
Received February 9, 2019, accepted February 14, 2019, date of publication February 25, 2019, date of current version March 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2901599

Sparse Label Smoothing Regularization
for Person Re-Identification
JEAN-PAUL AINAM 1,2, KE QIN 1, GUISONG LIU 1, AND GUANGCHUN LUO1
1School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2Adventist Cosendai University, Nanga-Eboko BP. 04, Cameroon

Corresponding authors: Ke Qin (qinke@uestc.edu.cn) and Guisong Liu (lgs@uestc.edu.cn)

This work was supported in part by the Ministry of Science and Technology of Sichuan Province under Grant 2017JY0073, and in part by
the Fundamental Research Funds for the Central Universities in China under Grant ZYGX2016J083.

ABSTRACT Person re-identification (re-id) is a cross-camera retrieval task which establishes a correspon-
dence between images of a person from multiple cameras. Deep learning methods have been successfully
applied to this problem and have achieved impressive results. However, these methods require a large amount
of labeled training data. Currently, the labeled datasets in person re-id are limited in their scale and manual
acquisition of such large-scale datasets from surveillance cameras is a tedious and labor-intensive task.
In this paper, we propose a framework that performs intelligent data augmentation and assigns the partial
smoothing label to generated data. Our approach first exploits the clustering property of existing person
re-id datasets to create groups of similar objects that model cross-view variations. Each group is then used
to generate realistic images through adversarial training. Our aim is to emphasize the feature similarity
between generated samples and the original samples. Finally, we assign a non-uniform label distribution to
the generated samples and define a regularized loss function for training. The proposed approach tackles two
problems 1) how to efficiently use the generated data and 2) how to address the over-smoothness problem
found in current regularization methods. The extensive experiments on four large-scale datasets show that
our regularization method significantly improves the re-id accuracy compared to existing methods.

INDEX TERMS Computational and artificial intelligence, artificial neural network, feature extraction,
image retrieval.

I. INTRODUCTION
Person re-identification is the problem of identifying persons
across images using different cameras or across time using
a single camera. Automatic person re-id has become essen-
tial in surveillance systems due to the rapid expansion of
large-scale and distributed multi-camera systems. However,
many issues such as view point variations, dramatic varia-
tions in visual appearance, unstable light conditions, human
pose variations, clothing similarity, background clutter and
occlusions still prevent the task of achieving high accuracy.
Despite the increasing attention given by researchers to solve
the person re-id problem, it has remained a challenging task
in practical environments.

Current approaches to solving person re-id are based on
Convolutional Neural Network (CNN) and generally follow
a verification or identification framework. A verification
framework [27], [45], [59] usually takes a pair of images as
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input and outputs a similarity score while an identification
framework [28], [36], [50], [60] learns a robust and discrim-
inative feature representation from a single input image and
predicts the person identity.

In general, CNN-based approaches to person re-id task
received remarkable improvements and presented potentials
for practical usage in modern surveillance system. How-
ever, CNN based methods require a large volume of labeled
data for training to generalize. Furthermore, existing labeled
datasets in person re-identification are limited in their scale
by the number of the training images and by the num-
ber of images available for each identity. For example,
Market-1501 dataset [58] contains 12, 936 training images
and 751 identities, with 17 images on average per identi-
ties (i.e. 12, 936/751). Moreover, the need of large datasets
becomes obvious as the task of labeling is manual, partic-
ularly tedious and labor-intensive. In addition, it involves
manual selection of identities and association of images from
different cameras with various view points, illumination,
occlusions and body pose changes. This lack of large datasets
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is a big challenge in applying deep learning techniques to
person re-id. Therefore, it is very important to find intelligent
way to increase the training set.

Recently, Generative Adversarial Networks (GAN) [17]
models have been particularly popular due to their ability
to generate realistic-looking images via adversarial training.
Thus, they can be used to solve the problem of lack of
large datasets by generating synthesized unlabeled images
which can be used in conjunction with the training set.
However, transferring unlabeled images from the generated
set to the training set is a challenging task and remains
unresolved. Early studies to solve this problem adopted sim-
plistic approaches. For instance, ‘‘All in one’’ [40] method
assigns a single new label i.e., K + 1, to every generated
sample. And, ‘‘Pseudo Label’’ [23] assigns the maximum
class probability predictions of a pre-trained CNN model to
the generated sample. Similarly, [16], [60], [63] proposed
to use Label Smooth Regularization (LSR) to assign labels
to fake samples. LSR was proposed in the 1980s and recently
revisited in [43] as a mechanism to reduce over-fitting by esti-
mating a marginalized effect over non-ground truth labels y
during training by assigning small value to y instead of 0.
Specifically, [60] extends LSR to outliers (LSRO) by assign-
ing uniform label distribution (i.e. 1

K ) to generated images.
This choice was made to avoid classifying generated sam-
ples into one of the existing categories. However, we argue
that generated images have considerable visual differences
and assigning same labels to all would lead to ambiguous
predictions. This claim is also supported by [16]. Along this
line, [16] proposed to assign labels based on the normal-
ized class predictions over all pre-defined classes. We find
that [16]’s method is similar to ‘‘Pseudo label’’ [23] and
besides, empirical experiments conducted by [60] showed
that LSRO is superior to ‘‘All in one’’ and ‘‘Pseudo-label’’.

