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ABSTRACT With the advancement of machine learning technologies, particularly deep learning, the auto-
mated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalo-
gram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect
brain signals. Thus, the brain signals captured in the form of EEG signals can indicate whether a person
suffers from pathology or not. In the proposed system, the raw EEG signals are processed in the form of a
spatio-temporal representation. The spatio-temporal form of the EEG signals is the input to a convolutional
neural network (CNN). Two different CNN models, namely, a shallow model and a deep model, are
investigated using transfer learning. A fusion strategy based on a multilayer perceptron is also investigated.
The experimental results on the Temple University Hospital EEG Abnormal Corpus v2.0.0 show that the
proposed system with the deep CNNmodel and fusion achieves 87.96% accuracy, which is better than some
reported accuracy rates on the same corpus.

INDEX TERMS EEG pathology, deep learning, EEG processing, Temple University Hospital EEG
Abnormal Corpus.

I. INTRODUCTION
The advancement of machine learning (ML) and artifi-
cial intelligence technologies has enabled the development
of sophisticated systems that are useful to everyday life.
Internet of Things (IoT) and cloud computing technology
brought a revolution in distributed computing and storage.
A smart healthcare system utilizes the IoT, cloud computing,
next-generation communication protocol, and advanced ML
technologies to offer health services to clients. Accuracy and
real-time processing are two central ideas of the smart health-
care system. For patients in a critical condition and those
who need immediate diagnosis and treatment, the diagnosis
must be accurate and in real time; otherwise, serious compli-
cations may arise and the patient’s life may be endangered.
In this case, the acquired signals from the patients should
be transmitted fast to the processing unit, and the processing
should be accurate. Feedback from the processing unit should
arrive at the stakeholders in real time. Fortunately, IoT, edge
and cloud computing, and recent ML techniques enable us
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to achieve accuracy and real-time requirement to a certain
extent.

The healthcare sector is experiencing rapid growth due
to its important services and the enormous revenues it is
generating. Serious competition is occurring among health-
care service providers to offer accurate, fast, reliable, and
low-cost services [1]. The sector has been revolutionized by
technologies such as IoT, cloud, and deep learning, which
have recently been the focus of research. IoT–cloud integra-
tion has led to the development of low-cost, sophisticated,
and intelligent healthcare sensors in the form of smart wear-
able devices. These sensors are available for a plethora of
medical applications such as measuring blood glucose, blood
pressure, temperature, electrocardiogram (ECG), electroen-
cephalogram (EEG), stress, and body weight.

Complex, real-time, and big data such as EEG usually
require advanced processing and large storage facilities.
Thus, we use technologies such as big data processing, cloud
computing, and deep learning. Processing and analyzing big
data is even more difficult in a smart city because thou-
sands of interconnected IoT devices and sensors may exist,
thereby producing such data continuously [2]. We need a
smart healthcare framework that not only solves these issues
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related to data processing but also satisfies the requirements
of all the smart city stakeholders and provides reliable and
low-cost healthcare services.

In a smart city scenario offering smart healthcare ser-
vices, real-time decision-making capability is necessary in
response to the emergency needs of patients. Healthcare ser-
vices should always be available at the disposal of all smart
city residents and medical practitioners. Mobile ambulances
and other facilities should also be made available as fast as
possible at the time of emergency. Thus, to manage such
complex decision making, we need cognitive intelligence
imparted to the system to make it think and act as humans do.
Many recent studies have started to use cognitive technology
for smart city frameworks [3].

A smart healthcare system works by utilizing a variety of
smart sensors or IoT devices, which are either fixed to or worn
by the patient or may be placed in the surrounding environ-
ment such as smart homes or smart offices [4]. These IoT
devices or smart sensors continuously monitor patients and
generate real-time medical data by observing and recording
patient responses such as bodymovements, facial expressions
and emotions, EEG, heartbeat, blood pressure, blood glucose,
temperature, and voice. Then, the medical data are processed
to determine the health status of the patient. The healthcare
system also needs to determine whether the patient requires
emergency care. Other stakeholders have to be aware of the
patient’s health status so that they can analyze and monitor
his/her health. All of these requirements and issues make
cognitive intelligence important for such a smart healthcare
paradigm. The research community has exerted considerable
effort in this area recently [5]. Some of the developments are
discussed in this paper.

