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ABSTRACT Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal
diseases. However, it is very time-consuming and fatiguing for a physician to review a large number of
WCE images. Some methods to address this problem have recently been presented. However, these methods
generally employ classification algorithms to discriminate abnormal from normal images, which do not
localize, recognize, or detect abnormal patterns in abnormal images. We sought to identify a better method
for the WCE abnormal pattern detection. In this paper, convolutional neural networks (CNNs) are used
to implement detection function, and several methods are also adopted to boost the performance of WCE
abnormality detection from aspects of the CNN architecture, region proposal, and transfer learning. First,
we present a deep cascade network, namely, CascadeProposal, trained end-to-end to generate a small number
of region proposals with high-recall by a region proposal rejection module and to simultaneously detect
abnormal patterns using a detection module. Second, we use a multiregional combination (MRC) method to
obtain good coverage of the regions of interest and employ the salient region segmentation (SRS) method to
capture accurate region locations. Third, we use the dense region fusion (DRF) method for object boundary
refinement. Fourth, we introduce negative category (Neg) and transfer learning (TL) strategies into our
CNNs to obtain a better model performance. The extensive experiments are performed on our WCE image
dataset of more than 7k annotated images. A final mean average precision (mAP) of 70.3% and a better
mAP of 72.3% can be achieved via CascadeProposal with ZF and Fast R-CNN with VGG-16 networks,
respectively, usingMRC+Neg+TLmethod in the training stage andMRC+DRF+SRSmethod in the testing
stage. The comprehensive results demonstrate that our method is efficient and effective forWCE abnormality
detection with high-localization accuracy.

INDEX TERMS Convolutional neural networks, medical image analysis, region proposal, transfer learning,
wireless capsule endoscopy, WCE abnormality detection.

I. INTRODUCTION
Wireless capsule endoscopy (WCE) was introduced
in 2000 by Given Imaging Incorporation [1]. They [1]
reported the development of a new type of endoscopy,
namely, wireless capsule endoscopy, which for the first
time allows painless endoscopic imaging of the entire small
bowel. Compared with traditional diagnostic procedures
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(gastroscopy, small-bowel endoscopy, and colonoscopy,
respectively), the endoscopy capsule is small enough to be
swallowed (11 × 30 mm) and has no external wires, fiber-
optic bundles or cables, thus causing no discomfort dur-
ing the internal gastrointestinal examination. Additionally,
the capsule endoscope is propelled by peristalsis through the
gastrointestinal tract and does not require a pushing force
to propel it through the bowel. These advantages make
WCE a promising diagnostic tool for gastrointestinal (GI)
diseases [1]–[4]. However, capsule endoscopy produces
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FIGURE 1. Images captured by WCE and examples of abnormal patterns. (a) Active bleeding. (b) Active bleeding and
undigested residue. (c) Inactive bleeding. (d) Polyp. (e) Bubbles. (f) Tumor.

approximately 50k images for a patient during one examina-
tion, which makes it time-consuming and unacceptable for an
experienced physician to review all these images to identify
the abnormalities in the GI tract [5]–[9]. Furthermore, local-
izing and recognizing abnormal patterns in abnormal images
is cumbersome, as abnormal images usually account for less
than 5% of the entire set [5]. Therefore, it is extremely diffi-
cult for a physician to detect abnormal patterns in so many
WCE images. An abnormal image generally includes one
pattern, such as bleeding, polyp, or tumor. Occasionally, other
abnormal patterns, such as bubbles or undigested residue, can
be simultaneously captured by capsule endoscopy. Each pat-
tern is shown in Fig. 1. Some reported methods differentiate
abnormal images from normal images only for one specific
abnormal pattern, e.g., [6] only for bleeding, [7] and [9] only
for polyp, [8] only for ulcers, or [10] only for tumors, etc.
Others detect multiple abnormal patterns, e.g., [5] for bleed-
ing, polyp, and ulcers, or [11] for polyp and ulcers. Whether
the above methods address the detection of single or multiple
pattern abnormalities, these detection tasks substantially
adopt classification algorithms to discriminate abnormal
images from normal images, which do not localize or rec-
ognize abnormal patterns in abnormal WCE images. This
motivated us to develop a generic detection solution to
localize and recognize abnormal patterns inWCE via suitable
methods.

In this paper, we introduce an effective scheme integrat-
ing various methods to accurately detect multiple abnormal

patterns. These methods include CNN architecture design,
the use of top region proposal and dense region fusion meth-
ods, and the introduction of transfer learning and negative
categorymethods, etc. The several above-mentionedmethods
also reflect our main contributions. The motivation behind
this proposal is to effectively localize and recognize abnormal
objects. First, we redesign the network architecture based on
Fast R-CNN [12] to reach a higher recall and improve the
generalization capacity. We call the modified network Cas-
cadeProposal. Second, for the region locations obtained by
the final trained CNN model, we use the dense region fusion
method to improve the detection and localization accuracy.
Third, we introduce negative category strategy into our model
training to obtain better model performance. Furthermore,
we use the model-based transfer learning strategy to fine-
tune the network and yield the best performance results.
These methods have been trained and tested on our WCE
image dataset with more than 7k annotated images, achieving
desirable results. It is noteworthy that the two concepts of
abnormal patterns and abnormal objects are equivalent in this
paper and that region (object) proposal and region (object)
proposal generation are also equivalent.We refer to the abnor-
mal pattern as the object.

After acquiring WCE images by capsule endoscopy, it can
be seen that image characteristics, such as texture, color, and
shape, are different from natural scene images, e.g., images
from the Pascal VOC [13] and ImageNet [14] datasets.
We observed that the shape of abnormal patterns in WCE
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images is generally petechial, zonal, and blocky. Specifically,
the bleeding abnormal pattern is amorphous, similar to water.
In addition, other features (e.g., color and texture) are also
rich and distinctive. Moreover, there is generally one abnor-
mal pattern (e.g., either bleeding or polyp) in each WCE
image. It is also possible that multiple abnormal patterns
exist in one WCE image (e.g., bleeding and undigested
residue). Inspired by the above observations, we aim to gen-
erate high-quality object locations by adopting both current
top-performing region proposal methods, such as Selective
Search (SS) [15], [16] and EdgeBoxes (EB) [17], [18], and
salient region segmentation methods, such as region contrast
(RC) [19] and Otsu [20], which is also our other contribution.