One major drawback of all existing LSR approaches such
as LSRO is that, they can easily lead to over-smoothness espe-
cially when the number of classes is excessively large. For
instance, in a practical environment with thousand of iden-
tities, uniform label smoothing approach will assign value
close to 0 and will fail to model the underlying relationships
between the labeled and unlabeled data samples. In this work,
we attempt to overcome this shortcoming by dynamically
associating unlabeled samples with a subset of the class label
distribution during the training process. Inspired by clustering
that leverages the underlying patterns within data, we pro-
pose a novel label assigning approach called Sparse Label
Smoothing Regularization (SLSR) which delivers significant
performance boost in person re-identification, specifically for
large-scale dataset.

In this paper, we make the following contributions:
1) We propose a GAN-based model tailored for person

re-identification task with Sparse Label Smoothing
Regularization (SLSR).

2) We use k-means to do clustering on the training set,
generate GAN-based samples for each cluster and use

partial smoothing label regularization over the gener-
ated images.

3) Using extensive experiments, we show that feature rep-
resentation learning with SLSR improves the person
re-identification accuracy.

The rest of this paper is organized as follows. Section II sur-
veys the related works in person re-identification. Section III
presents the proposed regularization method. Section IV
presents the framework architecture; section V shows the
implementation details and the experimental results and
section VI concludes the paper.

II. RELATED WORKS
In this section, we describe the works relevant to our pipeline.
These works include person re-identification and Generative
Adversarial Network.

A. PERSON RE-IDENTIFICATION
Related works in person re-id can be roughly divided into two
groups: distance metric learning and deep machine learning
based approaches. The first group, also known as discrimi-
native distance metric focuses on learning local and global
feature similarities by leveraging inter-personal and intra-
personal distances [6], [21], [29], [52], [56], [58]. The second
group is CNN-based with a goal to jointly learn the best
feature representation and a distance metric. Some feature
based learning approaches [8], [24], [42] first decompose
the images into three parts. Each part is then passed into
a number of sub-networks for feature extraction. The three
parts are finally fused at the fully connected layers and jointly
contribute to the training process using a triplet loss function.
Other methods [27], [45], [59] used a Siamese convolutional
neural network architecture for simultaneously learning a
discriminative feature and a similarity metric. Given a pair
of input images, they predict if it belongs to the same subject
or not through a similarity score. To improve the similarity
score, [32], [61] proposed to optimize the evaluation metrics
commonly used in person re-id.

Recently, [54], [60], [63] proposed to address the problem
of lack of large datasets in person re-id by training aGAN [17]
model to generate samples and a CNN model for identifica-
tion task. It was particularly observed that, generated images
with smooth labels can improve person re-id accuracy when
they are combined with the training samples.

Following the success of attention mechanisms in Natu-
ral Language Processing, [28], [30], [36], [50] explored its
application to the person re-id problem by proposing vari-
ous forms of attentions. In details, [30] proposed an end-to-
end Comparative Attention Network (CAN) to progressively
compare the appearance of a pair of images and determine
whether the pair belongs to the same person. During training,
a triplet of raw images is fed into CAN for discriminative
feature learning and local comparative visual attention gen-
eration. Reference [28] proposed a CNN architecture for
jointly learning soft and hard attention. The two attention
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mechanisms with feature representation learning are simulta-
neously optimized. In addition, [36] proposed gradient-based
attention mechanism to solve the problem of pose and illumi-
nation found in person re-id problem in a triplet architecture
and [50] recommended Co-attention based comparator to
learn a co-dependent feature of an image pair by attending to
distinct regions relative to each pair. Reference [59] proposed
a Siamese network with verification loss and identification
loss and predicted the identities of a pair of input images.

