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ABSTRACT Frequency estimation of undersampled waveforms receives increasing attention in
communication, radar signal processing, instrumentation and measurements, and so on. However, due to
the lack of recognizing the correct remainder between two side spectra, the existing Chinese Remainder
Theorem (CRT)-based frequency estimators can hardly deal with real-valued signals. To achieve this
goal, this paper proposes an estimator combining spectrum correction (aiming to enhance reconstruction
accuracy by incorporating the fractional parts of DFT remainders), closed-form CRT, and a remainder
sifting approach. Based on the detection of an undersampled waveform’s zero crossing point, this solution
can pick out the correct remainder between two side spectra, which ensures that the CRT achieves a valid
reconstruction. Comparedwith the existingMaroosi-Bizaki estimator, the proposedmethod not only enlarges
the upper bound of frequency recovery but also possesses higher reconstruction accuracy (the relative error
is less than 0.002%) with lower consumption of computational complexity. The numerical results verify the
superior performances of our estimator.

INDEX TERMS Frequency estimation, real-valued undersampled waveforms, remainder sifting, spectrum
correction.

I. INTRODUCTION
Frequency estimation of a high-frequency sinusoidal wave-
form is widely encountered in mobile communication, instru-
mentation and measurements, spectrum sensing in cognitive
radio etc. However, when the signal frequency reaches a high
degree, limited by the contradiction between the Nyquist
sampling rate and the hardware-realizable ADC (Analog to
Digital Converter), both the power consumption and the hard-
ware cost get increasingly large. In some particular circum-
stances (such as the sampling rate fs > 109 samples/s),
it is even unrealizable. For example, the received signals in
the velocity synthetic aperture radar [1] may be of under-
sampled nature. Accordingly, frequency estimation has to
be implemented in undersampled condition rather than in
Nyquist sampling condition. In addition, the problem of
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phase unwrapping, involved in radar signal processing and
sensor networks [2], [3], is essentially a particular case of
undersampled measurement, also. To emphasize, in these
measurements, undersampling from real waveforms is pre-
ferred to complex ones due to hardware source limitation.
Hence, it is urgent to develop an approach to achieve fre-
quency estimation from undersampled real-valued samples.

Maroosi and Bizaki proposed a searching-matching based
frequency estimator [4], [5] for undersampled real-valued
waveforms, in which the frequency estimate is determined
by applying the the minimax-distance criterion (see [4]) to
find out an optimal remainder combination among a pre-set
searching space. Nevertheless, this space consists of all the
direct remainders and their derived eligible remainders (i.e.,
plus integers times of the corresponding undersampling rate)
and thus it is very large, which renders heavy searching
complexity to this estimator. Moreover, as [4] pointed out,
the upper bound of realizable frequency estimator of this
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estimator is a bit low. Besides, Huang and Zhang [6] derived
a three sub-Nyquist channels based estimator. However,
the upper bound of realizable frequency is not sufficiently
high and its fundamental is on basis of the complex signal
model rather than the real-valued model.

Chinese Remainder Theorem (CRT) is another efficient
approach to estimate frequencies of undersampled wave-
forms. Specifically, given L moduli M1, . . . ,ML , CRT can
recover an integer number f from L remainders r1, . . . , rL ,

ri ≡ f mod Mi, i = 1, . . . ,L, (1)

where ‘f ’ stands for the high frequency to be measured,
M1, . . . ,ML refer to the moduli (correspond to sub-Nyquist
sampling rates [7]) and r1, .., rL represent the remainders of
L moduli M1, . . . ,ML (thus 0 ≤ ri < Mi). Hence, the con-
ventional CRT has been applied in co-prime spectrum sensing
(see [8], [9] for details) to explore the spectral characteristic
of undersampled waveforms. However, this estimator suffers
from large latency [8], [10] and high complexity.

In recent years, a lot of improved algorithms [11]–[13],
have been developed to reduce CRT’s complexity and
improve CRT’s robustness. Up to now, the state-of-the-art
CRT algorithms (the closed-form CRT in [14]–[17]) can
bypass the conventional CRT’s searching operation and they
also possess a higher reconstruction accuracy, which greatly
enhances CRT-based estimators’ practicability.

However, there are two improvable points for these
improved CRT estimators.

