi-user access environment, it is the key issue of the
correct utilization for data to reduce the storage cost and
ensuring real-time consistency. Attribute-based cryptography
has been proposed in time for non-interactive fine-grained
access control [1]–[5].

The comprehensive security of the information is the valid
approach to ensure data reliability in a high-level. A feasible
method to ensure comprehensive security is to implement
signature and encryption for message successively.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yinghui Zhang.

However, the signcryption, proposed by Zheng [6], is a better
alternative due to the much lower cost. The signcryption
has important applications in many scenarios such as key
management, electronic commerce, mobile communications,
and smart cards. In 2011, signcryption was formally accepted
as an international standard, ISO/IEC 29150:2011, by the
International Organization of Standardization (ISO).

The high efficiency of signcryption and the flexibility of
attribute-based cryptography make attribute-based signcryp-
tion (ABSC) very useful for handing out the secret informa-
tion under the control of access policy. In fact, ABSC has
many other advantages except realizing integrity, authentica-
tion, non-repudiation, confidentiality and fine-grained access
with lower cost. ABS enjoys perfect privacy, unlinkabil-
ity and collusion resistant unforgeability. So, it is widely
applied in anonymous authentication, trust negotiations [7]
and attribute-based messaging. When ABS is integrated into
ABSC, the anonymity of the signature in ABSC is further
strengthened. The anonymity of ABE is achieved by the
policy. The ABE is divided into ciphertext policy attribute-
based encryption (CP-ABE) and key policy attribute-based
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encryption (KP-ABE), according to the difference that the
policy is imposed upon ciphertext and private key. Indeed,
ABSC recently has been extensively studied and many fruits
[1]–[4], [8]–[10] have been obtained.

The existing ABSC schemes [1]–[3], [4] are all based
on the intractability assumptions from the number theory.
The blossom of quantum computation badly menaces their
hardness assumptions [11], [12]. As a result, it urgently
needs to design an ABSC scheme with ability to resist the
quantum attacks. Lattice is extensively believed to be one
of the most powerful cryptography tools to stand up the
quantum attacks. In addition, lattice-based cryptography has
many other attractive properties. It has high asymptotic com-
putational efficiency due to only involving moderate modular
additions and moderate modular multiplications. It is very
flexible to be used to realize some complex cryptographic
primitives and tools such as fully homomorphic encryption
[13]–[17], fully homomorphic signature [18], [19] and multi-
linear map [20], [21]. Xiang et al. [8] made a progress to
construct an ABSC scheme based on lattice by conferring
private keys according to attributes. However, the ciphertexts
are generated also according to attributes. As a result, this
scheme [8] cannot express the access policy well and does
not enjoy the flexibility of the policy. Therefore, it has an
important theoretical and practical significance to construct
a true ABSC scheme based on lattice.

A. OUR CONTRIBUTION
In this paper, we propose an ABSC from lattices. Our contri-
butions are summarize as follows:
• To realize the fine-grained access control in a non-
interactive way and resist the known quantum attacks,
we construct a key policy attribute-based signcryption
scheme based on the lattice hardness assumptions by
borrowing the private key extraction technique for pol-
icy from [22]. Meanwhile, in the proposed ABSC,
an attribute based signature scheme from lattices is con-
structed. The anonymity of the signer is improved. Only
the group satisfying a particular policy can learn the
attribute information of the signer. However, in the sig-
nature and then encryption (StE) with identical security,
the attributes of signer are leaked to the public.

• For hiding the signature value and shortening the cipher-
text size, the public encryption section used in our
scheme is a variant of Regev encryption [23], denoted
by EG. This variant EG is not semantically secure. It was
made IND-CCA secure with FO technique, such as
[24], but the hash function is replaced with a signature.
However, it is only proved secure in the random oracle.
In fact, the encryption EG is always assembled with
another part of ciphertext to form an IND-CPA secure
scheme, such as [23], [25], and [26]. Different from the
above schemes, we combine it with a new section of
ciphertext with small size to get an IND-CCA1 secure
scheme in the standard model. That is, the security
reduction is achieved by using the trapdoor switching

technique based on the leftover hash lemma. The sim-
ple and efficient Exclusive-Or operation is employed
to hide the original information. Thus, the proposed
scheme is efficient to guarantee the security of data espe-
cially with big size. The proposed ABS is deliberately
increased a segment with a small size, such that it can be
proved unforgeable against the inner selective attribute
set adaptive-chosen message attacks.

• The encryption section and the signature section are
closely tangled together to strengthen the security. Not
only the non-malleability of encryption is guaranteed
by the preceding signature, but also the tag used for
encryption is selected according to the preceding sig-
nature rather than by encryptor. In a word, the IND-
CCA1 secure scheme is enhanced to IND-CCA2 secu-
rity by reusing the function of the signature for the mes-
sage. However, it leads to difficulty in security reduc-
tion. To vanish the trapdoor in reduction, we utilize
a chameleon hash function. In the proposed scheme,
the computational overhead of signcryption decreases
more than 50%, compared to StE. And the unsigncryp-
tion cost of the variety scheme reduces about 50%.

B. PAPER OUTLINE
This paper is organized as follows. The necessary preliminar-
ies are introduced in Section 2. The primitive and the security
models of ABSC are reviewed in Section 3. In Section 4,
the proposed scheme is presented in detail, followed by the
consistency proof and the security reduction. The perfor-
mance analysis and a variant are given in Section 5. Finally,
the concluding remarks are drawn in Section 6.

II. PRELIMINARIES
In this paper, the notions and the corresponding meaning
are as follows. Z/R : the set of integers / real numbers; T:
real interval [0, 1); Zq: residue class mod q. Zn/Znq, Rn :
vectors space on Z/Zq,R; Zn×m/Zn×mq : matrices space on
Z/Zq. lower-case and bold letters: vectors; upper-case and
bold letters: matrices. Ã: Gram-Schmidt orthogonalization
of A; s1(·): the largest singular value of a matrix; ‖ · ‖ the
maximum norm of the column vectors in a matrix or the norm
of a vector. s

$
← U (P): uniformly choose from P; s← χ (P) :

choose from P according to the distribution χ ; s ∈ χ/s
$
← χ

for short. [k]: {1, 2, · · · , k}. | · |: the length of bit string; ‖:
horizontally concatenate matrices or vectors.