Many semi-supervised and unsupervised methods based
on GAN have been developed [5], [53], [54], [63] to address
the problem of lack of large labeled dataset in person re-id.
Reference [5] introduced, for the first time in the re-id field,
the strategy of using synthetic data as a proxy for the real data
and claim to recognize people independently of their clothing.
Reference [60] showed that a regularized method (LSRO)
over GAN-generated data can improve the person re-id accu-
racy by assigning uniform label distribution to generated
samples. Reference [63] proposed a camera style (CamStyle)
adaptation method to regularize CNN training through the
adoption of LSR and used CycleGAN [64] for image genera-
tion. Similarly, [23] trained a supervised networkwith labeled
and unlabeled data by assigning pseudo-label to unlabeled
data and [48], [53] proposed unsupervised asymmetric metric
learning to unsupervised person re-id. In addition, [33] pro-
posed Expectation-Maximization (EM) combining weak and
strong labels under supervised and semi-supervised settings
for image segmentation. Reference [25] proposed a semi-
supervised region metric learning method to improve the
person re-id task performance under imbalanced unlabeled
data using label propagation with cross person score distri-
bution alignment and discriminative region-to-region met-
ric. Recently, [26] proposed a domain adaptation method to
address the problem of lack of exhaustive identity label. Their
proposed model jointly learns per-camera tracklet association
and cross-camera tracklet correlation by maximising the dis-
covery of tracklet across camera views and by exploiting the
underlying re-id discriminative information in an end-to-end
optimization.

Building from [35], [43], [60], [64], we propose a label
assignment strategy that assigns partial label distribution to
generated samples. We intend to use the training data in
conjunction with GAN generated images to train the network
using a regularized loss function.

We show in section III-C how our model differs
from [60] and [63].

B. GENERATIVE ADVERSARIAL NETWORK
Generative Adversarial Network (GAN) is first introduced
by [17] and described as a framework for estimating gen-
erative models via an adversarial process. GAN consists
of two different components: a generator (G) that gener-
ates an image and a Discriminator (D) that discriminates
real images from generated images. The two networks com-
pete following the minimax two-player game. This kind
of learning is called Adversarial Learning. Reference [35]

proposed Deep Convolutional GAN (DCGAN) and certain
techniques to improve the stability of GANs. The trained
DCGAN showed competitive performance over unsuper-
vised algorithms for image classification tasks. Multiple vari-
ants of GANs were published in the literature and were
applied to various interesting tasks such as realistic image
generation [35], text-to-image generation [37]; video gener-
ation [46]; image-to-image generation [19], image inpaint-
ing [34], super-resolution [22] and many more. In this work,
we use DCGAN [35] model to generate unlabeled images
for each cluster set. We chose DCGAN model after carefully
contrasting various image generators. DCGAN architecture
is very simple but yet generates more realistic images as
illustrated in Figure 3.

III. OUR APPROACH
In this section, we present our proposed framework.

A. CLUSTERING THE TRAINING SET
We intend to partition the training samples into K groups of
equal variance and find a shared feature space among similar
objects. Our goal is to produce K different clusters with
relatively similar features. To do this, we defined an objective
function like that of k-means clustering [2], [13].

Lclustering =
N∑
i=1

K∑
k=1

|| zi − µk ||2 (1)

where N is the number of cases, µk the cluster center and
|| . || the Euclidean distance between an embedded data zi
and the cluster center µk . In our experiments, we replaced zi
by the output feature map produced by a pre-trained model.
Equation 1 learns the centroid such that, given a threshold γ ,
distances between similar feature vector are smaller than γ ,
while those between dissimilar feature vector are greater
than γ . This ensures that distance between generated sam-
ples and a subset of the training images is small. We argue
that using a generative model on similar objects effectively
contributes in maintaining the complex relationships between
unlabeled and labeled data, minimizes the affinity distance
between the two sample sets and approximates the actual
training data. In addition, experimental results have shown
that using the intermediary feature representation of a pre-
trained CNN model instead of the raw image results in better
clustering quality.

To generate realistic images from each cluster, we defined
a loss function similar to [11] and minimized Equation 2 with
respect to the parameters of G(z) and maximized Equation 2
with respect to the parameters of D(x).

LGAN = logD(x)+ log
(
1− D(G(z))

)
(2)

B. SPARSE LABEL DISTRIBUTION SCHEME
Let p(ỹi = yi|I i) be a vector class probabilities produced by
the neural network for an input image I i and wi the combi-
nation of weight and bias terms to be learned. The network
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FIGURE 1. Real image (left) uses one-hot vector to encode the label information. LSRO (middle) uses a uniform label distribution 1
k on

generated samples, while SLSR (right) uses partial label distribution drawn from the label distribution of the cluster of origin for label
information.

computes the probabilities of each input image using:

p(ỹi = yi|I i) =
exp(wTyi · xi)∑N
k=1 exp(w

T
k · xi)

(3)

where xi is the input vector from previous layers. Given N
training samples, we define the cost function for real images
as the negative log-likelihood:

Lxent = −
N∑
i=1

log p(ỹi = yi|I i) (4)

In general, neural network represents a function f (x; θ) which
provides the parameters w for a distribution over y. So min-
imizing Lxent is equivalent to maximizing the probability of
the ground-truth label p(ỹi = yi|I i). For a given person with
identity y, Equation 4 can be written as

Lxent (θ ) = − log p(y|x; θ ) (5)

where θ represents the set of parameters of the whole network
to be learned.
Regularization via Sparse Label Smoothing (SLSR) [43]

proposed a mechanism to regularize a classifier by estimating
a marginalized effect over non-ground truth labels q(k|x)
during training by assigning small value to y instead of 0.
q(k|x) = δk,y where δk,y is Dirac delta:

δk,y =

{
1 k = y
0 k 6= y

(6)

For training image with ground-truth label y, [43] replaced
the label distribution q(k|x) = δk,y with

q′(k, y) =

{
(1− ε)δk,y k = y
ε

k
k 6= y

(7)

where ε ∈ [0, 1] is the smoothing parameter. When
ε = 0, Equation 7 can be reduced to Equation 6.