A study proposed a smart healthcare system [6] using
IoT and cloud technology and also discussed challenges
and issues faced in the area as well as the monitoring
of environmental characteristics such as temperature and
humidity. Another research study [7] used facial images and
voice signals to access electronic health records to moni-
tor patients. Researchers [8] integrated IoT–cloud technolo-
gies to develop a healthcare system for emotion detection.
In another study [9], IoT and cloud technology were inte-
grated into a real-time system for smart healthcare. Another
study [10] used edge and cognitive computing for a simi-
lar application. Therefore, various technological integrations
have been conducted recently to achieve smart healthcare
objectives.

EEG signal sensing and monitoring has been performed
to detect brain diseases and disorders such as stroke,
Alzheimer’s disease, and epilepsy. EEG is a low-cost and
non-intrusive method to monitor brain activity. Recording,
processing, and analyzing EEG signals are time-consuming
activities. Medical experts and good knowledge are required
to analyze EEG data. Automated systems developed for
real-time EEG processing require extensive training before
they can be used in clinical systems. Techniques, such
as deep learning, are now being utilized to understand

EEG data. Also, an increase in brain-related disorders has
been observed, which has led researchers to develop EEG
diagnosis systems for smart healthcare applications. Many
recent studies have focused on this area such as the treat-
ment of stroke, Alzheimer’s disease, depression, and hem-
orrhage [11]–[15]. Such medical disorders need real-time
patient monitoring and emergency services. If the services are
delayed, the result may be catastrophic and life threatening
for patients. Moreover, smart healthcare systems that diag-
nose these ailments should be intelligent, reliable, and accu-
rate.Medical representatives should have access to healthcare
records and be able to provide expert services when needed.
In case of emergency, smart ambulances and smart health
centers should be readily available.

To meet the aforementioned challenges, we propose a
smart healthcare system for pathology diagnosis based on
EEG signals. Our system analyzes and processes EEG pathol-
ogy data and classifies them as either normal or abnormal.
Abnormal EEG can come from any of the brain-related dis-
orders. Our system uses multimodal IoT smart sensors to
capture real-time EEG data and sends it to the cloud server
for processing. The acquired signals are EEG, movement,
emotions, and voice, which are pre-processed to determine
the patient’s health status. The data are then transferred to
the deep learning module, which classifies the EEG pathol-
ogy data as either normal or abnormal. Finally, all the pro-
cessed data and results are transmitted to the server, which
subsequently notifies the concerned medical practitioners if
emergency services are required. The medical experts ana-
lyze the electronic healthcare records to monitor the patient’s
condition.

The proposed EEG pathology detection system involves
a convolutional neural network (CNN). Two different
CNN models are investigated: shallow and deep. The
deep CNN model is used in transfer learning. Parallel deep
CNN models across time are fused using a multilayer per-
ceptron (MLP). The contribution of this study is as fol-
lows: (i) use of the CNN model to detect EEG pathology,
(ii) comparison between shallow and deep CNN models in
terms of EEG pathology detection, and (iii) fusion of deep
CNN models using MLP to increase detection accuracy.

The rest of the paper is organized as follows. Section II
presents related studies. Section III describes the proposed
system. Section IV provides the experimental results and
discussion. Section V draws conclusions.

II. RELATED STUDY
In this section, we discuss some of the studies and frame-
works related to EEG-based pathology detection, and cogni-
tive and smart healthcare.