On one hand, these estimators can only handle under-
sampled complex exponential signals, and they will fall into
failure when dealing with real-valued sinusoidal waveforms.
This arises from the fact that, for each channel, CRT only
requires a single DFT remainder. Nevertheless, a real-valued
signal has two side spectra which provide two candidates
of DFT remainder. Accordingly, L channels of real-valued
waveforms generate 2L remainders. Hence, the core problem
is to sift L remainders from these 2L remainders.
On the other hand, these estimators only consider those

frequencies whose fractional parts of DFT remainders equal
zero (like [11] does) or ignore the fractional parts of DFT
remainders (for example, the fractional part εi of a DFT
remainder is discarded in [18]), which inevitably degrades the
accuracy of frequency estimation.

To solve these two problems, this paper proposes an
improved CRT-based estimator, which can sift the desired
remainders from the DFT spectra of real-valued signals
through combining spectrum correction with phase match-
ing, rendering our estimator with the ability of dealing with
real-valued sinusoidal waveforms. Due to the considera-
tion of detecting an undersampled waveform’s zero crossing
point (not required by the determination algorithm addressed
in [4]), the recoverable frequency can reach the same upper
bound as the determination case of complex exponential
waveforms.

With the above techniques incorporated, the proposed esti-
mator not only acquires a larger reconstruction range than the

estimators proposed in [4], [5], and [6], but also improves the
reconstruction accuracy and widens the application range of
the existing CRT-based estimators.

The remainder of this work is structured as follows:
firstly, we build up a CRT-based estimator model for the fre-
quency estimation of undersampled real-valued waveforms.
Secondly, details on how to sift the desired DFT remain-
ders by means of spectrum correction and remainder sifting
are addressed. Thirdly, numerical results are presented and
finally conclusions are drawn.

II. CRT-BASED ESTIMATION MODEL OF REAL-VALUED
WAVEFORMS
A. SIGNAL MODEL
Consider a high-frequency sinusoidal signal x(t) formulated
as

x(t) = a cos(2π ft + θ0), (2)

where a, θ0 and f are the amplitude, initial phase and the
frequency to be determined, respectively. Suppose that L
undersampling rates fs1, . . . , fsL are specified as

fsi = N0i, i = 1, · · · ,L, (3)

where the gcd (great common divisor) of any pair 0i and 0j
for i 6= j is 1 [19] and thus N exactly equals the gcd of the
integer group 01, · · · , 0L . Note that, the channel number L
is an integer not smaller than 1 (i.e., L ∈ {2, 3, 4, . . . .} ).
Accordingly, the i-th undersampled sequence xi(m), i =

1, · · · ,L, is

xi(m) = a cos(2π f0/fsim+ θ0), m = 0, · · · ,N − 1. (4)

Hence, the individual frequency fi of xi(m) can be written
as

fi =
f0
fsi
= ni +

ki
N
+
δi

N
, 1 ≤ i ≤ L (5)

where ni is the unknown folding integer, ki refers to the index
of the peak DFT bin and δi is a fractional frequency offset,
i.e.,

ki ∈ {0, 1, . . . ,N − 1}, |δi| ≤ 0.5. (6)

Therefore, (5) can be converted into a simultaneous con-
gruence equation as

f0 = n1fs1 + (k1 + δ1)fs1/N
f0 = n2fs2 + (k2 + δ2)fs2/N

...

f0 = nL fsL + (kL + δL)fsL/N .

(7)

Eq. (7) shows that, frequency estimation in (5) is equivalent
to CRT reconstruction, in which fs1, . . . , fsL refer to moduli
and the second terms on the right hand side of (7) refer to
remainders r1, . . . , rL , i.e.,

ri =
(ki + δi)

N
· fsi, 1 ≤ i ≤ L. (8)
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FIGURE 1. 3 kinds of sampling structures (01 = 3, 02 = 4, L = 2). (a) Case of Nyquist sampling. (b) Case of
conventional coprime undersampling. (c) Case of proposed coprime undersampling (N = 4).

In fact, the fractional part δi in ri was ignored by the
existing estimators in [7], [11], [12], and [3], [18], [19],
thereby inevitably degrading the reconstruction accuracy.
Also, these estimators only address the frequency estimation
of undersampled complex exponential signals and do not take
real-valued sinusoidal signals into account.

B. SAMPLING STRUCTURE AND RECONSTRUCTION
RANGE
In terms of (2)-(4), the sampling structure of the proposed
estimator is illustrated in Fig. 1(c). Besides, the sampling
structures for the case of Nyquist sampling and the conven-
tional coprime sampling are also plotted in Fig. 1(a), (b),
respectively.