Then, the cross-entropy loss in Equation 5 is re-defined as

LLSR=−(1−ε) log p(y|x; θ )−
ε

K

K∑
i=1

log p(yi|x; θ ) (8)

Departing from [43], we introduce our loss function for
the feature representation learning as a combination of cross
entropy and a modified version of LSR. Given an identity I

zi,c =

{
1 I i ∈ C
0 I i /∈ C

(9)

Here, zi,c are the unnormalized probabilities of an image gen-
erated using cluster C with pc number of classes. zi represents
a one-hot encoding vector where every entry k is equal to 1
if the class label k belongs to C and 0 if not. We consider
the ground-truth distribution over the generated image and
normalize zi so that

∑N
i=1 zi,c = 1. To explicitly take into

account our label regularization, we changed the network to
produce

zi =
1
pc
zi,c for c ∈ {1, 2, . . . ,K } (10)

Figure 1 illustrates our proposed label distribution scheme.
We finally optimize

∑
i L(z̃i,

1
pc
zi,c). Our loss for generated

images is written as:

LSLS = −
pc∑
i=1

log p(z̃i = zi|I i) (11)

or simply written as

LSLS (θ ) = − log(p(z|x; θ ) (12)

Combining Equation 5 and Equation 12, the proposed
regularized loss function LSLSR is defined as:

LSLSR(θ ) = −(1− λ) log
(
p(y|x; θ )

)
−
λ

K
log

(
p(z|x; θ )

)
(13)

For training images, we set λ = 0 and for the generated
images, λ = 1
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C. DISCUSSION
Recently, [60] proposed Label Smoothing Regularization for
Outliers (LSRO) and [63] proposed CamStyle as a data aug-
mentation technique. LSRO expands the training set with
unlabeled samples generated by DCGAN [35] and assigns
uniform LSR [43] to a generated sample i.e. LLSR(ε = 1)
while CamStyle uses CycleGAN [64] to generate new
training samples according to camera styles and assigns
LLSR(ε = 0.1) to style-transferred images. Although LSRO
and CamStyle are similar to our work, we argue that our
method is different on two aspects:

1) LSRO [60] and CamStyle [63] assign equal smoothing
label distribution to all generated images; this can lead to
over-smoothness especially when the number of classes is
excessively large. However, our method assigns an adaptive
smoothing label distribution to a generated sample based on
the label distribution of its cluster c i.eLLSR(ε = 1

pc
) where pc

is the number of class identity in cluster c. In SLSR, ε = 1
pc

is
not unique and depends on pc. This is opposed to ε = 1 and
ε = 0.1 used in LSRO and CamStyle, respectively.Moreover,
in LSRO and CamStyle, dissimilar and similar imagesmay be
assigned relatively equal similarity value, while our method
deals with such unfairness by considering a generated image
in the locality of real samples and proposes a strategy to deter-
mine the appropriate candidates by using k-means clustering
algorithm. A non-uniform label distribution is assigned to
generated images according to their cluster of origin. This
enables our model to be highly efficient in dealing with large
amount of data while being robust to noise as well. Our
method SLSR learns the most discriminative features and can
easily avoid the over-smoothness problem.

2) In our model, similarities are maintained and propa-
gated through the framework by the concatenation of similar
images into one homogeneous feature space. Leveraging
feature space for each cluster can substantially improve
the performance of person re-identification compared with
using single-label distribution over all classes. Figure 1
illustrates the label distribution of SLSR and LSRO and
clearly describes the uniform distribution of LSRO versus
the non-uniform distribution of SLSR. Comparative studies
in Tables 6 7 8 9 ascertain the effectiveness of our method and
extensive experiments demonstrate its superiority compared
to LSRO [60] and CamStyle [63]. In addition, our framework
introduces an extra noise layer to match the noisy GAN
label distribution. The parameters of this linear layer can be
estimated as part of the training process and involve simple
modification of current deep network architectures.

LSRO, CamStyle and our method SLSR share some com-
mon practices such as (1) enhancing the training set by the
generation of fake images using GAN [17] models; (2) the
adoption of Label Smooth Regularization (LSR) proposed
by [43] to alleviate the impact of noise introduced by the
generated images; (3) performing an end-to-end training for
person re-id using labeled and unlabeled data in a CNN-based
approach.