A. LATTICE AND GAUSSIAN DISTRIBUTION
Definition 1 (Lattice): Lattice is a discrete additive sub-

group of Rm : 3 = L(B) = {Bx = 6n
i=1xibi|x ∈ Zn},

where the linearly independent vectorsB = {b1,b2, · · · ,bn}
constitute a basis. In fact, the q-ary lattice 3⊥(A) = {z ∈
Zm : Az = 0 mod q} is more frequently used.
The security of the proposed scheme depends on LWE

and SIS problems, whose definitions and intractability are as
follows.
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For integers n > 0 and q > 2, As,χ indicates the distribu-

tion of (a, ats + x) over Znq × Zq, where a
$
← Znq, s

$
← Znq

and x is chosen from some distribution χ .
Definition 2 (Learning With Errors (LWE) [23]): Given

an integer q = q(n) and a distribution χ over Zq, the learn-
ing with errors problem LWEq,χ is to distinguish As,χ
from U (Znq) × U (Zq) with non-negligible probability, where
s

$
← U (Znq).
For α ∈ R+, 9α denotes the distribution of a normal

variable with mean 0 and standard deviation α/
√
2π , reduced

modulo 1. For x ← 9α , 9̄α is the discretized normal
distribution on Zq, namely bq ·xe mod q, where be represents
rounding.
Proposition 1 (Hardness of LWE [23], [27]): For α =

α(n) ∈ (0, 1) and a prime q = q(n) satisfying αq >

2
√
n, the LWEq,9̄α is as hard as approximating SIVPγ within

Õ(n/α) factors (referring to [28] for its hardness) in the worst
case.
Definition 3 (Small Integer Solution (SIS) [29]): Given

an integer q, a real β > 0 and a matrix A ∈ Zn×mq , the aim
of SISq,β is to find 0 6= z ∈ Zm such that Az = 0 mod q and
‖z‖ ≤ β.
Proposition 2 (Hardness of SIS Theorem 5.16 [29]): For

poly-bounded m, β = poly(n) and prime q ≥ β ·ω(
√
n log n),

if there is an efficient algorithm to solve SISq,β in average
case, then there exists an efficient algorithm to solve the
approximating SIVPγ problem in the worst case, where
γ = β · Õ(

√
n).

In lattice-based cryptography, an especial distribution,
namely discrete Gaussian distribution, is frequently used,
which has the following beautiful properties.
Definition 4 (Discrete Gaussian distribution [29]): For a

vector c, real s > 0, and lattice 3, the discrete Gaussian
distribution over 3 is defined as D3,s,c(x) =

Ds,c(x)
Ds,c(3)

=

ρs,c(x)
ρs,c(3)

, ∀x ∈ 3, where ρs,c(x) = e−π‖(x−c)/s‖
2
.

Proposition 3: Let m > 2n log q, B be a basis of 3⊥(A)
for A ∈ Zn×mq , s ≥ ‖B̃‖ω(

√
log n). The discrete Gauss

distribution has the following properties.
1) (Theorem 3.1 [25] ) When x← DZm,s, the distribution

of y = Ax ∈ Znq is negl(n)-far from the U (Znq). Given
y, the conditional distribution of x is statistically close
to D3⊥y (A),s.

2) (Lemma 4.4 [29]) Prx∼D3,s,v{‖x− v‖ > s
√
n} ≤ 1+ε

1−ε ·

2−n.
3) ( [25] ) For arbitrary y ∈ Znq the min-entropy of y’s

pre-image x, namely Ax = y and ‖x‖ ≤ s
√
m, is at

least ω(log n).
In the scheme design and security reduction, a special

matrix R
$
← {−1, 1}k×m is used, because it has small norm

and satisfies leftover hash lemma.
Proposition 4 (Lemma 15 [26]): For R

$
← {−1, 1}k×m,

there exists a universal constant C such that Pr[‖R‖ >

C
√
k + m] < e−(k+m). In fact, It is sufficient to

set C = 12.

Proposition 5 (Leftover Hash Lemma, Lemma 13 [26]):

The matrices A
$
← Zn×mq , B

$
← Zn×kq , R

$
← {1,−1}m×k ,

where q > 2 is a prime, m > (n + 1) log2 q + ω(log n) and
k = k(n) is the polynomial size of n. Then, the distribution
of (A,AR,Rtz) is within negligible statistical distance from
the distribution (A,B,Rtz) for arbitrary z ∈ Zmq .

B. RELATED ALGORITHMS
In the scheme design, some underlying algorithms are used,
such as trapdoor generation algorithm, short lattice vector
sampling algorithm and basis sampling algorithm.
Proposition 6 (Trapdoor Generation Algorithm,

Theorem 3.2 [30]): For some fixed real δ > 0, integer
q > 2 and integer m ≥ (5 + 3δ)n log q, the algorithm
TrapGen(n, q) outputs A ∈ Zn×mq ,S ∈ Zm×mq in polynomial
time, such thatA is within negligible statistical distance from
U (Zn×mq ), ‖S‖ ≤ O(n log q) and ‖S̃‖ ≤ O(

√
n log q), with

overwhelming probability.
Proposition 7 (LeftSamplingAlgorithm,Theorem 17 [26]):

Let integers q > 2,m > n. The algorithm SampleLeft
(A,B,TA, y, s) outputs x ∈ Zm+m′ within negligible statisti-
cal distance with D3y

q(A‖B),s, where A ∈ Zn×mq , B ∈ Zn×m′q ,

s > ‖T̃A‖ω(
√
log(m+ m′)), y ∈ Zm and TA is a trapdoor

for 3⊥(A).
Proposition 8 (Right Sampling Algorithm, Theorem 19

[26]): Let integers q > 2,m > n. Input A ∈ Zn×m′q ,
R ∈ Zm′×mq , B ∈ Zn×mq , invertible matrix H ∈ Zn×nq ,
the trapdoor TB of 3⊥(B), s > ‖T̃B‖ · sRω(

√
logm) and

y ∈ Zm, the algorithm SampleRight(A,B,H,R,TB, y, s)
outputs x ∈ Zm+m′ within negligible statistical distance with
D3y

q(F,s), where F = [A‖AR+HB].
Proposition 9 (Basis Sampling, Lemma 29, Corollary 30,

Corollary 31 [26]): 1) InputA ∈ Zn×mq ,B ∈ Zn×m′q , invertible
H ∈ Zn×nq , R ∈ Zm×mq , a trapdoor TB of 3⊥(B) and
s > ‖T̃B‖ · sRω(

√
logm), the algorithm SampleBasisRight

(A,B,H,R,TB, s) runs SampleRight less than O(m logm),
w.o.p 2m, times with y = 0, then outputs a basisT for3⊥(F),
where F = [A‖AR+HB], ‖T‖ ≤ s

√
m.

2) Input A ∈ Zn×mq , C ∈ Zn×m′q , s >

‖T̃A‖ω(
√
log(m+ m′)) and a trapdoor TA for 3⊥(A),

the algorithm SampleBasisLeft(A,B,TA, s) runs
SampleLeft to output a basis T′ for 3⊥(F′) where F′ =
[A‖C] and ‖T′‖ ≤ s

√
m.

3) Especially, for identicalA, s andC = AR+HB, the two
bases T and T′ are statistically close.
Proposition 10 (Pre-image SamplingAlgorithm, [25]): Let

integers q > 2,m > n. SamplePre(A,TA, y, s) takes
inputs A ∈ Zn×mq , the trapdoor TA for 3⊥(A), y ∈ Zm

and s > ‖T̃A‖ω(
√
log(m)), outputs a pre-image x ∈ Zm

within negligible statistic distance from D3y
q(A),s and

Ax = y.
In the Pre-image algorithm, a solution vector x′ ∈ Znq

is computed by solving equation Ax′ = y mod q. Next,
a vector z is selected randomly under the condition that z
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belongs to 3⊥(A) and z is close to −x′. Then, the vector
x = z− (−x′) is output. Ax = A[z− (−x′)] = Az+ Ax′ =
Ax′ = y mod q.

C. UNIVERSAL HASH FUNCTION AND
CHAMELEON HASH FUNCTION
Definition 5 (Universal Hash Functions [31]): A family

of hash functionsH = {h : X → Y} is called universal if for
every distinct pair x, x ′ ∈ X , Prh←H[h(x) = h(x ′)] = 1/|Y|
holds.