The main research questions in this paper can be summa-
rized by the following three aspects: 1) ForWCE images, how
canmore accurate region localization of abnormal patterns be
generated? 2) How can CNN architecture be used to obtain
higher recall and better generalization capacity? 3) Can we
find other methods to improve the detection accuracy?

The rest of this paper is organized as follows. Section II
introduces related work and discusses their differences with
our proposed method. Section III describes our method,
including the network architecture, region proposal genera-
tion, and implementation details. The experimental results
and analysis are illustrated and discussed in Section IV.
In Section V, we compare and discuss the performance of var-
ious trained models and elaborate on the major findings and
significance of our work. Finally, conclusions are presented
in Section VI.

II. RELATED WORK
This section reviews and discusses the related: (A) traditional
methods applied to WCE image detection; (B) deep learning
applied to medical image analysis; and (C) the current top
region proposal methods.

A. TRADITIONAL METHODS APPLIED TO WCE
IMAGE DETECTION
In this paper, we consider detection or classification meth-
ods, which are different from deep learning [21], as tradi-
tional methods. Many methods have been reported for the
recognition and detection of WCE abnormal patterns. In [7],
a texture feature extraction method is presented to identify
polyp WCE images. Experiments on a small dataset veri-
fied the effectiveness of this method. Yuan et al. [8] use
locality-constrained linear coding, superpixel, and saliency
mapmethods, etc. to detect ulcer images. The results achieved
promising accuracy. In [5], a coding method called saliency
and adaptive LLC is proposed to detect multiple abnormal
images such as bleeding, polyp, and ulcers. Yuan et al. [6]
propose a words-based color histogram method for bleeding
detection and a two-stage saliency map extraction method to
localize bleeding regions. Yuan et al. [22] present a novel
discriminative joint-feature topic model with dual constraints
to classify multiple abnormalities in WCE images. These
above-mentioned methods are in fact classification methods.

Moreover, Karargyris and Bourbakis [11] employ a syn-
ergistic scheme to address the detection of polyp and ulcers.
But the method fails to increase accuracy due to the irregu-
larity of abnormal patterns (e.g., round or elongated). Also,
other studies have already been undertaken on automatic
abnormal image detection in WCE videos [23]–[30]. For
more details, readers can refer to the above-listed literatures.
However, as previously stated, these methods are essentially
classification or segmentation methods, without localizing or
recognizing abnormal patterns.

Therefore, in this paper, our main aim is to localize, rec-
ognize and detect abnormal patterns. Since the traditional
methods of WCE abnormal pattern detection are essentially
classification methods and do not implement detection func-
tion (i.e., the goal of object detection [17], [31] is not only
to determine whether an object exists in an image, but if so,
where in the image does it occur and what is the object).
These methods can be used prior to our method to directly
discriminate abnormal frames from the whole WCE video.
Our method can then be used to detect the WCE abnormal
pattern, which can speed up the detection of WCE abnormal
frames.

B. DEEP LEARNING APPLIED TO MEDICAL
IMAGE ANALYSIS
In recent research, deep learning has been employed for med-
ical image processing and analysis and achieved remarkable
results. Some successful application fields include classifica-
tion of skin cancer [32] using transfer learning [33], mitosis
detection in breast histology image [34], identification of can-
cer metastases [35], thoraco-abdominal lymph node detection
and interstitial lung disease classification [36], lung pattern
classification [37], infant brain image segmentation [38],
polyp detection [39], skin lesion segmentation [40], cancer
prediction [41], WCE abnormal image classification [42],
a baseline dataset for gastrointestinal (GI) disease detec-
tion [43], and brain MRI segmentation [76], [77], etc. These
fields mainly focus on medical image classification, localiza-
tion, and segmentation.

In short, deep learning has made much success in medical
image analysis [44]–[54]. Also, Ker et al. [55] review the
recent success of applying deep learning to medical image
analysis. But to the best of our knowledge, there is little work
focusing on WCE abnormal pattern detection. Additionally,
since training a deep CNN from scratch is difficult for a
small number ofmedical images, transfer learning is typically
used to fine-tune the CNN to ensure a quick convergence and
performance improvement [32], [39].

Therefore, in this paper, our scheme is apt to utilize
the top detection algorithms, such as ZF [56]-and VGG-16
[57]-based CNN architectures to detect the WCE abnormal
patterns, and simultaneously adopt transfer learning strategy
to fine-tune our CNN network to ensure a quick convergence.
Training is performed on our WCE image dataset using
various methods for abnormal pattern detection, and promis-
ing results are achieved.
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C. THE CURRENT TOP REGION PROPOSAL METHODS
Currently, there is extensive literature on region proposal
methods. Comprehensive surveys and comparisons of region
proposal methods can be found in [58] and [59]. According to
the analyses in [58] and [59] and the self-characteristics and
experimental results of WCE images, we integrate Selective
Search, EdgeBoxes, and Objectness [60], [61] to generate
region proposals, which is called amultiregional combination
(MRC) method. Furthermore, we study the possibility of
using a salient region segmentationmethod to generate region
proposals. For a more detailed comparisons and analysis of
salient region detection and segmentation methods, we refer
readers to [62] and [63]. According to the analyses in [62]
and [63] and our experiment results, and considering good
trade-off between the computational efficiency and algorithm
performance, we employ RC [19] salient region detection
and SaliencyCut [19] segmentation and Otsu [20] to generate
region proposals.

Selective Search (SS) uses hierarchical grouping strate-
gies and various color spaces with different invariance prop-
erties and similarity measures such as color, texture, size,
and fit, which makes it stable, robust, and class-independent
for determining object location, where object types range
from rigid to non-rigid and even include amorphous objects.
EdgeBoxes (EB) relies on one simple observation: the num-
ber of contours that are wholly enclosed by a bounding
box is indicative of the likelihood of the box containing
an object. Objectness (OB) uses four image cues to gen-
erate a closed boundary and thereby predicts any potential

object location. The four image cues are multiscale saliency,
color contrast, edge density, and superpixel straddling. In this
paper, we abbreviate the multiregional combination methods
including SS, EB, andOB and the salient region segmentation
method as MRC and SRS, respectively.