As Fig. 1 (b) depicts, the sampling intervals at two under-
sampling channels are 01, 02, whereas the sampling intervals
of the sampling structure in Fig. 1 (c) are N01, N02. There-
fore, this sampling structure exhibits a much more sparse
distribution.

On the contrary, for estimators with distinct sampling
structures, if their ADC sampling rates are at the same amount
level, the proposed estimator surely acquires a higher recon-
struction range. As [19] proved out, the upper bound fmax of
CRT reconstruction with the sampling structure in Fig. 1 (c) is
the least common multiple of all moduli, i.e.,

fmax = N
L∏
i=1

0i. (9)

Specifically, for the case L = 3, our proposed estimator’s
upper bound fmax = N010203, compared to that fmax only
equals 010203 for the estimator in [6].

III. THE PROPOSED ESTIMATOR
A. PRINCIPLE OF IDEAL PHASE RECOVERY USING
SPECTRUM CORRECTION
Combining (4) with (5), one can further rewrite the under-
sampled sequence xi(m) as

xi(m) = a cos[2π (ni + (ki + δi)/N )m+ θ0]

=
a
2
[ejωimejθ0 + e−jωime−jθ0 ]

=
a
2
[ejωimejθ0 + ej(2π−ωi)me−jθ0 ],

ωi = (ki + δi)2π/N , 1 ≤ i ≤ L. (10)

Eq (10) shows that, for a real-valued sinusoidal signal
x(t), each undersampled version xi(m) contains two conjugate
components. Their frequencies are complement (ωi and 2π−
ωi) and their phases are opposite (θ0 and −θ0). In particular,
only the componentωi rather than its complement component
2π − ωi provides the true DFT remainder. As a result, for
a single channel, there exists an ambiguity in distinguishing
the true remainder component ωi from the fake component
2π − ωi.
Further, this ambiguity gets more complex among multiple

undersampling channels. Particularly, for the i-th channel,
if ki < N/2, then, ωi is located at the left half-spectrum and
2π − ωi falls at the right half-spectrum. On the contrary, if
N/2 + 1 ≤ ki ≤ N − 1, then ωi is located at the right
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half-spectrum and 2π − ωi falls at the left half-spectrum.
Hence, for two different channels i1, i2 (i1 6= i2), it is very
likely that their DFT remainder components ωi1 and ωi2 fall
at two distinct half-spectra, respectively. Only when all the
true components ω1, · · · , ωL are correctly recognized (i.e.,
the fake components 2π − ω1, · · · , 2π − ωL are discarded)
can the subsequent CRT achieve frequency estimation for
real-valued waveforms.

It can be inferred from (10) that, for any channel, whether
the true remainder component ωi is located within the left
half-spectrum or the right half-spectrum, its phase value the-
oretically equal θ0. In other words, practically, this expected
component ωi can be recognized by identifying whether its
detection phase approximates the ideal value θ0 or not.
However, due to a nonzero frequency offset δi, the DFT

detection phase always deviates from the ideal value θ0. To
explain this, we can deduce the DTFT result Xi(jω) of xi(m)
in (10) as

Xi(jω) =
a
2

{
sin [(ω − ωi)N/2]
sin [(ω − ωi)/2]

e
j
[
θ0−

N−1
2 (ω−ωi)

]

+
sin [(ω + ωi)N/2]
sin [(ω + ωi)/2]

e
j
[
−θ0−

N−1
2 (ω+ωi)

]}
. (11)

Since the DFT result Xi(k) is no more than the equi-spaced
sampled version of DTFT, i.e.,

Xi(k) = Xi(jω)
∣∣
ω=k2π/N , k = 0, · · · ,N − 1. (12)

Therefore, substituting (11) and ωi = (ki+δi)2π/N into (12)
yields

Xi(k)=
a
2

{
sin [π (k − ki − δi)]

sin [π (k − ki − δi)/N ]
e
j
[
θ0−

π (N−1)
N (k−ki−δi)

]

+
sin [π (k + ki + δi)]

sin [π (k + ki + δi)/N ]
e
j
[
−θ0−

π (N−1)
N (k+ki+δi)

]}
.