A. EEG SIGNALS AND COGNITIVE TECHNOLOGY
EEG signals represent electrical waves of the brain captured
by sensors called electrodes. Different areas of the brain are
responsible for different tasks. For example, the movement of
arms, fingers, and legs are controlled by the motor cortex area

27782 VOLUME 7, 2019



M. Alhussein et al.: EEG Pathology Detection Based on Deep Learning

of the brain. Broca’s area controls the muscles of the mouth.
EEG signals are made up of many frequency components.
Researchers roughly divided the frequency regions into sev-
eral frequency bands called delta (1–3 Hz), theta (4–7 Hz),
alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz).
Each band has specific characteristics. The beta and gamma
bands are active in motor activities [16], and the alpha band
is more active than other bands in memory recall [17]. Thus,
EEG signals can be used in cognitive computing.

Cognitive technology has recently found extensive use
in the smart city paradigm and has transformed the entire
approach of smart healthcare by imparting intelligence and
human-like behavior. Advanced smart sensors, IoT, and cloud
computing have improved the smart healthcare services in
terms of innovativeness, mobility, cost, speed, and accuracy.
Some of the smart healthcare services that use cognitive
technology include mobile healthcare services, automatic
disease diagnosis and emergency response, robot-controlled
smart medical devices and equipment, remote patient mon-
itoring and tracking, intelligent medicine dispensing, and
smart electronic healthcare records. Cognitive healthcare sys-
tems operate by communicating with interconnected IoT
smart healthcare sensors attached to the patient’s body.
These systems are capable of processing multimodal data
in real time to monitor the patients and provide emergency
response. Cognitive systems also collaborate with the lat-
est technologies, such as 5G, to improve communication
standards [3]. These systems also use technologies, such as
Kinect, in patient activity recognition. Cognitive healthcare
systems use IoT, smart sensors, and cloud computing to
extract and process complex information from multi-modal
data. These systems do not require human assistance and can
make human-like intelligent decisions.

Researchers have started to use cognitive-based systems
for different smart frameworks in various areas. A framework
that used cognitive technology was proposed in [18] for
smart city modeling and sustainability enhancement. In [19],
researchers imparted human behavior cognitive ability to
their smart framework using cognitive technology. A system
in [20] proposed the modeling of relative human knowledge
using cognitive systems for smart city application. A system
for natural language processing was developed in [21] to
answer questions in a human-like manner. Big data analyt-
ics were also performed in [22] using cognitive technology.
Some healthcare applications that use physiological and psy-
chological [23] data also use cognitive systems to impart
intelligence. Some researchers applied cognitive intelligence
to emotion-aware systems [4], while others used it in emotion
recognition [8] and voice and facial expression detection [24].

B. SMART HEALTHCARE
Smart healthcare frameworks have provided social and eco-
nomic advancements and are thus being used extensively in
smart cities. Numerous recent works have proposed smart
healthcare systems and services, based on the IoT–cloud
technology. A system to find the best route to the nearest

health center was developed in [1] by using smart devices and
sensors. In [25], a smart healthcare framework used electronic
healthcare records to enhance services. Another smart health-
care system [18] included real-time monitoring of glucose
level for diabetics; this system also used cognitive behavior
to impart intelligence to the system. In [26], the researchers
proposed a smart ambulance with cognitive intelligence capa-
bility; this ambulance used robots for driving and was built to
provide emergency services to cardiac patients. Some smart
healthcare frameworks were built to detect forgery of medical
and healthcare-related images [27].

In this study, we propose a cognitive smart healthcare
system for pathology detection based on EEG. We impart
cognitive intelligence with IoT–cloud integration to the smart
healthcare system. Our cognitive approach solves key prob-
lems related to the smart healthcare domain.