As pointed out by Hosang et al. [59], for object (WCE
abnormal pattern) detection, improving region localization
accuracy is as important as improving recall. So, one of
our main aims is to achieve more accurate region local-
ization via various methods. These methods are listed in
Subsection III-C. Inspired by [64]–[67], we use an analogous
method to re-rank the region proposals generated by MRC
method.

III. METHODS
A. OVERVIEW OF OUR PROPOSED APPROACH
In this paper, a novel WCE abnormal pattern detection
scheme integrating various methods is proposed, as depicted
in Fig. 2.We elaborate on how the detection frameworkworks
separately from the training and testing stages.

1) TRAINING STAGE
The training pipeline is shown at the top of Fig. 2. Initially,
we utilize the region proposals generated by theMRCmethod
to train the RPR module of the whole CascadeProposal
network. Next, the re-ranked region proposals yielded by
RPR are forwarded to the Detection module of the Cascade-
Proposal network, and then, the trained Detection model is
produced. Finally, according to Algorithm 1, the two trained

FIGURE 2. Overview of our approach. This workflow includes training and testing stages. During the training stage, SS, OB,
OE and their combination are used to generate category-independent region proposals, and then, the RPR module is
trained by using these region proposals, and the detection module is trained by using the re-ranked region proposals
generated via the RPR module. During the testing stage, region proposals generated by MRC are used to test via both the
RPR and detection models. Salient region proposals via SRS are input into the Detection model together. Region proposals
yielded by the detection module, whose overlap ratio is higher than 0.9 between them, will be fused into a final region
proposal.
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Algorithm 1 CascadeProposal Network Joint Training Process. The RPR and Detection Modules Will Form a Unified
Network After All Steps

step 1. Learned from scratch or fine-tuned for initializing all layers in Steps 2 and 3.
step 2. Train the RPR module from scratch or fine-tune the module via the ImageNet pretrained model to generate re-

ranked region proposals.
step 3. Train the Detection module from scratch or fine-tune the module via the ImageNet pretrained model using region

proposals from Step 2.
step 4. Initialize by Step 3 and fine-tune unique layers of the RPR module for region proposals sharing Conv1 to

Conv5 layer feature trained in Step 3.
step 5. Fine-tune the Detection module for abnormal pattern detection using region proposals from Step 4, keeping the

shared convolutional layers fixed.
step 6. Output the unified network jointly trained in Steps 4 and 5 as the final model.

FIGURE 3. Our detection network architecture. Following Fast R-CNN, an input image and a set of regions of interest (ROIs)
are input into a fully convolutional network. This architecture of Fast R-CNN can be extended to reject region proposals
that have a higher IoU than a given threshold by including the region proposal rejection module. This module has two
sibling output layers to yield softmax probability estimates over 10 object classes (5 positive categories and 5 negative
categories) plus a catch-all background class and per-class bounding-box positions. The final detection network, similar to
RPR, has also two sibling output vectors per ROI: softmax probabilities over 10 object classes and per-class bounding-box
regression offsets.

models, i.e., RPR and Detection models, form a unified net-
work, i.e., CascadeProposal network which is used to test
images. The steps of the training pipeline are summarized as
follows.
1) MRC is used to generate the region proposals on the

trainval set. Details are given in Subsection III-C. MRC
denotes a combination of SS, EB, and OB.

2) The RPR module is trained via these region propos-
als generated by MRC, and then, the re-ranked region
proposals are obtained through implementing greedy
non-maximum suppression (NMS) [68] on the regions
generated by RPR based on their scores, aiming to
achieve a high recall.

3) The Detection module of the CascadeProposal network
is trained via the re-rank region proposals.

4) A unified network, i.e., CascadeProposal network,
is finally produced through combining the RPR and
Detection modules. The procedure of joint training is
given in Subsection III-D.

5) The negative category and the model-based transfer
learning strategy are utilized for the training process
of the CascadeProposal network. Details about the

negative category and transfer learning are given in
Subsections III-D and III-E, respectively.

The WCE abnormal pattern detection scheme is composed
of two modules: RPR and Detection modules. We unify the
two modules into a new network CascadeProposal and train
the entire network with features shared through a developed
Algorithm 1, as shown in Subsection III-D, and we compare
the performance of each trained CNNmodel under the above-
mentioned several methods, including being fine-tuned by
transfer learning or trained from scratch. The results are given
in Subsection IV-D.

2) TESTING STAGE
The test pipeline is shown at the bottom of Fig. 3. As in
the training stage, we first perform MRC on the test set to
generate the region proposals. Next, these region proposals
are fed into the RPR model to generate candidate region
proposals after rejection. The salient region segmentation
method is also performed on the test set to generate salient
region proposals. Finally, the two region proposals are input
into the Detection model to output a discrete probability

VOLUME 7, 2019 30021



L. Lan et al.: Deep CNNs for WCE Abnormality Detection: CNN Architecture, RP and TL

distribution over each category, i.e., the accuracy of each
category via a score and a bounding-box prediction. The steps
of the test pipeline are described below.
1) Multiregional proposals are generated by MRC.
2) Candidate region proposals are obtained via the RPR

model, and simultaneously, salient region proposals via
SRS are combined and input together into the Detection
model.

3) The dense region fusion method is performed on the
detection results generated by step 2 to improve the
detection performance and localization accuracy.

4) The final detection results are output, including the
bounding-box and the score of each category.