(13)

Recall that the peak DFT bins of two half-spectra are
respectively at k = ki and k = N −ki. Either Xi(ki) or Xi(N −
ki) consists of two terms sampled from the well-known func-
tion sin(πx)/sin(πx/N ). What’s more, one term is sampled
within the mainlobe interval (−1, 1), whereas the other term
is sampled outside this interval. Since sin(πx)/sin(πx/N )
tends to be 0 when x gets farther away from the main-
lobe interval (−1, 1), the interference between these two
half-spectra can be ignored. Thus, one can approximately
deduce Xi(ki) and Xi(N − ki) as

Xi(ki) ≈
a
2
·

sin(δiπ )
sin(δiπ/N )

ej[θ0+δi(N−1)π/N ],

Xi(N − ki) ≈
a
2
·

sin(δiπ )
sin(δiπ/N )

ej[−θ0−δi(N−1)π/N ]. (14)

Hence, the observation phases of Xi(ki) and Xi(N − ki) are
approximately denoted as

φ(ki) ≈ θ0 + δi(N − 1)π/N ,

φ(N − ki) ≈ −θ0 − δi(N − 1)π/N . (15)

FIGURE 2. Samples triggered with the initial phase π/2 at an individual
channel.

Eq (15) shows that, the ideal phase θ0 (or its opposite ver-
sion) can be recovered from two peak DFT bins’ observation
phases φ(ki) and φ(N − ki), i.e.,

θ̂0 ≈ φ(ki)− δi(N − 1)π/N ,

−θ̂0 ≈ φ(N − ki)+ δi(N − 1)π/N . (16)

From (16), one can find that, for the purpose of recovering
the ideal phase, the unknown frequency offset δi needs to
be estimated. This can be realized by some frequency cor-
rectors (such as Quinn corrector [20], Candan corrector [21],
phase-difference corrector [22] etc.). For example, if the
remainder component is determined at k = ki, then the
Candan corrector provides the estimate of δi as

δ̂i =
tan(π/N )
π/N

· Real
{

Xi(ki − 1)− X (ki + 1)
2Xi(ki)− Xi(ki − 1)− Xi(ki + 1)

}
.

(17)

The problem lies in identifying whether k = ki falls in the
left half-spectrum or in the right half-spectrum. The following
method of remainder sifting can achieve this task.

B. REMAINDER SIFTING APPROACH
In fact, the initial phase θ0 in (2) is practically easy to be
determined by circuit detection. As Fig. 2 depicts, if we
employ a triggering circuit to detect the zero crossing point
‘O’ (exactly passing from positive to negative) of the orig-
inal analog waveform x(t) and then simultaneously start
the subsequent undersampling operations of all L chan-
nels. Therefore, for any channel, its undersampled sequence
acquires an initial phase θ0 = π/2. Then, remainder sift-
ing can be realized by the following procedure of phase
matching.

Firstly, for the i-th channel, use a spectrum corrector on
the left-half-spectrum peak DFT bin Xi(ki,L) to generate the
estimate δ̂i of the frequency offset. In terms of (16), two
corrected phases ϕ̂i,L , ϕ̂i,R can be calculated as

ϕ̂i,L = φi,ki,L − (N − 1)/N · δ̂i · π. (18)

VOLUME 7, 2019 25983



X. Huang et al.: Frequency Estimator Based on Spectrum Correction and Remainder Sifting

ϕ̂i,R = φi,ki,R + (N − 1)/N · δ̂i · π. (19)

Secondly, matching the corrected phases ϕ̂i,L , ϕ̂i,R with the
known triggering phase θ0 to make a decision of ki between
ki,L and ki,R as

k̂i =

{
ki,L , if

∣∣ϕ̂i,L − θ0∣∣ < ∣∣ϕ̂i,R − θ0∣∣
ki,R, else.

(20)

Thirdly, the remainder of the i-th channel is estimated as

r̂i =

{
(k̂i + δ̂i) · fsi/N , if k̂i = k i,L
(k̂i − δ̂i) · fsi/N , if k̂i = k i,R.

(21)

C. SUMMARY OF THE PROPOSED ESTIMATOR
To help readers comprehend the proposed estimator, we inte-
grate the spectrum corrector, the technique of phase match-
ing and the closed-form CRT into a summarized procedure,
which consists of the following stages.
Stage 1 Use L ADCs with undersampling rates fs1, . . . , fsL

to discretize the original waveform x(t) at the initial
phase triggered by a down zero-crossing point (i.e.,
θ0 = 90◦).

Stage 2 Implement N -point DFT on all undersampled
sequences {x1(m)} ∼ {xL(m)} and obtain their DFT
spectra {X1(k)}, . . . , {XL(k)}.