C. EEG PATHOLOGY CLASSIFICATION
Deep learning techniques have aided the recent technological
advancements in automated EEG-related disease diagnosis
and detection systems. Automated medical diagnosis is now
the most researched area and is being used for various dis-
eases, disorders, and medical conditions such as brain hemor-
rhage, depression, stroke, Alzheimer’s disease, and epileptic
seizures [11]–[15]. Apart from using deep learning, these
automated diagnostic systems also use ML-based techniques
such as principal component analysis, regression, support
vector machines, and random forest. However, deep learn-
ing models with automated feature extraction ability have
enhanced EEG decoding performance. Furthermore, EEG
pathology diagnosis also aims to detect abnormal medical
conditions among patients by analyzing their EEG. Such
systems could assist patients who need emergency care as in
cases related to seizures and strokes.

Some EEG pathology datasets are available online but
most of them are small in size and inappropriate for
deep learning-based models. Temple University Hospi-
tal (TUH) [28] dataset is the only public EEG pathology
dataset that has been recently added online. This dataset
consists of approximately 3,000 abnormal EEG data. As this
dataset is recent, it has not been used by many researchers.
We found three works related to EEG pathology detection
based on the TUH dataset. TUH researchers [29] proposed
multi-layer CNN architecture and achieved approximately
79% accuracy in pathology detection. Another study [30]
used multiple CNN architecture and improved the pathology
detection accuracy to 86%. The third study [31] applied
popular CNN-based models, such as VGGNet and AlexNet,
to achieve 86.59% and 87.32% accuracy, respectively. Since
EEG has a highly dynamic nature, ML models have not
achievedmuch success in EEGdecoding. EEG characteristics
also vary for different persons and medical conditions. Thus,
building an automated EEG diagnosis system for clinical
purposes is a difficult task.

Deep learning techniques such as CNN have been uti-
lized for epilepsy diagnosis. In [32], researchers proposed the
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FIGURE 1. Illustration of the cloud-based EEG pathology detection framework.

CNN model for seizure detection and visualization. Another
work [33] proposed seizure detection using EEG recording
with a large number of channels. Some studies, such as [14],
used CNN in combination with autoencoders and achieved
better performance than using only CNN.

III. MATERIAL AND METHOD
A. FRAMEWORK
A cloud-based framework for EEG pathology detection is
developed. In the framework, there are mainly three ingredi-
ents. Figure 1 shows an illustration of the overall framework.
The EEG signals are captured by a headset of electrodes.
The headset acts as an IoT device. Alternatively, different
IoT devices can be designed to capture EEG signals of dif-
ferent parts of the brain. The EEG signals are transmitted
to a mobile edge computing (MEC) server via a short-range
communication protocol such as Wi-Fi or local area net-
work (LAN). The MEC distributes the signals to different
edge processors which preprocess the signal. The prepro-
cessing includes removing noise artifacts and converting the
signals into frequency-domain signals. The edge processors
are low cost and low processing units that can also act
as IoTs. They are used to reduce the burden of transmitting
huge amount of data to the cloud. Some edge caches can
also be used to store the trained parameters of the model
to make a decision faster. The 2D signals are transmitted
to a main cloud via a radio access network (RAN). The
main cloud has several components such as a cloud manager,
a resource engine, and a data storage. The cloud manager
authenticates the users and the stakeholders, and distributes
the work to the resource engine. With the help of the data
storage, the resource engine does the main processing and
classification of the EEG signals. The decision on the signals
(pathology or non-pathology) is then transferred to the users
and the stakeholders via the cloud manager. Depending on
the decision, necessary action is taken by the stakeholders to
provide an utmost care to the users.

B. DATABASE
The TUH EEG Abnormal Corpus v2.0.0 was used in the
experiments in this study [28]. A total of 2,383 partici-
pants were included, among whom 1,385 had normal EEG

recordings and 998 had abnormal EEG recordings in the
database. The database was divided into train and evaluation
subsets. In the train subset, 1,237 were in the normal class
and 893 were in the abnormal class. In the evaluation subset,
the respective numbers were 148 and 105. Some subjects
appear more than once in the train subset. The train and
evaluation subsets did not show any overlapping of subjects.
The EEG signals of some subjects were recorded in multi-
ple sessions. In the database, 512.01 and 526.05 hours of
data were observed in the train subset in the normal and
abnormal classes, respectively. The numbers were 55.46 and
47.48 hours, respectively, in the evaluation subset. The sub-
jects were evenly distributed between male and female.
Table 1 shows gender-based distribution of the files in the
database. The average age was 51.6 years old with standard
deviation of 55.9.