B. CASCADEPROPOSAL ARCHITECTURE
Following Fast R-CNN [12], Faster R-CNN [64],
Hypernet [65], DeepProposal [66] and Deepbox [67],
the CascadeProposal architecture is shown in Fig. 3. We take
the ZF network as a baseline. The final classification layer
is replaced with the two sibling layers, a box-classification
layer (cls_score) and a box-regression layer (bbox_pred),
and is retrained on our WCE image dataset. Our network has
two modules: region proposal rejection (RPR) and Detection
modules. Each module has two sibling output layers, similar
to Fast R-CNN. The RPR is a convolutional network that
generates re-ranked region proposals by NMS. The Detection
module is a softmax classifier and a bounding-box regressor,
which output per-class label and bounding-box regression
offsets. As in Fast R-CNN, the ROI max pooling layer uses
max pooling to convert the features inside any valid region of
interest into a small feature map with a fixed spatial extent
of H × W , which is configured by setting H = 6 and
W = 6, where H and W are layer hyper-parameters that are
independent of any particular ROI. ROI max pooling works
by dividing the h × w ROI window into an H × W grid of
sub-windows of approximate size h/H×w/W and then max-
pooling the values in each sub-window into the corresponding
output grid cell, where h × w = 13 × 13 in this network.
Inspired by [65]–[67], our RPRmodule closely follows on the
top of the ROI max pooling layer, which differs from Faster

R-CNN. The RPN module of Faster R-CNN is added to the
bottom of the ROI max pooling layer. The object proposals
(i.e., ROIs) generated by the RPR module are then input into
the Detection module. We call the redesigned Fast R-CNN
network CascadeProposal because the network consists of
two analogous cascading deep convolutional networks based
on ZF to generate region proposals.

Similar to Fast R-CNN, the CascadeProposal network
takes two data inputs, a list of images and a set of ROIs in
these images, and simultaneously has two sibling outputs,
probability estimates over objection classes and bounding
box regression offsets. The entire image is processedwith five
convolutional layers and two max pooling layers to produce a
convolutional feature map. Then, the ROI max pooling layer
extracts a fixed-length feature vector from each feature map.

Both the RPR and Detection network configurations eval-
uated in this paper are outlined in Table 1 and Table 2. All
configurations follow the generic design presented in Fig. 3.
Conv1 to Conv5 layers are shareable between the RPR and
Detection networks.

C. REGION PROPOSAL GENERATION
In this paper, several methods, including MRC, SRS, DRF,
and RPR, etc., are used to generate region proposals. We give
a more detailed description on how each method outputs
region proposals and on which part of the network the region
proposals are fed into. The process of each method for gen-
erating the proposals is depicted below.

1) MULTIREGIONAL COMBINATION (MRC)
Multiregional combination integrating SS, EB, and OBmeth-
ods are performed on all images to generate preliminary
region proposals. Then, these proposals are loaded into
the region proposal rejection (RPR) module, which yields
re-ranked region proposals by NMS [68]. After NMS,
we select the top-N ranked region proposals to train the
Detection network based on their scores. For each image,
MRC generates approximately 3k candidate boxes. Based
on comprehensive surveys and comparisons of various
object proposal methods provided in [58] and [59] and

TABLE 1. The RPR network with ZF configurations. Input and output parameters, filter size, stride, and number of weight parameters of each layer are
listed in detail. ‘‘Input’’ and ‘‘Output’’ denote the number of filters (d) and the size of the feature map (w × h). h×w is the size of the ROI window, where
h×w = 13× 13 Conv1 to Conv5 layers are shareable convolutional layers with the detection network.
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TABLE 2. The Detection network with ZF configurations. Input and output parameters, filter size, stride, and number of weight parameters of each layer
are listed in detail. ‘‘Input’’ and ‘‘Output’’ denote the number of filters (d) and the size of the feature map (w × h). h×w is the size of the ROI window,
where h×w = 13× 13 Conv1 to Conv5 layers are shareable convolutional layers with the RPR network.

the characteristics of the WCE image, MRC may be more
suitable for non-rigid and amorphous object detection. The
performance of each method is compared by experiments,
as shown in Subsection IV-B.

2) REGION PROPOSAL REJECTION (RPR)
The RPR network includes a convolutional layer, a fully
connected layer and two output layers. The RPR is added
on top of the ROI max pooling layer, which differs from
the RPN of Faster R-CNN added on the bottom of the ROI
layer. This module is a convolutional network and has two
sibling output layers for each candidate region (ROI) gener-
ated by MRC. One is the p_cls_score layer, which yields a
softmax probability estimate over each object. The other is
the p_bbox_pred layer, which outputs bounding-box offsets
using four real-valued numbers. The RPR re-ranks region
proposals by implementing greedy non-maximum suppres-
sion (NMS [68]) based on their scores.

3) SALIENT REGION SEGMENTATION (SRS)
The motivation for using SRS is the same as in [69] and [70]
which comes from the fact that segmentation-related cues are
empirically known to often aid in object detection. However,
different from semantic segmentation-aware in [69] and [70],
which uses CNN features to yield the segmentation target
image, we directly adopt RC and Otsu to generate object
proposals on the auxiliary object detection task. The object
proposals generated by SRS are forwarded to the Detection
model in the testing stage. The experimental results show
that using SRS can improve the detection and localization
accuracy.

4) DETECTION NETWORK
Following [64]–[67], the Detection network includes a con-
volutional layer, two fully connected layers and two output
layers. These region proposals generated by SRS and RPR,
are fed into the Detection network. For the two output layers,
the cls_score layer outputs 11 scores, and the bbox_pred
layer yields 44 bounding-box regressions. When a score
threshold is given, region proposals yielded by the Detection

network, whose overlap ratio is higher than a fixed value, will
be fused into a final proposal. Dropout is used in the fully
connected layers 7 and 8 with a rate of 0.5.

5) DENSE REGION FUSION (DRF)
Dense regions are some similar candidate region proposals
around object region, with a high IoU overlap ratio and a short
distance between the region proposals’ center coordinates,
generated by the Detection module. Whether some regions
are dense or not will be determined by (1), which calculates
the distance between the center coordinates of two regions
and the IoU of two regions, whereR denotes ROIs (i.e., region
proposals). The dense regions are fused by calculating the
mean values of two regions’ center coordinates, their width
and height, and their scores.