We introduce the conception about chameleon hash func-
tion by the example of the construction based on lattice.
Proposition 11 (Lemma 4.1 of [32]): Let n ≥ 1, q ≥ 2,

m = O(n log q), k ≥ 1 be integers and s = O(
√
n log q) be

real. With respect to A0 ∈ Zn×kq , A1 ∈ Zn×mq , define hash
function hA : M × R → Y as hA(m, r) = A(m‖r) =
A0m + A1r, where M ∈ {0, 1}k , R = {r ← DZm,s},
A = [A0‖A1] and Y = Znq are message space, randomness
space and range, respectively. When3⊥(A1) has a trapdoor,
the hash familyH = {hA} is a chameleon hash function fam-
ily, supposing the hardness of SISq,β for β =

√
k + 4 s2m.

The chameleon hash functions have the following 4 proper-
ties: efficient forward computation, collision-resistance, uni-
formity and chameleon property. The chameleon property is
that the hash functions have ability to find a collision for any
given input by utilizing the known trapdoor.

III. ATTTRIBUTE-BASED SIGNCRYPTION: PRIMITIVE AND
SECURITY MODELS
Definition 6 (Attribute-Based Signcryption): AnAttribute-

Based signcryption scheme consists of the following four
algorithms:

• Setup(1$ ): The private key generator (PKG) executes
the setup algorithm to initialize the system. It takes
inputs a security parameter 1$ , publishes public param-
eters Pp, master public key MPk and keeps the master
secret key MSk as secret.

• Extract(MPk,MSk,Policy): In this algorithm, PKG
takes inputs the master public key MPk, the master
secret key MSk, and an access policy Policy, and returns
a corresponding private key SKPlc for Policy.

• Signcrypt(µ,MPk,Policys, SKPlcs,Ass,Policyr ): In this
algorithm, the sender takes inputs a messageµ, the mas-
ter public key MPk, the policy Policys satisfied by the
senders, the secret key SKPlcs corresponding to Policys,
the sender’s attribute set Ass, and the policy Policyr
satisfied by receivers, then generates a corresponding
ciphertext c for µ.

• Unsigncrypt(c,MPk,Ass,Policyr , SKPlcr ,Asr ): In this
algorithm, the receiver uses the information of the mas-
ter public key MPk, the policy Policyr satisfied by the
receivers, the secret key SKPlcr corresponding to Policyr ,
the receiver’s attribute set Asr , and the sender’s attribute
set Ass to decrypt the ciphertext c and outputs the corre-
sponding plaintext µ.

Definition 7 (Consistency of Signcryption): Define the
successful probability of the unsigncryption for a signcryp-
tion scheme as follows.

The signcryption scheme is called consistent, if and only if
1− p is negligible.
For defining the confidentiality of an ABSC scheme,

we give Game IND-sAtt-CCA2 between the challenger and
a probabilistic polynomial time (PPT) adversary as follows,
by referring to [1], [8].
Game IND-sAtt-CCA2

• Initial: A announces the challenge attribute set As∗r . C
executesSetup(1$ ) to generate and publishPp andMPk
to A, but keeps MSk to itself.

• Phase 1: A implements polynomially bounded queries:

– Extract(Policy):A submits a policy Policy to C for
private key query. If As∗r satisfies Policy, C replies
⊥. Otherwise, C answers with the corresponding
private key for Policy.

– Signcrypt(µ,Ass,Policys,Policyr ): A sends a
message µ, the sender’s attribute set Ass, the policy
Policys and the receiver’s policy Policyr for sign-
cryption query. If Ass meets Policys, C returns the
corresponding ciphertext. Otherwise C returns ⊥.

– Unsigncrypt(c,Ass,Policyr ): A submits a cipher-
text c, the sender’s attribute set Ass and the policy
Policyr satisfied by the receiver’s attribute set to C
for unsigncryption queries. If c is a valid ciphertext,
C returns the corresponding plaintext; otherwise, C
returns ⊥.

• Challenge: A sends two isometric message plaintexts
µ0, µ1, the sender’s attribute set Ass, the policy Policys
satisfied by the senders and the policy satisfied by
the receivers Policyr to C. C randomly selects a bit
b ∈ {0, 1}. C executes Signcrypt for ub to get c∗, and
sends c∗ to A.

• Phase 2: A repeats the queries as in phase 1, except
the unsigncryption query on c∗. The probability that the
ciphertext generated normally under the other attribute
sets equals c∗ is less than q−[(|Attr |+1)m+1], and it is
negligible.

• Guess: A outputs its guess b′ ∈ {0, 1} for b.

The advantage of A to win Game IND-sAtt-CCA2 is
defined as Adv(A) = |Pr[b = b′]− 1

2 |.
Definition 8 (Confidentiality of Signcryption): If there is

no PPT adversary who can win Game IND-sAtt-CCA2 with
non-negligible advantage, then the corresponding attribute-
based signcryption scheme is called indistinguishable against
inner selective attribute adaptive-chosen ciphertext attacks
(IND-sAtt-CCA2).
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To capture the unforgeability, we introduce Game EUF-
sAtt-CMA played between the challenger C and a PPT
forgery F .
Game EUF-sAtt-CMA
• Initial: This step is totally identical to that in Game
EUF-sAtt-CMA.

• Query: A executes polynomially bounded Extract,
Signcrypt and Unsigncrypt queries as in Game
IND-sAtt-CMA.

• Forgery: F outputs a tuple (µ, c,Policyr ,As∗s ), where c
is a valid ciphertext for µ under the sender’s attribute set
As∗s , and the policy Policyr satisfied by the receivers.

Define the advantage of F to win Game EUF-sAtt-CMA
as

Adv(F)=Pr[(µ, σ )=Unsigncrypt(c∗,As∗s ,Policyr ) ∧ NS],

where NS is the Boolean value for the fact that σ is a new
signature for µ.
Definition 9 (Existential Unforgeability of Signcryption):

An attribute-Based signcryption scheme is called existentially
unforgeable against inner selective attribute adaptive-chosen
message attacks (EUF-sAtt-CMA), if there exists no PPT
inner forger who can win Game SUF-sAtt-CMA with non-
negligible advantage.

IV. ATTRIBUTE-BASED SIGNCRYPTION SCHEME
FROM LATTICES
A. ENCODING FOR POLICY
Lewko and Waters [33] proposed a linear time algorithm
(LW algorithm for short) to translate a Boolean circuit
corresponding to access policy into a Linear Span Pro-
gram (LSP) matrix. The core idea is as follows. The Boolean
circuit can be expressed by a binary tree. Every node
in the tree corresponds to a binary string, which will
be discretized into a row of the LSP matrix. The binary
string of a parent node is the computing result of the
strings of its sons under the operator corresponding to this
node. Appoint the string of the root node as some string.
Then, the strings of nodes can be computed from root to
leaves.

The concrete procedure of the encoding is as follows.
(1) Express the Boolean circuit with a binary tree, in which
the internal nodes are operators and the leaf nodes are
attributes. Meanwhile record the number ` of AND gates.
(2) Let cA = 1, where cA is a counter for AND gate.
Label the root node with 1|0`. (3) Encode for every node
from root to leaves. Suppose the current node labeled with
s|0cA , where s is a bit string with length ` + 1 − cA.
If this node corresponds to AND gate, label its children with
s|1|0cA−1 and 0`−cA |−1|0cA−1, respectively, since s|1|0cA−1+
0`−cA | − 1|0cA−1 = s|0cA . Meanwhile, set cA = cA + 1.
If this node corresponds to OR gate, label its children both
with s|0cA . (4)Discretize the label for every leaf node to
a vector. Then, construct an LSP matrix by using all the
vectors.