Stage 3 Search out the left-half-spectrum peak index ki,L
and the right-half-spectrum peak index ki,R of Xi(k).
Record their phase observations φi,ki,L and φi,ki,R ,
i = 1, · · · ,L.

Stage 4 Employ a frequency corrector to estimate the fre-
quency offset δ̂i and use (18), (19) to calculate two
corrected phases ϕ̂i,L , ϕ̂i,R. Then, use (20) and (21)
to determine the screened peak index k̂i and the
remainder r̂i.

Stage 5 Substitute the moduli fs1, . . . , fsL , the remain-
ders r̂1, . . . , r̂L into the closed-form robust CRT
addressed in [19] to obtain the final frequency esti-
mate f̂ .

The closed-form CRT involved in Step 5 consists of the
following steps:
Step 1 Use the remainders r̂1, . . . , r̂L to calculate L − 1

difference remainders q̂i,1 as

q̂i,1 =
[
r̂i − r̂1
N

]
, 2 ≤ i ≤ L. (22)

Step 2 Calculate the remainder of q̂i,10̄i,1 modulo 0i:

ξ̂i,1 = q̂i,10̄i,10i, 2 ≤ i ≤ L. (23)

where 0̄i,1 is the modular multiplicative inverse of01
modulo 0i and can be calculated in advance.

Step 3 Calculate the folding integer n̂1 as

n̂1 =
L∑
i=2

ξ̂i,1bi,1
γ1

0i
γ1. (24)

where bi,1 is the modular multiplicative inverse of
γ1/0i modulo 0i (γ1 = 0203 · · ·0L).

Step 4 Calculate the other L − 1 folding integers n̂i:

n̂i =
n̂101 − q̂i,1

0i
, 2 ≤ i ≤ L. (25)

Step 5 Calculate the i-th frequency estimate f̂0,i

f̂0,i = n̂ifsi + r̂i, 1 ≤ i ≤ L. (26)

Step 6 Averaging f̂0,1, . . . , f̂0,L yields the final estimate f̂

f̂ =
1
L

L∑
i=1

f̂0,i. (27)

Now we present an example to explain the above 5 stages
of frequency retrieval.
Example 1:Consider an analog signal x(t) = 2 cos(2π f0t+

π/2), f0 = 748.8Hz. Suppose that x(t) is parallelly dis-
cretized by L = 3 ADCs with sub-Nyquist sampling rates
fs1 = 128Hz, fs2 = 192Hz, fs3 = 320Hz. Hence, the greatest
common divisor N = gcd{fs1, fs2, fs3} = 64.
Stage 1:Use 3 ADCs with the undersampling rates 128Hz,

192Hz and 320 Hz to discretize x(t) at the initial phase
triggered by a down zero-crossing point (i.e., θ0 = 90◦).
Stage 2: Implement 64-point DFT on 3 undersampled

sequences to acquire 3 paths of DFT spectra, whose mag-
nitude spectra |X1(k)|, |X2(k)|, |X3(k)| and phase spectra
φ1(k), φ2(k), φ1(k) are plotted in Fig. 3. It can be seen that,
severe spectral leakage occurs in each DFT spectrum.
Stage 3: From Fig. 3, one can find that the peak indices

ki,L , ki,R of |X1(k)|, . . . , |X3(k)| are {10, 54}, {6, 58} and
{22, 42}, respectively. Moreover, as Table 1 lists, their
phase observations φi,ki,L , φi,ki,R are {−161.30◦, 161.30◦},
{−17.27◦, 17.27◦} and {47.08◦,−47.08◦}, which heavily
deviate from two ideal phases 90◦ or −90◦.
Stage 4: In terms of the Candan formula (17), one can

calculate 3 frequency offset estimates δ̂1 = −0.4010,
δ̂2 = 0.4021, δ̂3 = −0.2400, as Table 1 lists. Sub-
stituting δ̂1, δ̂2, δ̂3 and aforementioned phase observations
into (18) yields the following corrected phases ϕ̂i,k values:
{−90.25◦, 90.25◦}, {−88.52◦, 88.52◦}, {89.60◦,−89.60◦}.
Then, in terms of (20), matching the above corrected phases
with the known triggering phase θ0 = 90◦, one can deduce
that the true DFT remainder bins are at k̂1 = 54, k̂2 = 58,
k̂3 = 22. Further, substituting k̂1, k̂2, k̂3, δ̂1, δ̂2, δ̂3 into (21)
yields the remainder estimates r̂1 = 108.8020, r̂2 =
172.7936, r̂3 = 108.8002.
Stage 5: Substituting the moduli fs1, fs2, fs3, the remainders

r̂1, r̂2, r̂3 into the aforementioned 5 steps of the closed-form
robust CRT, one can calculate the final frequency esti-
mate f̂ = 748.7986Hz (compared to the true value f0 =
748.80Hz), as Table 1 lists.