F(R1,R2) =

{
0, Dis(R1,R2) > α&IoU (R1,R2) < β

1, Dis(R1,R2) < α&IoU (R1,R2) > β

(1)

D. TRAINING AND LOSS FUNCTION
Our main goal is to design an end-to-end network that
includes both region proposal rejection (RPR) and Detec-
tion modules and then to optimize the algorithm with back
propagation. The main steps of training can be depicted
as follows. First, the RPR module yields re-ranked region
proposals. Second, the re-ranked proposals are used to train
the Detection network. Finally, the network outputs the final
trained model. It is noteworthy that the network can be
either learned from scratch or fine-tuned from the ImageNet
pre-trained model. Following [64]–[67], we design a 6-step
training process as shown in Algorithm 1. Similar to Faster
R-CNN [64], for step 2 and step 3, the RPR and Detection
modules are trained independently and do not share convolu-
tional layers. After fine-tuning of step 4 and step 5, both net-
works share the same convolutional layers and form a unified
network.
We observed that for some outstanding object detection

algorithm such as R-CNN [68], [71], SPP-net [72], Fast
R-CNN [12] and Faster R-CNN [64], directly setting all
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regions with an IoU lower than 0.5 to the background cat-
egory is not reasonable. Therefore, we set these regions with
an IoU higher than 0.5 to the positive category, the regions
with an IoU overlap with ground truth region in the interval
of [0.2, 0.5) to the negative category, and other regions with
an IoU lower than 0.2 to the background.We assign a positive
label to positive and negative categories and a negative label
to the other regions, respectively, to train our redesigned
network. That is the main idea of a negative category strategy
introduced into our CNNs training.We use the multi-task loss
function defined in [12] to optimize the softmax classifier and
bounding-box regression, as shown in (2).

L(p, u, tu, v) = Lcls(p, u)+ λ[u ≥ 1]Lreg(tu, v) (2)

where p is a discrete probability distribution per ROI.
p = (p0, . . . , pk , . . . , p2K ), over 2K+1 categories.K denotes
the object classes. For parameter tu and v, readers can refer
to [68]. As usual, the background classes are labeled with
u = 0, and Lreg is ignored. For negative categories, it is
meaningless to adjust the term Lreg. Therefore, we set u = 0
to ignore Lreg. The hyper-parameter λ = 2 is apt for better
region localization. The above parameters are used in both
the RPR and Detection modules.

During training, we use the ImageNet [14] pretrained
model to initialize and fine-tune the parameters across all
basic layers between both modules. This procedure is known
as transfer learning [33]. In addition, we also train the network
from scratch.

E. TRANSFER LEARNING
We utilize model-based transfer learning to train our whole
network, i.e., initialize the network from the pre-trained
model. In addition, we compare the performance of the
trained models fine-tuned via the transfer learning strategy
and learned from scratch. The CascadeProposal network can
be either learned from scratch or fine-tuned from the Ima-
geNet [14] pre-trained model. When using the ImageNet pre-
trained model to fine-tune the network, we set the learning
rate to 0.001. When learned from scratch, all the parameters
of the CNN models are initialized with random Gaussian
distributions and trained for 40k iterations using stochastic
gradient descent with a mini-batch of size 128, starting with
a learning rate of 0.01. Training convergence can be observed
within 40k iterations, and the caffemodel can be obtained.
The other hyper-parameters are the same as those used in
the off-the-shelf ImageNet pre-trained model, including a
momentum of 0.9, a weight decay of 0.0005, and gamma
of 0.1.

F. IMPLEMENTATION DETAILS
For the RPR module, each region proposal generated by RPR
is scored and adjusted. The number of these proposals is the
maximum for an image, and some proposals highly overlap
with each other. To reduce redundancy, we perform greedy
non-maximum suppression [68] on the proposals based on
their scores. Concretely, we fix the IoU threshold for NMS

at 0.7, which leaves us approximately 800 proposals per
image from approximately 3k proposals generated by MRC.
According to the analysis in [64], NMSdoes not harm the ulti-
mate detection accuracy but substantially reduces the number
of proposals. After NMS, we use the top-200 ranked proposal
regions to train the Detection module but evaluate different
numbers during the testing stage. We use the evaluation
method of Pascal VOC2007 [13].

For the object regions generated by the Detection mod-
ule, we adopt a discriminant function of the dense region
(cf. (1)) to fuse multiple regions into region. Concretely,
the regions with a distance lower than 0.1 and an IoU higher
than 0.9 between regions are fused into one region.

For the network architecture, we use the CascadeProposal
with ZF [56], [64] and Fast R-CNNwithVGG-16 [12], [57] to
train our dataset. For CascadeProposal, the number of filters
and the size of the feature map of the ‘‘Conv1 to Conv5’’
layers are the same as [12]. The parameters of the other
unique layers of both the RPR and Detection modules are
listed in Table 1 and Table 2. For Fast R-CNN, we follow [12]
to train the network based on multiregional combination,
negative category, and transfer learning.

In this paper, Selective Search, EdgeBoxes, and Objectness
are used to generate region proposals using default parameter
configurations, except the parameters used to fix the number
of proposals. As in Fast R-CNN [12], we train and test both
the RPR and Detection networks on images of a single scale
of s = 240 pixels for ZF and s = 600 pixels for VGG-16.
The other hyper-parameters for training and fine-tuning of
both networks via a pretrained deep model are a base learning
rate of 0.001, a momentum of 0.9, a weight decay of 0.0005,
and gamma of 0.1. We also use data augmentation by flip
and rotation. All images are horizontally flipped with a prob-
ability 0.5, and each image is rotated randomly between
0◦ and 359◦ during training.

IV. EXPERIMENTS AND RESULTS
A. WCE IMAGE DATASET
Following the Pascal VOC2007 detection task, our WCE
image dataset contains a total of 7,381 annotated images,
which come from a combination of raw images of patients
provided by Chongqing Jinshan Science & Technology
(Group) Co., Ltd. and the online open-access images atlas
from Given Imaging Incorporation. The first dataset from
Jinshan has 7,200 images, and the other dataset from Given
has 181 images. The WCE images from Jinshan and Given
are 256× 240 pixels and 576× 576 pixels, respectively. For
this detection task, four sets of images are provided: train,
test, trainval and val sets. This dataset is annotated under
the guidance of clinicians. It consists of five object classes,
including undigested residue, bleeding, bubbles, tumor and
polyp. We failed to obtain WCE abnormal images of other
types, such as ulcers and Crohn’s disease. The data are ran-
domly allocated to 50% for the trainval set and 50% for the
test set. The train set and val set account for 25% of trainval
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FIGURE 4. Illustrations of salient region segmentation-based region proposal generation. (a) and (d) Original image.
(b) and (e) Binary maps yielded by RC and Otsu, respectively. The salient objects resulting from binary maps (b) and (e) are
shown in (c) and (f).

set, respectively. The trainval set is the union of the train and
val sets. To easily remember for use in this paper, we denote
the WCE image dataset as WCE2017.