B. CONSTRUCTION
• Setup(1$ , k): Take inputs a security parameter 1$ and
the maximum of attributes k:

1) Select suitable integers ι, ς .
2) Choose hash functions:

– H0 : {0, 1}∗→ {0, 1}ι
′

;
– H1 : {0, 1}∗→ {0, 1}ς ;
– H2 : {0, 1}∗→ {0, 1}∗;
– H3 : {0, 1}∗→ Zmq ;
– HN : {0, 1}ι × {r ∈ DZm,s} → Znq, where
s = O(

√
n log q) · ω(

√
logm). The form of

HN is similar with that of the chameleon hash
functions in [32]. Specifically, HN is specified
by matrix N = [N0‖N1], where N0 ∈ Zn×ςq and
N1 ∈ Zn×mq .

3) Choose the full-rank differences (FRD) encoding
[26] H : Znq→ Zn×nq .

4) Choose suitable Gaussian parameters s1, s2.
5) Generate public key and private key:

– (Ti,Ai)← KeyGen(1$ ) for i ∈ [k].

– Choose A0,B,C,Di
$
← Zn×mq for i ∈ [ι′].

– Choose ν
$
← Znq.

6) Output the master public key and keep the master
private key as secret:
MPk = ({Ai}i∈[k],A0,B,C, ν,H0,H1,H2,

H3,HN ), MSk = ({Ti}i∈[k]).

• Extract(Pub,MSk,Plc): Take inputs the public key Pub,
master secret keyMSk and Policy Plc, generate a secret
key SKPlc for the policy Plc:

1) Translate the policy Plc into a LSP matrix L with
LW algorithm. Suppose L ∈ Zk×λ, without loss of
generality..

2) Choose a temporary matrices Zi
$
← Zn×m for

1 ≤ i ≤ λ.
3) Construct matrices,

Ml = diag(A1,A2, · · · ,Ak),
Mr = [L(0) ⊗ A0‖L(1) ⊗ Z1‖ · · · ‖L(λ) ⊗ Zλ],
M = [Ml‖Mr ], whereL(i) denotes the i-th column
of L.

4) Obtain a short basis for 3⊥(M) by calling
K(1)

= SampleBasisLeft(Ml,Mr ,K(2), s2),
where K(2)

= diag(T1,T2, · · · ,Tk). Note that
K(2) is a short basis for 3⊥(Ml) because Bi is a
short basis of 3⊥(Ai) for i ∈ [k].

5) Let K ∈ Z(k+1)m×(k+1)m be the upper left sub-
matrix of K(1).

6) Give (K,L) to the users satisfying Plc as the secret
key for the policy Plc.

• Signcrypt(µ,Lps, SKLps ,Atts,Plcr ): On input amessage
µ, the sender’s attribute set Atts, the policy matrix Lps
satisfied by Atts, the private key SKLps corresponding
to Lps and the policy Plcr satisfied by the receivers,
the sender does:
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1) Compute υ = H0(r1, µ,Atts,Lps,Plcr ), where

r1
$
← {0, 1}ι.

2) Compute Dυ =
∑ι′

i=0(−1)
υ[i]Di, where υ[i]

denotes the i-th bit of υ.
3) Sample σ2← DZm,s1,0.
4) Call Sks← Transform(SKLps ,Lps,Atts).
5) Sample σ1 ← SamplePre(AAtts ,Plcs, Sks,

ν − Dυσ2, s1), and compose σ = (σ1, σ2).
6) Compute r2 = H1(σ ).
7) Choose t1← DZm,s,0 and e0← DZm,s1,0.
8) Compute tg = HN (t1, r2).

9) Choose a matrix R
$
← {−1, 1}m×m and a

vector s
$
← Znq.

10) Compute c1 = AAttr
ts + (σ, e0)t , where Attr is a

selected attribute set satisfying Plcr ;1

11) Compute c2 = (H (tg)B+ C)ts+ Rte0.
12) Compute c̄ = H2(σ, s,Rte0) ⊕ (µ, r1, r2),

where the operator ⊕ denotes Exclusive-Or
operation.2

13) Compute c′ = H3(σ, s,Rte0)⊕ t1.
14) Output c = (tg, c1, c2, c′, c̄) as the ciphertext.

• UnSigncrypt(c,Attr ,Lpr, SKLpr ,Atts): On input a
ciphertext c, the receiver’s attribute set Attr , the pol-
icy matrix Lpr satisfied by Attr , the private key SKLpr
corresponding to Lpr, and the sender’s attribute Atts,
the receiver does:
1) Call Transform(SKLpr ,Lpr,Attr ) to obtain private

key Skr for the attribute set Attr , if the private
key has not been computed previously and Attr
satisfies Lpr.

2) Parse c as c = (tg, c1, c2, c′, c̄).
3) Obtain (σ, e0) by computing (Tr

t )−1(Tr
tc1mod q).

4) Solve equation AAttr
ts = c1 − (σ, e0)t to get s.

5) Compute (µ, r1, r2) = H2(σ, s, c2 − (H (tg)B +
C)ts)⊕ c̄.

6) If r2 = H1(σ ), continue. Otherwise, output ⊥ and
abort.

7) Compute t1 = H3(σ, s, c2− (H (tg)B+C)ts)⊕ c′.
8) If tg = HN (t1, r2) holds, continue. Otherwise

output ⊥ and abort.
9) Compute υ = H0(r1, µ,Atts,Lps,Plcr ).
10) Compute Dυ =

∑ι′

i=0(−1)
υ[i]Di.

11) If ‖σ‖ ≤ s1
√
(% + 2)m and [AAtts‖Dυ ]σ = ν,

output µ. Otherwise, output ⊥.
Transform(K,L,As): Generate a private key K(2) for the
attribute set As.
Input: policy matrix L, private key K for L, attribute set As.
Output: private key K(2) for attribute set As.

1For simplicity, we suppose that the number of the sender’s attributes
equals that of the receiver’s. When the former is bigger, the redundant part
can be hidden in the ciphertext c′. On the contrary, the lacking error vectors
can be chosen from the same Gaussian distribution.

2In fact, the length of the operation result is determined by the shorter one
of the two operands, i.e. (µ, r1, r2).

1) If As dose not satisfy L, return ⊥.
2) Find an appropriate g ∈ Zk satisfying the following

constraints.
(1) If i /∈ As then gi = 0. Otherwise, gi 6= 0 and gi is
as small as possible.
(2) Compute (d‖0λ) = gtL to get some small integer
d . Here k, λ denote the number of all attributes and the
columns of L, respectively.

3) Extract a sub-matrix K(1)
∈ Zρm×ρm from K by the

following procedure.
(1) If i /∈ As, remove the corresponding rows
of K for the attribute i. Then, obtain a matrix
K̂ ∈ Z(ρ+1)m×(k+1)m.
(2) Remove randomly (k − ρ)m columns from K̂ to
get K(1).