TABLE 1. Number of samples in the TUH EEG Abnormal Corpus v2.0.0.
(M = Male, F = Female).

The EEG recordings varied in the number of chan-
nels (electrodes). The most common was 31 channels per
recording, and the minimum number of channels was 21.
We removed the recordings that had more than 21 channels.
In the recordings, the first minute was deleted from each
file because of noise artifact. Then, 87% of the recordings
were sampled at 250 Hz, 8.3% at 256 Hz, 3.8% at 400 Hz,
and 1% at 512 Hz. In the experiments, the recordings were
downsampled at 100 Hz. Each EEG recording length was
approximately 20 minutes. Human rates verified the record-
ings; 99% agreement was observed between the rates in the
train subset and 100% in the evaluation subset.

C. PROPOSED EEG PATHOLOGY DETECTION SYSTEM
The proposed EEG pathology detection system includes a
preprocessing step and a CNN-based feature extraction and
classification step. This section describes the steps in details.
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FIGURE 2. Structure of the shallow CNN model.

FIGURE 3. Architecture of AlexNet.

The preprocessing of the raw EEG signals contains two
stages as follows.
Stage 1: The EEG signal from each electrode is converted

into a frequency-domain signal using the Fourier transform.
Three band-pass filters are applied to the frequency-domain
signal. The frequency bands are (1 – 7 Hz), (8 – 30 Hz), and
(31 – 100 Hz). Therefore, we have three band-limited signals
from each EEG signal.
Stage 2: The band-limited signals are arranged for all the

electrodes row-wise. For each band-limited signal, we have
21 rows corresponding to 21 electrodes’ EEG. For oneminute
of EEG signal, we have a 21 × 6000 dimensional matrix for
each band, where 6000 represents the number of samples per
minute (60 seconds × 100 samples per second).

Once the preprocessing is done, the matrices are fed to a
CNN model. Two different CNN models are investigated in
the study. The first one is a shallow CNN model, which is
designed by us. The second one is the AlexNet [34], and we
use it as a pretrained model.

In the shallow CNN model, input matrices have size
227 × 227, and there are three matrices. The three matrices
correspond to three bands mentioned earlier. The matrices
obtained from the preprocessing step are resampled to the
input matrix size. There are two blocks in the block; each
block has two convolutional layers followed by a Rectifier
linear unit and a max pooling. Figure 2 shows the structure
of the shallow CNN model. After the second block, the fea-
tures are flattened. Then we have two fully connected layers.

All the weights are initialized randomly using a Gaussian
distribution having the mean equals to zero and the standard
deviation equals to 0.01. A mini-batch stochastic gradient
decent algorithm is used to optimize the weights. The batch
size is set to 50. There is a 50% dropout in the fully-connected
layers. After the final fully-connected layer, the features are
fed to a support vector machine (SVM) classifier [35]. A grid
search method is applied to find the optimal parameters of
the SVM. In the experiments, linear kernel and radial basis
function (RBF) kernel were investigated and the linear kernel
was found to provide a better result.

In the deep CNN model, we use the AlexNet as the pre-
trained model. Figure 3 shows the structure of the AlexNet.
As the size of the database is not big, we cannot use a deep
model from scratch. Therefore, we select the AlexNet, which
is proved to be successful in many applications including the
pathology detection [5]. The softmax layer is replaced by a
softmax layer of two neurons. The weights of the softmax
layer is randomly initialized as before. Once this is done,
we fine tune the model using the train subset. The optimiza-
tion of the weight is done by using a mini-batch stochastic
decent algorithm with adaptive learning rate. The learning
rate of the later layers is set higher than the learning rate of
the initial layers.