The basic criteria of image annotation are that the bound-
ing box covers as much of the object (abnormal pattern)
region as possible and that scattered homogeneous objects are
separately annotated, including petechial, zonal, and blocky
objects. We also refer to the Pascal VOC2007 annotation
guidelines. Following the guidelines on categorization, bleed-
ing includes active bleeding and inactive bleeding, which is
shown in the left column of Fig. 4. Statistics on evaluating
the detection task are shown in Table 3. Table 3 summarizes
the number of objects (abnormal pattern) and images (con-
taining at least one object of a given class) for each class
and image set. In total, there are 7,381 images, containing
5 object categories, 3,690 trainval images, 3,691 test images,
and 11,653 annotated objects. The distributions of images and
objects by class are approximately equal across the trainval
and test sets.

B. LOCALIZATION PERFORMANCE
As already explained in the above relevant section, we utilize
Selective Search, EdgeBoxes, and Objectness i.e., multire-
gional combination (MRC) to obtain a relatively accurate
object localization based on the non-rigid and amorphous
characteristics of the WCE abnormal pattern. Addition-
ally, salient region segmentation based on the saliency map

TABLE 3. Statistics of the main image sets. Following Pascal VOC2007,
the statistics of abnormal patterns are used in the evaluation.

computed by region contrast (RC) [19] and SaliencyCut [19]
segmentation methods and Otsu [20] can obtain a better
object localization. The visual experimental results are shown
in Fig. 4. Following [69], [70], we adopt RC-based Salien-
cyCut and Otsu methods to generate object proposals on
the auxiliary task of WCE abnormality detection. In the
whole detection system, the salient region is used to generate
class-agnostic region proposals. For WCE abnormal pattern
detection, our observation is that object proposals generated
by SRS applied to WCE abnormal pattern detection not
only yield accurate object localization but improve detection
accuracy.

There also exist other region proposal methods, such
as Region Proposal Networks (RPNs) [64] and Bing [73].
We compare our MRC method to RPNs and Bing, and
the qualitative results are shown in Fig. 5. Furthermore,
the quantitative results are presented and discussed in
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FIGURE 5. A visual illustration of the abnormal pattern localization obtained by each method. The methods
are from left to right: (a) Our method, (b) RPNs, and (c) Bing. Our method has a visibly better localization
accuracy. (a) and (b) Display the detection results yielded by the CascadeProposal detector in our method
and the RPNs, respectively.

FIGURE 6. A simplified illustration of dense region fusion. Top to bottom, left to right: (a) Two region proposals by the
detection model, (b) The result of dense region fusion, and (c) Illustration of combining (a) and (b). (d) Illustration of
combining (c) and the ground-truth region box. (e) The ground-truth region box. (f) Illustration of combining (a) and (e).

Subsections IV-C and IV-D. It can be seen from Fig. 5
that the region proposals generated by our method seem
to have a better localization accuracy and a higher recall
than the other two methods. One reason may be that the
methods utilize several limited fixed window sizes (e.g.,
RPNs using 9 anchors and Bing using 36 quantized target
window sizes) to generate object proposals, which does not
fulfill the requirement of non-rigid and amorphous object
detection. However, for the region proposals, RPNs perform
significantly better than Bing.

For dense region fusion (DRF), the experimental results are
obtained by using the above-mentioned discriminant function
and fusion method described in Subsubsection III-C5. The
results are shown in Fig. 6. We take two region proposals
(red) generated by the Detection model as an example.
It can be seen from Fig. 6 that there is a significant offset
between the region proposals and the ground truth region
(green). The generated region proposal does not provide
desirable localization. However, there is only a small offset
between the region proposal (blue) obtained by the DRF
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and the ground truth region proposal (green). The fused
region is approximately similar to the ground truth region.
Concretely, we use α = 0.1 and β = 0.9 in (1) to obtain the
fusion results. The detailed quantitative analysis is shown in
Subsections IV-C and IV-D.

C. DETECTION PERFORMANCE
We evaluate our proposed methods on the WCE2017 dataset.
We utilize the model-based transfer learning strategy to train
three detection networks on our WCE2017 image dataset by
using the ImageNet pretrained model. The first network is
CascadeProposal with ZF, the second is Fast R-CNN with
ZF or VGG-16, and the final is Faster R-CNN with ZF
or VGG-16. We also train our CascadeProposal network
from scratch. Table 4 shows the detection results using our
CascadeProposal network, either trained from scratch or fine-
tuned from the off-the-shelf pretrained model. For training
and testing, we use various region proposal methods to
generate region proposals. We adopt the same region gener-
ation algorithm in the training and testing stages to maintain
consistency between the training and testing proposals, which
serves as a baseline for comparisons with other methods.

It can be seen from Table 4 that we reach the follow-
ing conclusions. 1) Using the region proposal method of
MRC+SRS+DRF at the testing stage, we can achieve a
mean average precision (mAP) of 70.3% under the final
model trained by the MRC+Neg+TL method, surpassing
any other single region generation algorithm by a significant
margin, which indicates that the trained model has a better
generalization performance than other models trained by a
single region proposal method. 2) Using the MRC+SRS and
MRC+SRS+DRF for abnormal pattern detection, we can
achieve mAP values of 69.5% and 70.3%, correspondingly.
The mAP values outperform MRC by 1.1 and 1.9 points,
respectively, which shows that DRF and SRS methods can
improve the detection and localization accuracy. 3) When
using MRC, we achieve mAP values of 68.4% and 64.3%

TABLE 4. Detection results of the WCE2017 test set (trained on trainval).
The detection networks are fast R-CNN with ZF baseline (rows 1-4), Faster
R-CNN with ZF (rows 5-6) and CascadeProposal with ZF (rows 7-12),
respectively. However, various proposal methods are used for training
and testing. The results of the bold-faced rows serve as a baseline for
comparison with other methods for training and testing. The acronyms
MRC, DRF, SRS, Neg, and TL denote multiregional combination, dense
region fusion, salient region segmentation, negative category, and
transfer learning, respectively. The used metric is mAP.