D. DISTINCTIONS BETWEEN THE PROPOSED ESTIMATOR
AND THE MAROOSI-BIZAKI ESTIMATOR
As mentioned before, the frequency recovery of undersam-
pled real-valued sinusoidal signals was first solved by the
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FIGURE 3. Magnitude and phase spectra plot. (a) Channel 1 (with the sampling rate fs1).
(b) Channel 2 (with the sampling rate fs2). (c) Channel 3 (with the sampling rate fs3).

TABLE 1. Observed peak phases and corrected peak phases of two side spectra.

Maroosi-Bizaki estimator in [4]. The distinctions between
this estimator and our proposed estimator are as the follows.

1) The Maroosi-Bizaki estimator can directly recover the
frequency using multiple undersampled sequences without
any extra hardware circuit, while our proposed estimator
needs a simple circuit to detect the zero crossing point of the
input analog signal. Hence, the proposed scheme obviously
depends on the detection accuracy of the crossing point ‘‘O’’.

2) As [4] pointed out, compared to the determination
case of complex exponential waveforms, the Maroosi-Bizaki
estimator is at the cost of lowering the upper bound for
unambiguous frequency detection. In contrast, by means of
zero-crossing detection and remainder sifting, our proposed
estimator actually transforms the frequency determination
for a real-valued sinusoidal signal into that for a complex
exponential signal. Hence, our estimator shares the same
upper bound of frequency recovery (calculated by (9), i.e., the
least common multiple of all moduli) with the estimators
in [11] and [19]. Specifically, for the 3 undersampling rates
fs1 = 128Hz, fs2 = 192Hz, fs3 = 320Hz in Example 1, one
can calculate the upper bounds of frequency recovery for the

Maroosi-Bizaki estimator (see [4]) and the proposed estima-
tor as 352Hz, 1920Hz, respectively. As a result, the frequency
f0 = 748.8Hz cannot be recovered by the Maroosi-Bizaki
estimator since it exceeds the upper bound 352Hz.

3) The complexity of the proposed estimator is lower than
the Maroosi-Bizaki estimator and the estimator in [6], since
the former can acquire a closed-form solution following the
aforementioned procedure, in which no searching operations
are involved. In contrast, the estimators proposed in [4]–[6]
cannot work in a closed-form way and their solutions are
acquired through searching out the optimal case among quan-
tities of remainder combinations.

IV. NUMERICAL RESULTS
This section aims to investigate the root-mean-square
error (RMSE) of the proposed frequency estimator under
different SNR (signal-to-noise ratio) levels, and compare it
with the Maroosi-Bizaki estimator.
Example 2: In this example, the comparison between

our proposed estimator and the Maroosi-Bizaki estima-
tor is presented. Consider a real-valued analog signal
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FIGURE 4. RMSE curves of the proposed estimator and the Maroosi-Bizaki estimator.

x(t) = cos(2π f0t + π/2), f0 = 193000Hz. Specify the
DFT size N = 800. Moreover, these two estimators share
L = 3 common undersampling rates as fs1 = 18400Hz,
fs2 = 19200Hz, fs3 = 20000Hz. Hence, our proposed
estimator’s co-prime integer set {01, 02, 03} = {23, 24, 25}
(since 0i = fsi/N , i = 1, · · · ,L).

In terms of (9), the upper bound of frequency recovery
equals N010203 = 11040000Hz, whereas the upper bounds
of the Maroosi-Bizaki estimator (calculated by (3) in [4])
and the three-channel estimator (calculated by 010203,
as [6] proved) are 230800Hz and 13800Hz, respectively.
Thus, the original signal’s frequency f0 = 193000Hz
can be retrieved by both the proposed estimator and
Maroosi-Bizaki estimator. However, it cannot be recovered
by the three-channel estimator in [6], since f0 exceeds its
upper bound 13800Hz and this estimator is on basis of the
complex-valued model rather than the real-valued model.