We also proposed a fusion-based CNN model for EEG
pathology detection. In this model, the AlexNet is used as
a basic model. The whole length of the EEG signal is equally
divided into three segments. Each segment is preprocessed
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FIGURE 4. Architecture of fusion network.

and fed into the CNN model as before. Features from the last
fully-connected layer of the CNN model are used for fusion.
Such features from the three segments are fused using an
MLP having three fully-connected layers. Finally, a softmax
layer is used as the output layer. Figure 4 shows the architec-
ture of the fusion model. Different numbers of neurons were
investigated in the experiments; the best result was obtained
with 4096 neurons each in the first and the second fully-
connected layers and 2048 in the third fully-connected layer.
Initial random weights are optimized using the stochastic
gradient decent algorithm.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
We performed several experiments for EEG pathology detec-
tion using the TUH EEG Abnormal Corpus v2.0.0. Here we
present important results found in the experiments.

FIGURE 5. Comparison of performances between the shallow CNN model
and the AlexNet model.

Figure 5 shows the accuracy, the sensitivity, and the speci-
ficity of the proposed system with the shallow CNN model
and the AlexNet model. The experiments were performed
when each of the files in the train subset and the evaluation
subset is four minutes long. From Figure 5, we can see
that the AlexNet model outperforms the shallow model in
terms of accuracy, sensitivity, and specificity. For example,
the accuracy using the AlexNet was 78.12% and that using

the shallowmodel was 65.12%. As the number of the samples
in the database is not huge, a model from the scratch such as
the shallow model did not perform well. In the subsequent
experiments, we restrict ourselves to the AlexNet model only.

FIGURE 6. Comparison of accuracies obtained using different lengths of
signals.

In the next set of experiments, we tried to understand
the effect of the length of EEG signals in the train and the
evaluation datasets. Figure 6 shows the accuracies of the
system while varying the length of the signals. In one experi-
ment, the length of the signals in the train subset was fixed
to 20 minutes. The length of the signals in the evaluation
subset varied between one minute to 20 minutes. While
the length was one minute, the accuracy was 75.46%, and
while the length was 16 minutes, the accuracy was 84.86%.
In another experiment, the lengths of signals in both the train
and the evaluation subsets remained the same. For example,
if the length of signals in the train subset was four minutes,
the length of signals in the evaluation subset was also four
minutes. From Figure 6, we see that latter experiment pro-
vided better accuracies than the first experiment. For one
minute signals, the accuracy was 81.1% and for 16 minutes’
signals, the accuracy was 87.37%.

Figure 7 shows various performance measures in terms of
a confusion matrix obtained by the proposed system with-
out the fusion. The length of the signals was 20 minutes.
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FIGURE 7. Confusion matrix of the system without fusion.

The accuracy was 87.68%. This was the best accuracy by the
system without the fusion.

FIGURE 8. Confusion matrix of the system with fusion.

Figure 8 shows the confusion matrix of the system using
the fusion. The accuracy was 89.13%. All the performance
measures were better than those without the fusion. This
clearly states the significance of fusing features from different
temporal segments of the EEG signal.

TABLE 2. Comparison of accuracies between the systems.

Table 2 gives a comparison of accuracies between the
systems using the same database. From the table, we find
that the proposed system outperformed all other system. The
system with the fusion performed the best.

V. CONCLUSION
An EEG pathology detection system using the CNN model
was proposed. The EEG signals were preprocessed and their
spatio-temporal representations were fed to the CNN model.

One shallow CNN model and one deep CNN model in the
form of the AlexNet were investigated. The fusion of CNN
features of three distinct temporal segments of the EEG signal
was realized using the MLP. Experiments were performed on
a publicly available database. Experimental results showed
that the proposed system with the fusion achieved the highest
accuracy, and outperformed other related systems.

In a future study, we will investigate different fusion strate-
gies in the proposed system.
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