by using the trained models based on MRC+Neg+TL and
MRC+Neg, respectively. The mAP of the trained model
based on MRC+Neg+TL outperforms the other mAP value
based on MRC+Neg by 4.1 points. This result proves that
the potential of transfer learning from natural images to med-
ical images could be beneficial for WCE abnormal pattern
detectionwith limited availablemedical data and annotations.
4) Compared with the trained model from scratch based on
MRC, the detection accuracy rate of the trained model based
on MRC+Neg increases by 1.7 points by adopting the same
region proposal generation method (MRC). It shows that the
network trained by adding negative categories can improve
detection performance. 5) ThemAP of the model trained only
from scratch based on MRC outperforms other single region
proposal methods such as SS, EB, OB, and Bing by 0.8,
3.7, 11.9 and 6.3 points, respectively. This demonstrates that
the multiregional combination has advantages over the sin-
gle region proposal generation method for object detection.
6) When using MRC and RPN in the testing stage, we can
achieve mAP values of 68.4% and 63.9% by using the trained
models based on MRC+Neg+TL, respectively. The mAP of
MRC outperforms the PRN by 4.5 points. This result demon-
strates that MRC may have a better localization accuracy.
7) Using RPN during the testing stage, we can achieve mAP
values of 70.3% and 72.1% under the final models trained by
the CascadeProposal usingMRC+Neg+TL and Fast R-CNN
using RPN (i.e., Faster R-CNN) proposals, respectively. The
detection performance of Fast R-CNN using RPN proposals
surpasses our methods by 1.8 points, which indicates that the
final model trained by Faster R-CNN has a better generaliza-
tion performance. However, Faster R-CNN uses 2000 pro-
posals to train model. Also, the detection performance of
our trained model surpasses the Faster R-CNN at stage1 by
1.7 points. So, to some extent, the performance of our method
may not be lower than that of Faster R-CNN.

From what has been discussed above, we find that our
CascadeProposal model has a better generalization capability
relative to Fast R-CNN with ZF baseline, but Faster R-CNN
with ZF has a slight advantage over our network. These
experimental results in Table 4 verify our previous hypothesis
that multiregional combination, dense region fusion, salient
region segmentation, a negative category, transfer learning,
and a redesigned network architecture (i.e., CascadeProposal)
can improve the detection performance.

Additionally, the detection performance of various trained
model based on CascadeProposal with ZF architecture for
each category is detailed in Table 5. Each detection method
corresponds to the trained model in Table 4.

Furthermore, we also perform a set of experiments on the
Fast R-CNN with VGG-16 network [12], [57]. The data are
shown in Table 6, and the best mAP of 72.3% can be achieved
by using our method. It is notable that this experiment only
shows the performance of the trained model using a transfer
learning strategy. Faster R-CNN with VGG-16 still has a
slight advantage over Fast R-CNN with VGG-16 based on
the MRC+Neg+TL method.
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FIGURE 7. Some selected examples of WCE abnormal pattern detection results on the WCE2017 test set using the CascadeProposal architecture.
The training data is WCE2017 trainval. Each output box is associated with a class label and a softmax score. A score threshold of 0.6 is used to
display these images. An IoU threshold of 0.3 is used to reduce redundant boxes.

TABLE 5. Results on the WCE2017 test set corresponding to various fast
R-CNN with ZF baseline, faster R-CNN with ZF and CascadeProposal with
ZF models in Table 4. The used metric is mAP.

Fig. 7 shows some results of the WCE2017 test set using
the CascadeProposal network.

D. RECALL RESULTS
When using detection proposals for detection, it is important
to have a good coverage of the objects of interest in the

test image, since missed objects cannot be recovered in the
subsequent classification stage. Thus, it is common practice
to evaluate the quality of proposals based on the recall of the
ground truth annotations [59]. We employ the common and
primary recall metrics mentioned in [58] and [59] to compare
the recall results between our proposal method and other top
proposal methods [15]–[18], [60], [61]. Hosang et al. [59]
refer to two primary metrics to evaluate detection proposals
that are referred to as Recall-to-IoU and Recall-to-Proposal
in this paper. For a fixed number of proposals (e.g., number
of proposals = 50, 200, 500 in this paper), the Recall-to-IoU
metric is the fraction of ground truth annotations covered as
the intersection over union (IoU) threshold is varied, as shown
in Fig. 8. It can be seen from Fig. 8 that our proposal gen-
eration method (i.e., multiregional combination plus region
proposal rejection module) performs well and has the highest
recall. For high IoU thresholds (e.g., 0.8 to 0.9), our method
still achieves promising detection results comparedwith other
region proposal generation methods. Hosang et al. [59] note
that although recall at an IoU threshold of 0.5 has been

TABLE 6. Results on the WCE2017 test set using fast R-CNN with VGG-16 (rows 1-4,7-8) and faster R-CNN with VGG-16 (rows 5-6), where the proposals in
rows 4-6 are generated by RPN with ZF. The used metric is mAP.
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FIGURE 8. Recall versus IoU threshold on the WCE2017 test set. (a) 50 region proposals. (b) 200 region proposals. (c) 500 region proposals.

FIGURE 9. Recall versus number of proposals on the WCE2017 test set. Using IoU = 0.5, 0.6, 0.7, and 0.8, we illustrate the curves of
Recall-to-Proposal for various region proposal generation methods.

traditionally used to evaluate object proposals, it is not a
good metric for predicting detection performance. Our region
proposal generation method achieves good results across a
variety of IoU thresholds, which is desirable in practice
and plays an important role in the performance of object
detectors [59], [65].

For a fixed IoU threshold (e.g., IoU = 0.5, 0.6, 0.7,
and 0.8), the Recall-to-Proposal is the proposal recall as
the number of proposals is varied, as shown in Fig. 9.
The plots show Recall-to-Proposal for various methods.
Hosang et al. [59] show that there is a correlation between
detector performance and recall at different overlap thresh-
olds. More concretely, there is a strong correlation at an IoU
range of approximately 0.6 to 0.8. An object proposal with
an IoU threshold of 0.5 is too loose to fit the ground truth
object, which usually leads to the failure of following object
detectors [65]. In fact, Hosang et al. [59] note that recall at an
IoU threshold of 0.5 is only weakly correlated with detection
performance. It can be seen from Fig. 9 that our method
achieves better recalls than other methods at an IoU range
of 0.6 to 0.8, which indicates our method can serve as a good
predictor for detector performance.