4) Return K(2)
= (diag(gi1 , gi2 , · · · , giρ , d)⊗ Im)K(1) as

the secret key for attribute set As.

C. CORRECTNESS AND PARAMETERS SETTING
First, we show that a valid private key of the attribute set is
obtained in the algorithm Transform by the following two
facts. Firstly,

P = A(1)K(2)

= [Ai1‖ · · · ‖Aiρ‖A0]((diag(gi1 , · · · , giρ , d)⊗ Im)K(1))

= [gi1Ai1‖ · · · ‖giρAiρ‖dA0]K(1)

On the one hand, gi = 0, when i /∈ As. On the other hand,
K(1) is the sub-matrix of K corresponding to the columns
of As ∪ {k + 1}. Therefore, P is a sub-matrix of P(1),
where P(1)

= [g1A1‖g2A2‖ · · · ‖gkAk‖dA0]K. And, P(1)
=

[g1A1‖g2A2‖ · · · ‖gkAk‖dA0‖0]K(3), where 0 is the zero
matrix with dimension n × λm and K is the uper sub-matrix
of K(3)

∈ Z(k+λ+1)m×(k+1)m, where K(3) is the leftmost sub-
matrix of K′ and K′ is the trapdoor of 3⊥(M). As a result,
P(1) is the sub-matrix of P(2).

P(2)
= [g1A1‖g2A2‖ · · · ‖gkAk‖dA0‖0]K

= ((g1‖g2‖ · · · ‖gk )⊗ In)MK

= 0

As a result, P = 0. Secondly, because

‖K(2)
‖ = ‖(diag(gi1 , gi2 , · · · , giρ , d)⊗ Im)K(1)

‖

≤ max {gi1 , gi1 , · · · , giρ , d}‖K
(1)
‖.

‖K(2)
‖ is small. Therefore, K(2) is the private key for As.

Second, the correct (σ, e0)t is obtained in step 3 of unsign-
cryption.

(Tr
t )−1(Tr

tc1 mod q)

≡ (Tr
t )−1(Tr

tAAttr
ts+ Tr

t (σ, e0)t mod q)

≡ (Tr
t )−1(Tr

t (σ, e0)t )

= (σ, e0)t

Then, the correct vector s can be obtained in step 4 of
unsigncryption, similarly (µ, r1, r2) in step 5.
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Third, ‖σ‖ ≤ s1
√
(% + 2)m holds due to Proposition 10

and Proposition 3, and [AAtts‖Dυ ]σ = ν naturally holds
(see the analysis under Proposition 10). In summary, this
scheme can unsigncrypt correctly. Certainly, the following
requirements are needed.
• The SIS problem must be hard. According to
Proposition 2, q ≥ βω(

√
n log n).

• The LWE problem must be hard. According to
Proposition 1, αq > 2

√
n.

• TrapGen algorithm should work well. According to
Proposition 6, m > 6n log q.

• SampleLeft and SampleRight algorithm should work
well. It needs s1 to be large enough, s1 =

O(
√
n log q)ω(log1.5 m)(k + 1)m, according to

Proposition 7 and Proposition 8.
According to the above constraints, the parameters should be
set as follows, where nδ > dlog qe, and Q is the number for
signature queries.

m = 6n1+δ, s1 = O(
√
n log q)ω(log1.5 m)(k + 1)m,

s = O(
√
n log q)ω(

√
logm),

s2 = O(
√
(n log q))ω(

√
log km),

α = s1/(
√
2q), s3 = O(

√
n log q)ω(logm)

√
(k + 1)m,

q = max{kO(n log q)ω(log1.5 m)m2ω(
√
n log n), 2Q}.

Remark 1: Note that this scheme also supports threshold
policy, when the encode for the threshold policy is a Vander-
monde matrix. Certainly, the parameters should be adjusted
accordingly. Please refer to [34] for more details.

D. SECURITY
Theorem 1 (Confidentiality): In the standard model,

if there is an inner PPT adversary who can attack the
proposed signcryption scheme in Game IND-sAtt-CCA2
with non-negligible advantage, then there is an algorithm
that can solve the decision-LWEq,α problem for α =

O((n log q)0.5)ω(log1.5 m)(k + 1)m/q.
Proof: BecauseH2 andH3 are universal hash functions,

c̄ (resp. c′) is statistically indistinguishable with the uniform
distribution over {0, 1}(|µ|+|r1|+|r2|) (resp. Zmq ). Therefore,
the distinguishable ability of the adversary comes from c1, c2.
To complete the proof, a sequence of games is defined as
follows:
• G0: This is the real game.
• G1: Change the method to generate public keys. Without
loss of generality, suppose the measure of the chal-
lenge attribute set is % and the challenge attribute set
is As∗r = {1, 2, · · · , %}. C queries LWE oracle to
obtain a group of LWE instance (yi, xi) ∈ Znq × Zq
for i ∈ [(k + 1)m]. If attribute i /∈ As, it keeps

(Ai,Ti) ← TrapGen(1$ ), Zi
$
← Zn×mq . Otherwise,

Ai = [y(i−1)∗m+1‖y(i−1)∗m+2‖ · · · ‖yi∗m], (Zi,Si) ←
TrapGen(1$ ). A0 = [yk∗m+1‖yk∗m+2‖ · · · ‖y(k+1)∗m].

• G2: Change the method to generate B,C: (B,TB) ←

TrapGen(1$ ), t∗g
$
← Znq, R∗

$
← {1,−1}m×m,

C = A0R∗ − H (t∗g)B.

• G3: The hash function HN is replaced with a chameleon
hash function (see Proposition 11) HN ′ where
N′ ∈ Zn×(m+ι)q . In addition, in the procedure to generate
the challenge ciphertext, t1 ← D

3h′
q (N′1)

where h′ =
t∗g − N′0r2. However, t1← DZm,s,0 in Game G0 ∼ G2.

• G4: Continue changing theway to generate the challenge
ciphertext. Specifically, c∗1 = (x1, x2, · · · , x%, xk), c∗2 =
R∗xk, where xi = (x(i−1)∗m+1, x(i−1)∗m+2, · · · , xi∗m).

The correctness of this theorem is implied in the facts that
the successive games are indistinguishable and the adversary
is just facing an LWE instance in the last scheme. �
Lemma 1: The games G0,G1 are statistically indistin-

guishable. And in G1, the challenger C can reply the private
key queries and decryption queries.

Proof: First, one difference between G0 and G1 is
the generation method for some matrices. In G0, i ∈ As,

Zi ← TrapGen; while Zi
$
← Zn×mq in G1. The lattice parity

checking matrix generated by TrapGen algorithm is within
a negligible statistical distance from U (Zn×mq ), according to
Proposition 6. Hence, the matrices Zis in the two games
are statistically indistinguishable. In G1, i ∈ As and Ai =

[yi∗m+1, yi∗m+2, · · · , y(i+1)∗m]; while Ai ← TrapGen in
G0. If the LWE instance is from Os, Ai in the two games
has identical distribution. If the LWE instance is from O$,
the statistical distance between the distribution of Ais in the
two games is negligible according to the property of TrapGen
(seeProposition 6). Hence, the distribution of public matrices
is statistically indistinguishable.