Algorithm 1 Algorithm for SLSR Training
Input: K: Number of clusters, X : Training samples

Initialisation: Randomly initialize the cluster centroids
µ1, µ2, . . . , µk ∈ Rn

1: Draw m samples {(x(1), y(1)), . . . , (x(m), y(m)} from the
training data X and train a CNN for I iteration using
Equation 5

2: for each sample m do
3: Extract x(n)(m) feature map from the last conv layer
4: end for
5: Let F ∈ RN×M be the feature maps for all samples
6: repeat
7: for every x(i) ∈ F set c(i) := argmin

j
|| x(i) − µj ||

8: for each j set µj :=
∑m

i=1 1{c
(i)
=j}x(i)∑m

i=1 1{c(i)=j}
9: until convergence
10: for each image xi ∈ X , assign xi to µk using Equation 1
11: for each clusters ki do
12: Train a GAN with m example {η(1), . . . η(m)} drawn

from the cluster ki and m samples {z(1), . . . , z(m)}
drawn from noise prior Pg(Z ) using Equation 2

13: Generate sample images and assign sparse label
smoothing distribution to the generated image

14: end for
15: Add the generated images to the training set and train a

CNN using Equation 12

We also compared SLSR properties with LSRO, ‘‘Pseudo
Label’’ and ‘‘All-in-one’’ methods. The overall compari-
son of our approach SLSR with the closely related meth-
ods is summarized in Table 1. Existing strategies to
label GAN-based images in person re-id include ‘‘Pseudo
label’’ [23], LSRO [60] and ‘‘All in one’’ [40]. SLSR and
LSRO adopt smooth vector while ‘‘All in one’’ and ‘‘Pseudo
label’’ adopt one hot vector. The difference is that, LSRO
label contribution on pre-defined classes is the same, with a
fixed and manually assigned value of 1

k while SLSR dynam-
ically assigns label and considers their similarities. This
ensures different label contribution on the pre-defined classes
and accurately models practical environment settings.

IV. FRAMEWORK OVERVIEW
Our framework consists of three steps as illustrated in
Figure 2 and includes (1) a clustering step using k-means
clustering algorithm, (2) a generative adversarial training step
for image generation and finally, (3) an identity classification
training task using the original training set in conjunction
with the generated set.

A. CLUSTERING
It is well known that multi-view data object admits a common
clustering structure across view and that person re-id is a
cross-camera retrieval task across view. We aim at explor-
ing such clustering propriety to generate images that model
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TABLE 1. Properties comparison between LSRO, All-in-One, Pseudo label and our method (SLSR).

FIGURE 2. Our model consists of 3 steps: (1) Clustering on training data using unlabeled source dataset
(Section IV-A). (2) For each cluster; train a DCGAN to generate images. Assign a partial label distribution
to the generated images (Section III). (3) Combine the partial labeled images with the training image.

cross-view variations through the use of k-means clustering
algorithm and GAN. We apply k-means algorithm to cluster
the training images into K clusters (2, . . . , 5 ) as illustrated
in Figure 4. K-means clustering is a simple yet very effective
unsupervised learning algorithm for data clustering. It clus-
ters data based on the Euclidean distance between data points.
We trained a CNN network for 40 epochs using a learning rate
of 0.001 with a momentum of 0.9. We use ResNet50 [14]
model to learn a good intermediate representation and later
extract high dimension features representation from the last
convolutional layer. K-means clustering algorithm is applied
to the set of feature map. We found this way to be faster and
better than clustering on raw data images.

To judge the effectiveness of our clustering algorithm,
we considered the ground truth not known and performed
an evaluation using the model itself. Table 2 shows the
cluster quality metric Silhouette Coefficient [39] applied on
Market-1501 dataset [58]. We found Silhouette Coefficient
higher for K = 3 and K = 4 showing that good cluster is
achieved with these values of K . In the next sections, we use
K = 3 for all the remaining experiments.

B. GENERATIVE ADVERSARIAL NETWORK
In this second step of our framework, we used Deep Con-
volution Generative Adversarial Network (DCGAN) [35] to

TABLE 2. For each cluster size, we calculate the silhouette coefficient [39]
using mean intra-cluster distance (a) and mean nearest-cluster distance
(b) ( b−a

max(a,b) ). The silhouette coefficient is generally higher when clusters
are dense and well separated (best value is 1 and the worse value is -1).
We show that this score is higher for cluster size = 3. Results from Table 4
prove that we achieve higher accuracy for k = 3, on Market-1501 dataset.

generate data from clusters. We followed the implementation
details of [35]. TheGeneratorG consists of aDeconvolutional
Network (DNN) made of 8×8×512 linear function, a series
of four deconvolution operations with a filter size of 5×5 and
a stride of 2, and one tanh function. The input shape of G is a
100-dim uniform distribution Z scaled in the range of [−1, 1]
and the output shape a sample image of size 128× 128× 3.
The Discriminator D consists of Convolutional Neural Net-
work (CNN) formed by four convolution functions with 5×5
filters and a stride of 2. We added a linear layer followed
by a sigmoid function to discriminate real images against
fake images. The input shape includes sample images fromG
and real images from the training set. Each convolution and
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FIGURE 3. Sample images generated from three clusters using DCGAN. The first column shows the original
images from the cluster set and the remaining columns show samples generated from the corresponding
cluster. We show that identities with similar features also generate fake samples with similar features and that
color is a major learned feature.