E. TRAINING AND TESTING TIME
We use the Caffe framework [74] and a Nvidia TitanXp
GPU to train the various CNNs. The entire training and
testing times of Fast R-CNN with ZF, Faster R-CNN with
ZF, and CascadeProposal with ZF are shown in Table 7,
and those of Fast R-CNN with VGG-16 and Faster R-CNN

with VGG-16 are shown in Table 8. The CascadeProposal
with ZF and Fast R-CNN with VGG-16 networks based on
MRC+Neg+TL are approximately 57minutes and 5.2 hours,
respectively. The mean testing times per image with Cas-
cadeProposal with ZF and Fast R-CNNwith VGG-16 models
are approximately 89.6 ms and 278.6 ms, respectively. It is
noteworthy that the time reflects only the detection time,
excluding the proposal generation time. Our detection system

TABLE 7. Runtime comparison between various models trained by using
fast R-CNN with ZF (rows 1-4), faster R-CNN with ZF (rows 5-6) and
CascadeProposal with ZF (rows 7-11).

TABLE 8. Runtime comparison between various models trained by using
fast R-CNN with VGG-16(rows 1-3,5) and faster R-CNN with VGG-16
(rows 4).
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takes a total of 89.6 ms for both the RPR and Detection mod-
ules, which take approximately 86 ms and 5 ms, respectively.

V. DISCUSSION
In this section, we compare and discuss the performances of
the various models trained by the methods in the previous
sections. We explain the major findings and significance in
terms of the results of our work. We also discuss and analyze
future work on WCE abnormal pattern detection.

For the CascadeProposal architecture, it can be seen
from Table 4 and Table 5 that using the model trained by
the MRC+Neg+TL method, we can achieve a final mAP
of 70.3%. This model outperforms single region proposal
methods such as OB under the Fast R-CNN with ZF baseline
by 19.6 points, which shows that the best model performance
can be achieved using the MRC+Neg+TL method. For Fast
R-CNN with VGG-16 architecture, we can achieve a better
mAP of 72.3% at the price of a higher computational cost.
This network does not exhibit a good speed-accuracy trade-
off. For Faster R-CNN with ZF and VGG-16, we can reach
the best mAP values of 72.1% and 73.9%, respectively, at the
price of more training time. It can be seen from Table 7 and
Table 8 that using the CascadeProposal architecture, we can
reach a good trade-off between computational efficiency
and model performance. By combining Table 5, Table 6,
Table 7, and Table 8, we compare and analyze the detection
accuracy and the running time among CascadeProposal with
ZF, Fast R-CNN with ZF or VGG-16, and Faster R-CNN
with ZF or VGG-16 networks. CascadeProposal trained by
MRC+Neg+TL achieves competitive results, with a final
mAP of 70.3%while requiring in total approximately 57min-
utes for the whole training time. However, Fast R-CNN with
VGG-16 with a better mAP of 72.3% takes approximately
5.2 hours, and Faster R-CNN with VGG-16 with the best
73.9% mAP takes 15 hours; these mAP values are slightly
higher than that of CascadeProposal. Furthermore, it can also
be visualized from 4, 5, and 6 that CascadeProposal achieves
a promising detection performance.

In our work, we utilize CNNs to detect WCE abnormal
patterns. Our work is different from traditional detection or
classification methods [5]–[10], [22] applied to WCE image
detection. As Section II notes, the traditional methods are
generally classification methods rather than detection meth-
ods. Our scheme mainly aims to localize, recognize and
detect WCE abnormal patterns. Therefore, we believe that
this work will be helpful in clinical practice and can pro-
vide direct detection results of WCE abnormal patterns for
gastroenterologists. Moreover, through a review of published
papers, we find that there are only a few reports that have
used CNNs to address the problem of WCE abnormal pattern
detection. Therefore, this work is the first step toward using
deep learning for WCE abnormality detection, and this may
be a guide for researchers in subsequent studies. There has
also been some recent research employing deep learning to
medical image processing and analysis. These studies include
classification tasks [32], [36], [42]–[49] and detection tasks

[34], [35], [75]. Deep learning has shown great potential for
medical image analysis [32]–[40], [42]–[49], [55], [75].

In this study, we find that the performance of the
CascadeProposal network fine-tuned by the ImageNet [14]
pretrained model generally surpasses the model trained from
scratch. This conclusion conforms with [36] and [39], which
demonstrate that CNN models pre-trained via transfer learn-
ing outperform or perform as well as CNN models trained
from scratch. However, training a deep CNN model is not an
easy task; it can be time-consuming and complicated and is
often faced with overfitting or failure to converge. Therefore,
we suggest using a transfer learning strategy to address the
problem of medical image classification and detection and
that following studies should focus on transfer learning.

VI. CONCLUSION AND FUTURE WORK
In this work, we report a good method using deep learn-
ing (referring in particular to CNNs) for abnormal pattern
detection in abnormal WCE images. Several methods are
integrated, including a deep cascade network architecture
(CascadeProposal), multiregional combination, salient region
segmentation, dense region fusion, a negative category, and
transfer learning. Our overall experimental results proved
that the above-mentioned methods significantly improve the
performance of the trained models. Concretely, we achieve a
final mAP of 70.3% and a better mAP of 72.3% via Cascade-
Proposal with ZF and Fast R-CNN with VGG-16 networks,
respectively, using MRC+Neg+TL method in the training
stage and MRC+DRF+SRS method in the testing stage.
This work is the first step toward using deep learning for
WCE abnormality detection and provides a guideline for
subsequent studies. Our method will help physicians directly
determine the accurate localization of abnormal patterns.

Since the WCE abnormal pattern detection task has a real-
time need. So, we will try to develop and design state-of-the-
art real-time detector to this detection task later. Also, it is
well known that the WCE produces a large number of redun-
dant and irrelevant frames for a patient in one examination.
How to eliminate redundant and locate critical informative
frames is an urgent demand. Therefore, our future research
will focus on some effective WCE video summarization
methods.
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