Second, in G1, C can reply the private key queries for
policies as Boyen13 [22] does. For the convenience of depic-
tion, suppose the attributes used for the private key query are
d1, d2, · · · , dρ′ .
1) If the attribute set As∗ satisfies the policy L, then

reply ⊥.
2) Construct policy matrix L with LW algorithm.
3) For the convenience of depiction, let the symbol ‘‘⇔’’

denote ‘‘if and only if". The attribute setAs does not sat-
isfy the policy Plc.⇔ The space extended by the rows
{d1, d2, · · · , dρ′} of L does not contain (1, 0, · · · , 0).
⇔ The space extended by the rows {d1, d2, · · · , dρ′}
of L′′ does not contain (0, · · · , 0), where L′′ is the
matrix obtained by deleting the leftmost column of L.
⇔ The rows {d1, d2, · · · , dρ′} ofL′′ constitute a matrix
with row full rank.⇔ The rows {d1, d2, · · · , dρ′} ofL′′

include at least a full rank square sub-matrix. W.l.o.g,
suppose the full rank square sub-matrix corresponds to
the columns {c1, c2, · · · , c%′}.

4) If i ∈ {c1, c2, · · · , c%′}, (Zi,Si)← TrapGen(1$ ), for

i ∈ [λ]. Otherwise, Zi
$
← Zn×mq .

5) Let L′(i) = (L1,i,L2,i, · · · ,L%′,i) for i = 1, 2, · · · , λ,
where L′(i) denotes the i-th column of matrix L′. Then,
Lzl = [L′(c1)⊗Zc1‖L

′
(c2)⊗Zc2‖ · · · ‖L

′
(c
%′

) ⊗Zc%′ ] is
a sub-matrix ofM (see step 3 of algorithm Extract).

6) It is easy to check that diag(Sc1 ,Sc2 , · · · ,Sc%′ ) is a
trapdoor of 3⊥(Lzl).
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7) Exchange the columns in M corresponding to
diag(Ad1 ,Ad2 , · · · ,Ad%′ ) and that corresponding to
Lzl to get a matrix P, where M = [diag(A1,

A2, · · · ,Ak)‖L(0) ⊗ A0‖L(1) ⊗ Z1‖ · · · ‖L(λ) ⊗ Zλ].
Let Pl denote the diagonal sub-matrix constituted by
the leftmost km columns of P, and Pr the sub-matrix
constituted by the remainder columns.

8) Construct a block diagonal matrix ST ∈ Zkm×km. If i /∈
{d1, d2, · · · , dρ′}, set the i-th block to be Ti; otherwise,
set it to be Sck . Here, Sck is the first key matrix not be
appointed. Obviously, ST is a trapdoor for 3⊥(Pl).

9) Extend the basis

S′Tr← SampleBaisLeft(Pl,Pr,ST, s2).

10) Exchange the 1 ∼ %′m columns with the (k + c1)m +
1 ∼ (k + c1 + 1)m, (k + c2)m + 1 ∼ (k + c2 + 1)m,
· · · , (k+c%′ )m+1 ∼ (k+c%′+1)m columns in S′Tr to
get STr. Give (STr,L) as the secret key for policy Plc.

In fact, the bases in G0 and G1 are both obtained by calling
algorithm SampleBaisLeft. And the Gaussian parameters
used are identical. According to Proposition 9, the two bases
are statistically indistinguishable. Given a policy, C can get a
corresponding private key with the above method. It is natural
that C can reply the decryption query with this private key. �
Lemma 2: The games G1,G2 are statistically indistin-

guishable. In G2, C can reply the unsigncryption queries.
Proof: According to the uniform distribution property

of the parity checking matrix generated by TrapGen, the B
in G1 is statistically indistinguishable from the B in G2.
According to Lemma 13 of [26], the C is also statistically
indistinguishable from that in G2.
If the attribute set As does not satisfy the policy L, C

replies with⊥. Otherwise, C replies the decryption queries as
follows. Without loss of generality, let Att = {i1, i2, · · · , iρ}.

1) If tg = t∗g, C replies ⊥. Note that the pub-
lic key corresponding to the ciphertext is Ppub =
[Ai1‖Ai2‖ · · · ‖Ai%‖A0‖H (t∗g)B + C] = [Ai1‖Ai2‖

· · · ‖Ai% ‖A0‖A0R∗ + H (tg − t∗g)B].
2) TA0B ← SampleBasisRight(A0,B,H (tg − t∗g),R

∗,

TB, s4), s4 = O(
√
n log q)ω(

√
logm)

√
m. That is,TA0B

is a trapdoor for 3⊥(A′), where A′ = [A0‖A0R∗ +
H (tg − t∗g)B].

3) Parse c1 = (c′1, c
′′

1) ∈ Z%mq × Zmq . Obviously,
c′1 = AAtt

ts+ σ , c′′1 = A0
ts+ e0, for some s, σ, e0.

4) Compose a new ciphertext (c′′1, c2). Obviously,
(c′′1, c2) = (A0

ts + e0, (A0R∗ + H (tg − t∗g)B)
ts +

R∗e0) = [A0‖A0R∗ + H (tg − t∗g)B]
ts+ (e0,R∗te0).

5) Decrypt the ciphertext (c′′1, c2) with the trapdoor TA0B
to get s, e0,R∗te0.

6) Compute σ = c′1 − AAtt
ts.

7) Because C has s, σ, e0, it can normally execute the
subsequent decryption procedure, namely steps 5.
∼ 10. in Unsigncrypt.

The only difference in replying unsigncryption queries
in G2 and G1 is that C cannot unsigncrypt when tg =

t∗g in G2. Before the challenge ciphertext is generated,
t∗g ∈ Znq is hidden from the adversaryA. Even not considering
the collision of the hash function HN , the probability that
tg generated normally satisfies tg = tg∗ is q−n, which is
negligible. After the challenge ciphertext is published, A
knows t∗g. If A can normally generate tg to satisfy tg = t∗g,
then A can find a collision for the hash function HN or H1.
Hence, this probability is negligible. Therefore, G1 and G2
are statistically indistinguishable. �
Lemma 3: The games G2,G3 are statistically indistin-

guishable.

Proof: In G2, N = [Nl‖Nr] ∈ Zn×(m+ι)q where Nl
$
←

Zn×mq , Nr
$
← Zn×ιq . In G3, N = [Nl‖Nr] ∈ Zn×(m+ι)q where

Nl ← TrapGen, Nr
$
← Zn×ιq . According to the property

of TrapGen (see Proposition 6), the two hash functions
are statistically indistinguishable. On the one hand, in G3,
the random vector t1 chosen from D

3h′
q (N′1)

is used only
once in the challenge ciphertext. On the other hand, this t1
also satisfies ‖t1‖ ≤ s

√
m with overwhelming probability,

according to item 2 of Proposition 3. Hence, this t1 cannot
be distinguished from the one normally generated. �
Lemma 4: The games G3,G4 are computationally indis-

tinguishable. In G4, the challenge ciphertext is exactly an
LWE instance.