To compare these two estimators’ noise robustness and
accuracy, a SNR range varying from −20dB to 50dB was
taken into account. In each SNR case, 1000Monte Carlo trials
were conducted. Fig. 4 illustrates their RMSE curves.

From Fig. 4, the following 2 conclusions can be drawn:
1) In the low SNR region, the Maroosi-Bizaki estima-

tor outperforms our proposed estimator in the noise robust-
ness, since their anti-noise SNR thresholds are −10dB,
−8dB, respectively. This is because, for our estimator, the
zero-crossing moment detected by the triggering circuit tends
to be sensitive to heavy noise, which does not exist in the
Maroosi-Bizaki estimator.

2) In the high SNR region, the RMSEs of Maroosi-Bizaki
estimator are slightly greater than our proposed estimator,
demonstrating that the adoption of CRT and spectrum cor-
rection tends to yield a high recovery accuracy.

Example 3: This example aims to investigate our proposed
estimator’s accuracy when f0 is greater than the upper bound
of Maroosi-Bizaki estimator. Consider a real-valued analog
signal x(t) = 2 cos(2π f0t+π/2), f0 = 5990.4Hz. Specify the
DFT size N = 512, the co-prime integer set {01, 02, 03} =
{2, 3, 5} and thus the sampling rates of the L = 3 ADCs
are fs1 = 1024Hz, fs2 = 1536Hz, fs3 = 2560Hz (since
N = gcd{fs1, · · · , fsL} = 512). Clearly, the original fre-
quency f0 = 5990.4 Hz exceeds the upper bound of both
the Maroosi-Bizaki estimator (i.e., 2816Hz calculated by (3)
in [4]) and the upper bound of the three-channel estimator
in [6] (i.e., 010203 = 30Hz).
Note that, since the estimators addressed in [7], [11], [12],

and [3], [18], [19] can only deal with complex-valued signals,
it is impossible to compare them with the proposed estimator
in this case of real-valued signals.

To investigate the proposed estimator’s robustness to
noises, a SNR range varying from −15dB to 20dB was
taken into account. In each SNR case, 1000 Monte Carlo
trials were conducted. The RMSE curve is illustrated
in Fig. 5.

From Fig. 5, we can draw that the proposed estimator
also possesses high accuracy. Specifically, in any SNR region
above the threshold, the RMSE is less than 0.1Hz, i.e., the
relative error is smaller than 0.002% since the true frequency
is 5990.4Hz.
The high accuracy lies in 3 reasons: Firstly, the proposed

remainder sifting approach makes the CRT-based estimator
feasible to deal with real-valued signals; Secondly, as [16]
and [19] pointed out, the closed-form CRT itself does not
generate additional reconstruction error; Lastly, the Candan
spectrum corrector can provide a high-accuracy estimate of
the frequency offset.
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FIGURE 5. RMSE curve of the proposed estimator (Candan corrector is incorporated).

In addition, the evaluation of an estimator’s accuracy is
based on the comparison between the estimation error vari-
ance with the Cramer-Rao lower bound (CRB). As far as
the frequency estimation is concerned, D.C.Rife provided
a well-known CRB analytic expression in [23], which only
applies for the single-path Nyquist sampling case. As to the
CRB for the undersampling case across multiple channels,
many researchers recently put forward different opinions
(see [24]–[27]). However, up to now, they have not come to a
unified conclusion. As a result, the deduction of an analytic
CRB expression for multiple-channel undersampling case is
still an open topic.

V. CONCLUSIONS
This paper proposed a novel frequency estimator for under-
sampled real-valued sinusoidal waveforms, which widens
the application range of the existing CRT-based frequency
estimators. Due to the incorporation of Closed-form CRT,
spectrum correction and crossing point circuit triggering,
our proposed estimator concurrently possesses the merits
of large frequency recovery range, low computational com-
plexity, and high accuracy. Therefore, The proposed esti-
mator is hopeful to be applied to those fields involving the
frequency estimation of undersampled waveforms such as
mobile communication, spectrum sensing in cognitive radio
etc.

The future work focuses on two aspects: 1) Make endeavor
to deal with a real-valued undersampledwaveform containing
multiple components [28]–[30], which requiresmore creative
work on remainder sifting, remainder paring, remainder clas-
sification etc. 2) Efforts should also be made to improve the
accuracy at the low SNR region, which seems to a bit inferior
to the Maroosi-Bizaki estimator.
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