FIGURE 4. Visualization of extracted feature map F from ResNet on Market1501 dataset. Results of k-means clustering algorithm on F for
k = 2, . . . ,5. We arrive at a fair clustering view with k = 3 and k = 4. Best viewed in color.

deconvolution layer is followed by a batch normalization [18]
and ReLU in both the generator and discriminator.

C. CONVOLUTIONAL NEURAL NETWORK
In the last step of the framework, we fine-tuned the
ResNet [14] baseline model pre-trained on ImageNet,
we introduced an extra linear layer into the network which
adapts the network outputs to match the noisy GAN label
distribution. The networkwas able to adjust the weights based
on the error when we add a linear layer on top of the softmax
layer rather than a non-linear such as tanh or ReLU . We used
the generated data in conjunction with the labeled data and
defined a loss function with a regularization term. The model
is trained to minimize the loss function.

V. EXPERIMENTS
In this section, we performed experiments on four widely
adopted person re-id datasets. The evaluation code is

available at https://github.com/jpainam/SLS_ReID and is
mainly conducted on Market-1501 dataset.

A. PERSON RE-ID DATASETS
Table 3 gives detailed information of the testing/training split
strategy adopted during the experiments on Market-1501,
CUHK03, DukeMTMC-ReID and VIPeR datasets.
Market-1501 [58]: is a large and most realistic dataset

collected in front of a campus supermarket. It contains over-
lapping views among the six cameras and images were auto-
matically detected by the Deformable Part Model (DPM) [9].
The dataset contains 12, 936 images with 751 identities in
the training set and 19, 732 images with 750 identities in the
test set. We follow the standard data separation strategy as
described in [58] and use all the training set for the clustering
step and one image per identity as validation image in the last
step.

VOLUME 7, 2019 27905



J.-P. Ainam et al.: Sparse Label Smoothing Regularization for Person Re-Identification

TABLE 3. Dataset split details. The total number of images (QueryImgs,
GalleryImgs, TrainImgs), together with the total number of identities
(TrainID, TestID) are listed.

CUHK03 [27]: contains 13, 164 images and 1, 467 iden-
tities. The dataset provides two image sets, one set is auto-
matically detected by the Deformable Part Model [9], and
the other set contains manually cropped bounding boxes.
Misalignment, occlusions and body part missing are quite
common in the detected set. In this work, we use the detected
set as it is more realistic. The dataset is captured by six
cameras, and each identity has an average of 4.8 images in
each view.
DukeMTMC-ReID [60]: is a dataset derived from the

DukeMTMC [38] dataset for multi-target tracking. The orig-
inal dataset consists of a video data set recorded by 8 syn-
chronized cameras over 2, 000 unique identities. In this paper,
we use the subset as defined by [60]. It contains 16, 522
training images with 702 identities and 17, 661 test images
with 702 identities. We follow the partition settings of the
Market-1501 dataset and use all the training images for the
first step and randomly pick one image per identity as val-
idation set. The remaining training images are used for the
supervised learning step.
VIPeR [12]: contains 632 pedestrian image pairs captured

outdoor from two viewpoints. Each pair contains two images
of the same individual cropped and scaled to 128×48 pixels.
The datasets are divided into two equal subsets. To be fair
in the comparison, we follow the testing strategy as defined
in [12] and [57].

B. IMPLEMENTATION DETAILS
We modified ResNet50 [14] last fully connected layer with
the number of classes i.e. 751; 1, 367 and 702 units for
Market-1501, CUHK03 and DukeMTMCReID respectively.
To train the network, we used stochastic gradient descent and
start with a base learning rate of η(0) = 0.01 and gradually
decrease it as the training progresses using the inverse policy
η(i) = η(0)(1 + γ · i)−p, where γ = 0.1, p = 0.025 and i
is the current mini-batch iteration. We used a momentum of
µ = 0.9 andweight decay of λ = 5×10−4 and themini-batch
size of 32. We trained the network for 130 epochs. To gener-
ate image samples, we trained DCGAN for 30 epoch using
Adam [20] with learning rate lr = 0.0002 and β1 = 0.5.
Data preprocessing: All the input images are resized to

256 × 256 before being randomly cropped into 224 × 224

with random horizontal flip. We scaled the pixels between
−1 and 1. Finally, pixels are zero-centered by subtracting
their mean in each dimension and random erasing [62] is
applied to make the network more robust to variations and
occlusions.