Proof: If the LWE instance given by LWE oracle comes
from O$, the games G3,G4 are computationally indistin-
guishable due to LWE hardness (see Proposition 1). If the
LWE instance is from Os, the game G4 is a case of G3 due to
the following fact. In other words, G4 and G3 have identical
distribution.

c∗1 = [A1‖A2‖ · · · ‖A%‖A0]ts+ (e1, e2, · · · , e%, e0)

= A1
ts+ e1‖A2

ts+ e2‖ · · · ‖A% ts+ e%‖A0
ts+ e0

= (x1, x2, · · · , x%, xk+1)

c∗2 = (H (t∗g)B+ C)ts+ R∗e0
= (H (t∗g)B+ A0R∗ − H (t∗g)B)

ts+ R∗e0
= R∗t (A0

ts+ e0)

= R∗txk+1

�
Theorem 2 (EUF-sAtt-CMA): In the standard model,

if there is a PPT inner adversary who can forge a signature in
Game EUF-sAtt-CMA with non-negligible probability, then
there is an efficient algorithm to solve SISq,β for β = Cι′ms1.

Proof:
• Initial: F submits an attribute set As∗s that it wants to
attack. C builds matrices as follows. 1) Generate trap-
door (F,TF) ← TrapGen(1$ ). 2) Compute Di =

A0Ri + hiF for 0 ≤ i ≤ ι′, where A0
$
← Zn×mq ,

Ri ← Dm×mZ,s , hi
$
← Zq but h0 = 1. Accord-

ing to Proposition 5, the Di generated by this method

and Di
$
← Zn×mq are statistically indistinguishable.

3) Choose x1 ← DZ%m,s1 , x2 ← DZm,s1 . Compute
y = [A1‖A2‖ · · · ,A%‖A0](x1, x2). 4) The generation
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methods for the other matrices (e.g. B,C,Ai,Zj for 0 ≤
i ≤ k , j ∈ [k]) are the same as that in G1 of Theorem 1,
respectively.

• Queries:
– private key queries: C deals with the private key

queries as in G1 of Theorem 1.
– signcrypt queries: There are two cases:

(1) The sender’s attribute set does not satisfy
the policy Lps. C replies ⊥. (2) The sender’s
attribute set satisfies the policy Lps. F does as

follows. 1) Choose r1
$
← {0, 1}ι and compute

υ = H0(r1, µ,Atts,Lps,Plcr ). 2) Compute Dυ =∑ι′

i=1(−1)
υ[i]Di = A0R + hF, where R =∑ι′

i=1(−1)
υ[i]Ri, h =

∑ι′

i=1(−1)
υ[i]hi. If h = 0

goto step 1). 3) Choose σ1← DZ%m,s1 and compute
ν′ = ν − [Ai1‖Ai2‖ · · · ,Ai%′ ]σ

′. 4) Get Basis
Te ← SampleBasisRight(A0,F, h,R,TB, s5),
where s5 = O(

√
(n log q)) ω(

√
logm)

√
2m;

5) σ2 ← SamplePre([A0‖A0R + hF],Te, ν′, s1).
6) According to [35, Th. 3.4], the sample (σ1, σ2)
obeys the distributionD3νq(A′),s1 . Output (σ1, σ2) as
the signature.

– unsigncrypt queries: There are two cases:
(1) If the receiver’s attribute set does not satisfy the
policy Lpr, C replies ⊥.
(2) The receiver’s attribute set Asr 6= As∗s satisfies
the policy Lpr, then F can unsigncrypt with the
method in G2 of Theorem 1.

• Forge: Finally, F outputs a valid forgery signature
(r1, σ ) for some message µ under the attribute set As∗,
where σ ∈ Z(%+2)m. For simplicity, express σ as
(σ1, σ2, σ3) ∈ Z%m × Zm × Zm.
1) Compute υ = H0(r1, µ,As∗s ,Lps,Plcr ).
2) Compute h =

∑ι′

i=1(−1)
υ[i]hi. If h 6= 0, abort.

3) ComputeR′ =
∑ι′

i=1(−1)
υ[i]Ri. It is easy to check

that Dυ = A0R′.
4) Compute σ ′ = (x1, x2) − (σ1, σ2 + R′σ3). Return

σ ′ as a solution for the SIS problem. The reason is
shown in the next lemma.

�
Lemma 5: The vector σ ′ obtained above is a valid solu-

tion for SISq,β problem with overwhelming probability, for
β = kO(

√
n log q)ω(log1.5 m)m2. And the probability that C

gets the solution is non-negligible.
Proof: At first, due to{

y = [A1‖A2‖ · · · ‖A%‖A0](x1, x2)

y = [A1‖A2‖ · · · ‖A%‖A0‖Dυ ](σ1, σ2, σ3),

[A1‖A2‖ · · · ‖A%‖A0](x1, x2) = [A1‖A2‖ · · · ‖A%‖

A0‖A0R](σ1, σ2, σ3)

[A1‖A2‖ · · · ‖A%‖A0]((x1, x2)− (σ1, σ2 + Rσ3)) = 0.

[A1‖A2‖ · · · ‖A%‖A0]σ ′ = 0,

for σ ′ = (x1, x2)− (σ1, σ2 + Rσ3).

Second,

β = ‖σ ′‖ = ‖(x1, x2)− (σ1, σ2 + Rσ3)‖ ≤ ‖(x1, x2)‖

+‖(σ1, σ2 + Rσ3)‖

≤ ‖(x1, x2)‖ + ‖σ1‖ + ‖σ2‖ + ‖R‖‖σ3‖

≤ s1
√
(% + 1)m+ s1

√
%m+ Cι′

√
m+ ms1

√
m

≤ Cι′ · s1 · m ≤ Cι′ · O(
√
n log q)ω(log1.5 m)(k + 1)m2

= kO(
√
n log q)ω(log1.5 m)m2

Here, the third inequality holds due to Proposition 4,3
and 10.

Third, when q is bigger than the double of the number
of queries Q, C will get this solution with probability more
than 2/3, according to Lemma 26 and 27 of [36]. �

V. PERFORMANCE AND VARIANT
A. PERFORMANCE ANALYSIS
In this section, let us compare the performance of the pro-
posed scheme with the mechanism of signature and then
encryption. For clarity, we give the universal conclusion for
the computational overhand for pre-image sampling algo-
rithm, firstly.
Lemma 6: When the parity check matrix belongs to Zn×mq ,

the cost of the pre-image sampling algorithm is roughlym2
+

2mn Z×q with some optimization.
Proof: The pre-image algorithm involves three steps,

namely solving equation, SampleD and vector addition. The
cost of vector addition is much less than the other two steps,
and it is ignored.

The solving equation group Ax = y involves Gaus-
sian elimination and back substitution operations. In the
Gaussian elimination, a triangle matrix Bmultiplies the coef-
ficient matrix A to obtain trapezoid result matrix D, namely,
BA = D. The repeating elimination operation can be avoided
by storing B andD. Given a new syndrome y, it only needs to
compute y1 = By and execute back substitution forDx = y1,
due toBy = y1 = Dx = BAx and y = B−1By = B−1BAx =
Ax. The cost of the multiplicationBy is about n(n+1)/2 Z×q .
The back substitution is roughly mn− (n− 1)n/2 Z×q . As a
result, the cost to solve equation group is about mn Z×q .
SampleD can be divided into the multiplications between

the Gram-Schmidt vector of the basis and the evolutive vector
of a solution, the inner products of Gram-Schmidt vector
of the basis, the scalar multiplications for a small integer
and a vector with small elements, and m discrete Gaussian
sampling (DGS). The magnitude of DGS is much less than
the elementary operations in the other steps, so its cost is
neglected. The overheads of the first three kinds of operations
are m2 Z×q , m2 Z× and m2 Z×, respectively. The cost of
the inner product operation is ignored by storing the value of
the inner product. According to experiments, the cost of Z×q
is roughly 341.7 times of that of Z×. Therefore, the cost of
SampleD is about m2 Z×q .
The above analysis can well support this lemma. �
Remark 2: In the StE approach, to guarantee the non-

malleability of ciphertext, the ciphertext should be signed
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with an unforgeable signature algorithm. If the public and
private keys of the signature are published with PKI or iden-
tity mechanism, not only is the key size in the system too
tremendous, but this will also leak the individual information
of the signer. Hence, it is a better way to sign with the key
of attributes. Based on this, the performance of the proposed
signcryption scheme and that of StE scheme are compared as
follows.

First, the key sizes are compared. In StE, no extra public
keys and private keys are needed for the signature for cipher-
text, according to Remark 2. Therefore, the public key size
and private key size are identical in the two mechanisms,
respectively.

Second, the computational costs are compared. In the sign-
cryption, the computational cost mainly lies in steps 4, 5,
10 and 11. The step 4 extracts the private key corresponding
to the attribute set. Not only can it be executed in advance,
but also it needs to be run only once for the same attribute
set under a policy. Hence, its computational cost in every
signcryption is ignored. The cost of step 5 is ρ2m2

+ (ρ +
1)nm Z×q , according to Lemma 6. The costs of step 10
and 11 are ρ nm Z×q and nm Z×q , respectively. Therefore,
the total cost of Signcrypt is ρ2m2

+2(ρ+1)nm Z×q . In StE,
an extra signature is used to guarantee the non-malleability
of ciphertext, and its overhead is ρ2m2

+ (ρ + 1)nm Z×q .
Therefore, the total cost of the signature and encryption in StE
is 2ρ2m2

+ 3(ρ + 1)nm Z×q . That means the Signcrypt cost
is less than 50% of that of StE. In the signcryption scheme,
the computational cost of unsigncryption mainly lies in steps
3, 4, 5 and 11. Their costs are (%+1)2m2 Z×q +(%+1)2m2 R×,
(% + 1) nm Z×q , nm Z×q and (% + 2)m Z× + (% + 2)nm Z×q ,
respectively. The total cost of unsigncryption is [(%+1)2m2

+

(2% + 4)nm] Z×q + (% + 1)2m2 R×. In StE, the verification
cost of the extra signature is (% + 2)nm] Z×q . Therefore,
the computational cost of decryption and verification for StE
is [(% + 1)2m2

+ (3% + 6)nm] Z×q + (% + 1)2m2 R×. Our
advantage is not obvious.

Third, the ciphertext sizes are compared. The ciphertext
extension is defined as = = |c| − |u|, where |c| and |u|
denote the length of ciphertext and that of plain text, respec-
tively. The proportion of = of the proposed scheme and StE

is as follows. Especially, when % = 1, 2, < =
2
3
,
5
7
,

respectively.

< =
|c1| + |c2| + |c′| + |c| − |u|

|c1| + |c2| + |c′| + |c| + |σ ′| − |u|

=
((% + 1)m+ m+ m) log q+ ι+ ς

((% + 1)m+ m+ m+ 2m) log q+ ι+ ς

≈
% + 3
% + 5

B. VARIANT
In fact, the computational cost of unsigncryption opera-
tion can be reduced greatly by replacing the public encryp-
tion section in the above scheme. In the variant, the steps

TABLE 1. Comparison between YW-ABSC and StE

of 11 and 12 are replaced with the following steps.
11(a). Compute c2 = (H (tg)B+ C)ts+ Rte0.
11(b). Compute c3 = Uts+ H2(σ )bq/2c.
12. Compute c = G(H2(σ ))⊕ (σ,µ, r1, r2).
Here, U ∈ Zn×ιq is a matrix from the public key, and G

is a random number generator. Then, the steps 3, 4 and 5 of
unsigncryption algorithm in the above scheme are changed as
follows:

3. RepeatXi← SamplePre(AAtt, skAtt ,Ui, s1) for i ∈ [ι];
4. Compute σ̃ = c3 − Xtc1. If ‖σ̃i‖ ≤ bq/4c, set h̄i = 0.

Otherwise, set h̄i = 1, for i ∈ [ι];
5. Compte (σ,µ, r1, r2) = G(h̄)⊕ c;
In the security reduction, the method to reply decryption

queries is as follows.
1) Parse c1 = (c′1, c

′′

1) ∈ Z%mq × Zmq . Note that c′′1 =
A0

ts+ e1t .
2) Compose (c′′1, c2). Note that (c

′′

1, c2) = [A0‖H (tg)B +
C]ts+ (e1,Re1)t

= [A0‖A0R+ (H (tg)− H (t∗g))B]
ts+ (e0,Rte1).

3) Run T ← SampleBasisRight(A0,B, (H (tg) −
H (t∗g)),R,TB, s5).

4) Repeat Xi ← SamplePre([A0‖A0R + (H (tg) −
H (t∗g))B],T,Ui, s1) for i ∈ [ι].

5) Compute σ̃ = c3 − Xtc1. If ‖σ̃i‖ ≤ bq/4c set h̄i = 0;
otherwise set h̄i = 1 for i ∈ [ι].

6) Compte (σ,µ, r1, r2) = G(h̄)⊕ c.
Then, the other steps remain unchanged. Finally, C gives µ or
⊥ as the reply.
In the SignCrypt, only the cost of 11.(b) is slightly big,

namely nι Z×q for ι = 80. Hence, the cost of SignCrypt is
ρ2m2

+ 2(ρ + 1)nm+ nι Z×q ≈ ρ2m2
+ 2(ρ + 1)nm Z×q . In

the UnSigncrypt algorithm, the computational cost mainly
focuses on steps 3, 4 and 11. Their costs are ι[(% + 1)2m2

+

2(% + 1)nm] Z×q , ι(% + 1)m Z×q , and (% + 2)nm Z×q +
(% + 2)m Z×, respectively. Because the operations in the
step 3 of the unsigncryption have nothing to do with the
ciphertext, this step can be pre-computed. Therefore, the cost
of unsigncryption is ι(%+1)m+(%+2)nmZ×q . The total com-
putational cost of verification, decryption and verification of
StE is ι(% + 1)m + 2(% + 2)nm Z×q . That is, the computa-
tional overhead saves roughly 50% compared with the StE
mechanisam.

VI. CONCLUSIONS
In this paper, an key policy ABSC scheme is put forward
based on LWE and SIS hardness assumptions. For reduc-
ing the ciphertext size, Regev’s encryption variant is used
to directly hide the signature with big size. In the con-
struction, a method is found to improve a non-semantic
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secure encryption scheme to IND-CCA1 security by intro-
ducing an extra ciphertext with small size. Furthermore,
the unforgeability of the signature for messages is reused
so that the proposed ABSC is proved IND-CCA2 secure
against inner adversary in the standard model. In the ABSC
scheme, an ABS scheme based on lattice is constructed,
which is proved EUF-CMA against inner adversary in the
standard model. The theoretical analysis shows that the com-
putational cost is reduced obviously, especially when the
maximum measure of the minimum attribute set is not big.
In addition, it is interesting to design an efficient ciphertext
policy ABSC scheme from lattices. We defer it to the future
work.
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