C. BASELINE MODELS COMPARISON
We also compared SLSR and LSRO using our baseline.
At first glance, our baseline already outperforms LSRO as it
is reported in Table 5. Our baseline model fine-tuned ResNet
model with an extra linear layer for the noisy data distribution
and introduced a 512-bottleneck layer before the softmax
layer while the baseline model used by LSRO makes no
change to the existing ResNet architecture. For a fair compar-
ison, we evaluated LSRO model on our baseline and showed
the results of the experiments in Table 5. For instance, onMar-
ket1501 dataset, our baseline model improves LSRO by a fac-
tor of 4.66% on rank-1 accuracy and by a factor of 8.88% on
mAP accuracy. This shows that the architectural design of our
baseline also benefits LSRO. Such baseline can be adopted
to improve the overall person re-id accuracy. Using the same
baseline, we still observed a slight performance improve-
ment. On Market-1501 dataset for example, under single
query setting, SLSR slightly outperforms LSRO by a factor
of 0.2% on mAP accuracy and 0.53% on rank-1 accuracy
while under multi-query setting, SLSR outperforms LSRO
by a factor of 2.05% on mAP accuracy and 0.83% on rank-1
accuracy. This improvement is explained by the relatively
small size of the label distribution in Market1501 dataset.
We recall thatMarket1501 dataset [58] contains 751 identities
for 12, 936 training images. In this case, LSRO will assign a
reasonable smooth value of 0.001 (1/751) while our method
with 3 clusters will assign a relative value of 0.004. The two
values are relatively closed. So, during training, the two mod-
els can converge identically. Nonetheless, in order to verify
the effectiveness of the proposed method on a large class
dataset and verify its robustness against the over-smoothness
problem, we conducted an empirical study on CUHK03
dataset [27]]. As a quick reminder, CUHK03 dataset [27]
contains 1367 identities for 13, 113 images, making it one of
the largest dataset in person re-id in term of label distribution.
The comparison of the results in Table 5 clearly shows that
our model stands out from LSRO when the class label dis-
tribution is large. In details, we achieved a rank-1 accuracy
improvement of 2.27% and a mAP accuracy improvement
of 4.19%. We conclude that our model can better handle
practical environment scenario with thousands of labels.

D. THE IMPACT OF USING DIFFERENT
NUMBER OF CLUSTER
The impact of using different numbers of clusters and differ-
ent number of synthesized images during training is also eval-
uated and reported in Table 4.We performed an ablation study
and a performance comparison using 6000, 8000, 12000,
18000 and 24000 unlabeled images and expected the model
to increasingly learn discriminative pattern from these data.
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TABLE 4. Impact of the number of cluster on Market-1501 dataset. As the number of cluster gets larger, the accuracy drops. In general, we find that a
large k decreases the training error but increases the validation/testing error. We show results of applying SLSR for 3 different values of k with no
re-ranking [61] and single query setting. The best results are obtained with K = 3 and K = 4. K = 3 is used for experiments on all the datasets.

TABLE 5. Comparison results with LSRO using our baseline. We applied LSRO loss on our baseline on Market-1501 dataset without re-ranking. We show
that the architectural design of our baseline also benefits LSRO. SQ stands for Single Query and MQ for Multi-Query.

However, the results show that as the number of generated
samples increases, the person re-id performance improves by
a factor of 1.25% but reaches saturation with 12, 000 gen-
erated samples. We note that the number of training images
in Market-1501 dataset is 12, 936. As a result, we make
two remarks. First, the addition of different numbers of fake
samples steadily improves the baseline. We find that the peak
performance is achieved by roughly doubling the number of
training samples with fake samples. Compared with LSRO
where the peak performance is achieved when 2 × GAN
i.e. 24, 000 images are added, our approach only requires
12, 000 to reach peak performance. Also, increasing the num-
ber of GAN images beyond 12, 000 does not improve the
accuracy. The network reaches early convergence thanks to
SLSR. In addition, the number of cluster affects the rank-1
accuracy. In fact, if K = 1, the approach resembles LSRO;
with K > 2 and K < 5, we observe accuracy improvement
over the baseline but a drop in accuracy with K > 5. As the
number of cluster increases, the learning procedure tends to
converge towards assigning a single ground truth label to
the fake samples similar to ’Pseudo label’ scheme, which
is not desirable. Therefore, we conclude that a trade-off is
recommended to avoid poor regularization of partial label
distribution.

E. EVALUATIONS
We adopted the widely used Cumulative Matching
Curve (CMC) metric for quantitative evaluations. We used
the standard protocol to ensure fair comparison between the
proposed method and the state-of-the-art methods. The test
protocols are as follow.

For VIPeR dataset, we randomly divide the dataset into
training and testing sets, each set containing half of the
available individuals. In the test set, we randomly select one
image of a person from camera 1 as a query image and one

image of the same person from camera 2 as a gallery image.
For CUHK03 dataset, we followed the standard protocol
used by [7] and for Market-1501 dataset, we used the
standard evaluation protocol as defined by [58]. And, for
DukeMTMC-ReID we used the standard evaluation protocol
defined in [60]. Both single-query and multi-query match-
ing results are reported on Market-1501 dataset while only
single query evaluation is adopted for CUHK03, VIPeR and
DukeMTMC-ReID datasets. Rank-1, rank-5, rank-20 accu-
racy and Mean Average Precision (mAP) are computed to
evaluate the performance of all the methods. For each image
in the query set, we first compute the L2 distance between
the query image and all the gallery images using the output
feature produced by our trained network, and we return the
top-n nearest images in the gallery set. If the returned list
contains an image of the same person at a given position k ,
then this query is considered as success at rank-k.
Re-Ranking: Recent works [4], [61] choose to per-

form an additional re-ranking to improve ReID accuracy.
In this work, we report re-ranking results using re-ranking
with k-reciprocal encoding [61], which combines the orig-
inal L2 distance and Jaccard distance. Re-ranking with
k-reciprocal encoding approach assumes that there are multi
positive samples in the gallery. So, re-ranking approach will
fail to improve the performance in small datasets such as
ViPER and CUHK03 datasets. In this work, we did not
report these results. In Tables 6 7 8 9, SLSR represents
our method and SLSR + RR represents our model with
re-ranking [61].

F. COMPARISON WITH THE STATE OF ART
In this section, we compare our results with state-of-art
methods and report the results in Tables 6 7 8 9.

OnMarket-1501 dataset our method achieved an 89.16%
rank-1 accuracy and 75.15% mAP accuracy exceeding
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TABLE 6. Comparison result with state-of-arts on CUHK03. ’-’ means that
no reported results is available. * paper on ArXiv but not published.

TABLE 7. Comparison results of the state-of-arts methods on
DukeMTMCReID. We show that our methods is superior to previous
works. * paper on ArXiv but not published.

LSRO [60] by a factor of 5.19% on rank-1 accuracy and by
a factor of 9.08% on mAP accuracy. Our method with both
SLSR and re-ranking [61] with k-reciprocal encoding further
improves rank-1 and mAP accuracy from 89.16% to 91.54%
and from 75.15% to 88.09% respectively. Table 8 shows that
our method outperforms many existing works.

On CUHK03 dataset (Table 6), we achieved a 91.03%
rank-1 accuracy and 94.21% mAP accuracy which are close
by a factor of 0.77% to the result reported by HydraPlus-
Net [31]. Our method exceeds LSRO [60] by a factor
of 6.41% on rank-1 accuracy and by a factor of 6.81%
on mAP.

Not many reported results exist on DukeMTMCReID
dataset, as shown in Table 7. Yet, our method achieved a
76.53% rank-1 accuracy and 60.79%mAP accuracy exceed-
ing existing works. Compared to LSRO [60], our rank-1

TABLE 8. Comparison results of the state-of-art methods on
Market-1501. ’-’ means that no reported results is available and ’*’ means
the paper is available on ArXiv but not published.

TABLE 9. Comparison results with state-of-arts on VIPeR dataset.

accuracy exceeds their result by a factor of 8.85%.
SVDNet [41] exceeds our model by a small factor of 0.17%.

We also achieved competitive result on a small dataset
such as VIPeR dataset, Specifically, our method achieved a
65.98% rank 1 accuracy.
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FIGURE 5. Sample images retrieved from Market-1501 dataset using our
framework. The images in the first column are the query images. The
images in the right columns are the retrieved images. The retrieved
images are sorted according to the similarity scores from left to right.
We use re-ranking [61] with k-reciprocal encoding.

VI. CONCLUSION
In this paper, we proposed Sparse Label Smoothing Reg-
ularization (SLSR) for solving the person re-identification
problem. We proposed to use generated samples in conjunc-
tion with training samples to improve the re-id accuracy
and proposed a labeling approach for generated samples.
We emphasized on the fact that a fair labeling approach on
synthesized images should consider the underlying relation-
ship between the training and the generated samples. We pro-
posed SLSR as a pipeline to train a CNN model with labeled
and synthesized images. We clustered the training images
using an intermediary feature representation of a pre-trained
CNN model and generate images for each cluster. The gener-
ated images are assigned smooth label according to the label
distribution of the cluster used for DCGAN stream. Through
ablation, we show that SLRS can address the problem of over-
smoothness found in current regularization methods. Exten-
sive evaluations were conducted on four large-scale datasets
to validate the advantage of the proposed model on existing
models. Tables 6 7 8 9 show the superiority of the model over
a wide variety of state-of-art methods.
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